
An Advanced Diagnostic and Prognostic System for Gas 
Turbine Generator Sets with Experimental Validation

Clemson University

John R. Wagner, Ph.D., P.E.
SCIES Project 03-01-SR108

DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431

Tom J. George, Program Manager, DOE/NETL
Richard Wenglarz, Manager of Research, SCIES

Project Awarded (07/01/2003, 36 Month Duration)
$319,479 Total Contract Value ($319,479 DOE)



Clemson Presentation 10-19-2005 J.W.

Gas Turbine Need

• The Reliability, Availability, and
Maintainability (RAM) technical area 
within High Efficiency Engines and
Turbines (HEET) Program
encompasses the design of gas turbine
health management systems 

• The introduction of real-time
diagnostic and prognostic capabilities
on gas turbines can provide increased 
reliability, safety, and efficiency 

• Opportunity exists to develop and 
demonstrate advanced health 
monitoring strategies at Clemson

Solar Turbine Taurus 60 system



Clemson Presentation 10-19-2005 J.W.

Project Objectives

Technical Objectives:

• Develop a real-time system monitoring algorithm capable of detecting and
isolating the occurrence of anomalies, as well as predicting future degraded
operation for maintenance scheduling

• Numerically and experimentally demonstrate the health monitoring concept

Educational Objective:

• Involvement of undergraduate students through an “Undergraduate 
Research Award” to promote the  program's educational mission

• Preparation of graduate engineering students for employment in the gas 
turbine industry 
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• Open issues to be accomplished by research team in upcoming months
- Complete real-time data manipulation collaborating with Mathworks on “OPC” software 

- Finish derivation of diagnostic and prognostic software strategies; resolve modeling issues

- Examine Mercury 50 operation at Clemson University and feasible modifications

Approach

Project Stages 3Q 
03

4Q 
03

1Q 
04

2Q 
04

3Q 
04

4Q 
04

1Q 
05

2Q 
05

3Q 
05

4Q 
05

1Q 
06

2Q 
06

1. Gas Turbine Data Acquisition

2. Sensor Fusion for Data Analysis

3. Analytical and Empirical Modeling

4. Diagnostics Module Design

5. Prognostics Module Design

6. Simulation and Experimental Testing

Completed In progress Current
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Accomplishments
• Achieved a model-free trend checking diagnostic algorithm (12/03)

• Demonstrated real-time data streaming between the Mercury 50 gas turbine and 
the Energy Systems Laboratory using Matlab OPC Interface (03/04)

• Created a compressor map of the Solar Mercury 50 gas turbine based on actual 
blade geometry and experimental data (07/04)

• Undergraduate research group member completed HEET Summer Intern Program 
at Solar Turbines, San Diego, CA (09/04)

• Established a sensory architecture of 28 signals for diagnostics/prognostics (12/04)

• Developed a dynamic (transient) model for the gas turbine (04/05)

• Created an initial methodology for the prognostics module (05/05)

• Verified and validated the dynamic model with limited experimental data (06/05)

• Established initial model-free/model-based diagnostics; ready to validate (10/05)
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Technical Results – Research Overview

Gas Turbine 
Sensors and 

Data 
Acquisition

Empirical and 
Analytical 
Modeling

Diagnostics
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• Model-Based

Prognostics

• Model-Free
Numerical 
Simulation

Experimental 
Testing

Suite of 
Health 

Monitoring 
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and 
Algorithms

Simulation and 
Experimental 

Testing
Task 1&2

Task 3

Task 4
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Task 6

Mercury 50 Gas Turbine

Deliverables
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• RSLinx OPC server

• IPCOS Matlab/OPC 
interface

• Matlab with OPC 
toolbox

• Real-time workshop

Allen Bradley PLC with 
OPC technology software

Mercury 50 Turbine host 
with RSLinx OPC server

Mercury 50 Gas Turbine

Clemson University Ethernet
Mercury 50 Gas Turbine Pack

Clemson University Facilities Control Room

Energy Systems Laboratory

Research 
Workstation

• OPC (Ole for Process Control) is a communication technology linking
different sensors types through a common software platform (Note: Ole is a city in France) 

• Clemson University campus Ethernet connects the turbine and the research workstations

• The research workstations can communicate with two OPC servers; a machine server (installed 
on the workstation) and a remote server (turbine host computer)

Technical Results – Sensors and Data Acquisition 
Configuration (Hardware)

Machine Server

Remote Server
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Technical Results – Sensors and Data Acquisition 
Configuration (Software)

