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ABSTRACT RESULTS

The Squirrel Hill Tunnel is located on the eastern side of the city of Pittsburgh. This tunnel is a major east- Emission Profiles for Hopanes at three different Time-periods
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For tunnel sampling, the PM2.5 sampler was set up above the ceiling of the tunnel at 12 foot
above the road and approximately 100 feet from the exit-end of the tunnel. Sampling was performed using a © ©
Tisch Environmental, Inc. Model TE-1000 PUF sampler operated at a flow rate of 145 Ipm. A PM2.5 cut was Tunnel Average Emission Factors (ug/kg of Fuel) vs. Ambient Concentrations (ng/m3)
obtained with a URG cyclone installed upstream of the Tisch sampler.
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In parallel to the tunnel study, five ambient PM2.5 samples were collected, three at the PAQS central site and 3 s -k
two on the roof of the Bussiness Building at Carnegie Mellon University. Ambient samples were 24-hours &= 2

samples. PM2.5 samples were collected on 4 quartz filters with 3" PUF plugs (Tisch Environmental, Inc.) as
backup.

Field blanks at both the tunnel and the ambient locations were also collected and analyzed.

Sample Extraction and Analysis Emission Rates for PAHs and Oxy-PAHs (ug/kg of Fuel) vs. EC/OC Ratios CONCLUSIONS
Filter/PUF pairs were stored in pre-cleaned glass jars and kept frozen at <-23°C until the time of extraction.
Just before extraction, each filter was spiked with a known amount of an Internal standard mix consisting of a
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extracts were combined and rotavaporated to reduce the solvent volume to about 2 ml. The volume was H 3 2 Bonzolkifluoranthene the contributions of vehicular PM2.5 emissions to the ambient
further reduced to ~200pl using a gentle stream of ultrapure N2. The extracts were methylated using freshly 230 2 H =300 - 0 2 20 . * BenzofJfluoranthene. fine particulate matter burden.
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GC/MS analysis of derivatized extracts was carried out on a GC model HP-6890 coupled to a MSD model HP- g w: ¥ g g N -Parylene above. The lower molecular weight PAHs Irrespectively of traffic density and fleet composition, the
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column DB-5MS. Temperature programming of the GC consisted of the following steps: isothermal at 60°C for H R £ 3 i ¥ show a trend and steranes were found to be very similar.
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