ACQUIRED DATA FACTS

Data acquisition rate: 1sec
Selected data:
• Generator Power ------------------------P
• Generator Voltage 
• Lube Oil Header Temp
• Rotational Speed------------------------N
• Fuel Valve Position
• Relief Valve Position
• Air Diverter Valve  Position
• Inlet Guide Vanes  Position
• T7.1 Average
• T7.0 Average
• T2.45 Average
• Air inlet temperature
• Turbine Rotor Inlet Temp-------------T4
• Gas fuel supply pressure
• Compressor in accel. (Envelop)
• Center frame axial acce. (Envelop)
• Comp. diffuser accel.
• Generator driven end accel.
• Lube oil header pressure
• PCD--------------------------------------P2
• Gas producer Brg1 Y-axis vib. (pp)
• Gas producer Brg1 X-axis vib. (pp)
• Gas producer Brg2 Y-axis vib. (pp)
• Gas producer Brg2 X-axis vib. (pp)
• Gas producer Brg3 Y-axis vib. (pp)
• Gas producer Brg3 X-axis vib. (pp)
• Gearbox acceleration (Envelop)
• Fuel Flow rate--------------------------mf
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Technical Results - Analytical Gas Turbine Model

• Analytical/Empirical model estimates normal turbine operation
• Real time model is a sequence of interconnected subsystems which describe the basic 

components of a stationary gas turbine
• Physical and thermodynamic laws have been used to describe the system dynamics

Shaft Dynamics
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Technical Results - Analytical Model
• Thermodynamic analysis of the gas turbine is based on a modified Brayton cycle            

- Compression (Compressor, points 1 to 2,2A)                     
- Heat addition (Recuperator, points 2A to 3) 
- Heat addition (Combustion chamber, points 3 to 4)              
- Expansion (Turbine, points 4 to 5)

• Analytical model will incorporate the shaft dynamics and the thermodynamic 
relations during the turbine’s transient operation
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Technical Results - Experimental Model Validation

• Relevant sensor locations in Mercury 50 gas turbine are shown below
• To validate the mathematical model, comparisons between the analytical model and the 

experimental results from the Mercury 50 gas turbine have been studied
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Technical Results - Experimental Model Validation

• Estimated and actual shaft speed comparison

• The overall behavior is well matched with some deviations between 100<t<600 seconds

• Model corresponds to within 2% of the experimental data (Feburary 2, 2005)

Match within 2%

1600

1400

Simulation

Actual Data

4000
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Technical Results – Experimental Model Validation

• Estimated and actual power generated comparison
• Sequential loading is started 400 seconds after start up; both steady state and start up phases 

are well predicted by the mathematical estimates
• Model corresponds to within 1% of the experimental data (Feburary 2, 2005)

Match within 1%
2100

2000

Simulation

Actual Data

4000
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Technical Results - Experimental Model Validation

• Estimated and actual fuel flow rate comparison
• A good match is obtained between the experimental data and the estimated fuel flow
• Model corresponds to within 3% of the experimental data at steady state (February 2, 2005); 

transient stage is under investigation to decrease fuel flow decay after peak

Loading sequence

0.16

0.12

Simulation

Actual Data

4000
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Technical Results – Experimental Model Validation

• Estimated and actual turbine rotor inlet temperature
• Steady state behavior is well matched, start up under investigation
• Model corresponds within 3% of the experimental data during steady state (Feburary 2, 2005)

Steady state well matched

1400

1200

Simulation

Actual Data

4000
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Learning Methods

Technical Results – Diagnostics Overview
• Diagnostics detect eminent fault occurrences by analyzing sensory information

• Diagnostic techniques can be generally categorized into model-free and model-based methods

- In model-free methods, diagnostics are performed by directly analyzing the signals received  
from the system and compare them to a certain predefined criteria

- Model-based methods use an analytical or empirical system model to estimate behavior

Vibrations Analysis 
Methods

Observer-Based 
Methods

Heuristic and Fuzzy 
Methods

Bayesian and 
Decision 

Algorithms

Model-Free Model-Based

Statistical
Methods

State-Space/Kalman
Techniques

Parity 
Space

Parity 
Equation

Signal Based 
Methods

Limit 
Checking

Limit 
Checking

Neural 
Networks

Innovations 
Analysis

Innovations 
Analysis

Stochastic methods (Time Series)Stochastic methods (Time Series)

Frequency Domain Methods (e.g.  FFT)

Wavelet Transform

General Classification

Methods

Parameters 
Estimation

States
Estimation



Clemson Presentation 10-19-2005 J.W.

Technical Results – Selected Strategy
• Limit checking is performed for both the signal and its derivative as a preliminary step 

• Due to the squared innovations (estimation error),      , the Chi-square hypothesis test is selected  
for its robustness in detecting deviations

• A model-free stochastic framework including time series signal modeling, fault dictionary 
creation, and signal matching techniques is selected for isolation

Innovations Generation Chi-square Hypothesis Test
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Analysis Statistical Signal 
Matching

Fault Dictionary

Derivative Calculation Signal and Derivative Checking

Plant 
Signals

Model 
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Analysis 
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Technical Results – Model-Free Limit Checking Diagnostics
• Accessible parameters signals are compared to a bounded range

• Levels of alarms are set according to the difference between the safe limit and the  
signal value                               to optimize alarm generation

• The signal time derivative        is measured to predict the behavior of the signal and 
minimize the chance of generating an alarm for a noisy signal

alarmsafe YYY ≥−

maxmin YYY ≤≤

dt
dY

Safe operation limit

First level: Reporting, no 
action to be taken

Second level: No immediate 
action to be taken 

Third level: Immediate 
action to be taken 
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• Time series is a stochastic technique combining both time and  frequency domain analysis in a 
single methodology

• Data transformation (2) by examining difference between two data points,               ,  is a  
preliminary step for data exhibiting long memory (slow dynamics)

• A direct indication of the system’s impulse response is given by the Autocorrelation Function (3)
(i.e. Correlation between signal’s values at different time intervals,      and           )

• The signal spectrum (4) transports the analysis to the frequency domain; its relation to the 
Autocorrelation Function bridges the time and frequency domains

Technical Results – Time Series Principles
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Technical Results – Model-Free Diagnostics (Matching)
• Transformations are performed to obtain a stationary Autocorrelation Function

• The Autocorrelation Function (dynamic feature) and the Deterministic Trend (static
feature) of the plant signal are the signal features used for the matching criteria 

• Appropriate statistical matching algorithms will be applied 

• Same procedure can be applied to the residuals of gas turbine model and actual signals 
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• Since the two autocorrelation functions are similar 
(~100% similarity based on a 95% threshold Limit), 
the observed signal corresponds to the  “No 
Failure” signal  
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• Under the null hypothesis of “No Failure”, the innovations should be a “white noise” signal

• Sometimes the innovations exhibits an interdependence in spite of the “No Failure” condition. A 
Time Series model such as

is introduced to obtain Gaussian independent innovations     

Technical Results – Model-Based Diagnostics (Innovations)
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• Since the threshold violation is less than 5% (actually 
4.4%) with a maximum duration of 40 seconds 
(window length), a test which requires multiple failure 
windows fails to reject the white noise hypothesis 
results in a “No Failure” condition

40×
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Technical Results – Implementation of MBD Fault Detection
• The innovations calculation is implemented in real-time to investigate the existence of a 

deviation from normal operation                  

• Statistical analysis includes the Chi-Square test for each channel and a joint probability calculation

• Limit checking is applied in parallel fashion to the illustrated architecture
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Technical Results – Implementation of Model-Free and 
Model-Based Isolation

• Upon detection, a detailed analysis is implemented incorporating model-free and model-based 
isolation methods

• Isolation is achieved by referring  to the Fault Dictionary instead of the “No Failure” reference  

• Newly defined fault may be added to the Fault Dictionary (i.e. Learning Feature)
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Technical Results – Prognostic Overview

• Prognostic is the study of methods to predict the future values of a signal, variable,…. 
• In dynamic systems, performance prediction is based on the overall trends of the observed data
• Prognostic strategies can operate in a parallel manner to the diagnostics and utilize the same 

available sensory information
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Technical Results – Select Prognostic Methods
• Model free methods do not rely on a physical model but rather directly examine signals 

- Statistical models use input/output data to analyze trends; requires a data base 
- Time Series analysis may use auto regression and Kalman prediction techniques

• Analytical/Empirical models may be use to predict response
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Technical Results – Model Free Prognostic Methods
• Selection and evaluation of plant signals either individually and/or in various combinations
• Two proposed prognostic strategies for stationary gas turbines

- Statistical Analysis using standard deviation and a least squares method
with a graphical representation for display purposes

- Time Series with empirical models created based on past operating history;
used to predict future plant behavior
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Technical Results – Model Free Statistical
Analysis Prognostic Method

• A variety of  gas turbine signals are collected 
and stored at regular time intervals 

• The standard deviations of the signals are 
calculated ,         (j = 1,…,m) 

• The signals dominant trends are obtained using
a minimized least squares method, 

• Tuples centered on polynomial trend (using 
the minimized least square equation) may be
drawn with          as the radius

• A trend may be projected to predict threshold
violation in the future time interval
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Technical Results – Time Series in Prognostics
• Time series methods can fit parametric models to select signal time histories; these methods

are powerful in handling misleading stochastic trends and signal interdependences

• Based on a time series model, a forecast technique can predict the signal’s future behavior
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• According to the time series model 
based on 7,000 seconds of observation, 
no significant shift is predicted for the 
next 10,000+ seconds
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Summary
• Research Achievements

- Real time data logging of the Mercury 50 gas turbine was achieved

- A set of 28 sensors out of 180 sensors has been selected for analysis

- A generic mathematical model based on a thermodynamic Brayton cycle   
analysis was developed 

- Model has been initially validated using the acquired turbine data

- Two diagnostics approaches have been developed for stationary gas turbines 

- Created a statistical framework for prognostics 

• Present Activities
- Complete work on diagnostic and prognostic modules

- Experimentally/numerically implement diagnostic/prognostic algorithms
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Clemson Mercury 50 Power Pack

Mercury 50 Turbine Section

Assortment of Mercury 50 start-up data

Mercury 50 Compressor SectionMercury 50 Combustion Chamber
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