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» Problem Statement/ODbjectives
» Measurement Campaign

» Mechanisms
— Review of lab, pilot and full-scale data

— Suggested mechanisms and critical
parameters

— Preliminary model for oxidation

» Conclusions and Recommendations

— Prediction of mercury speciation across
SCRs

— Recommendations for additional testing
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it Oxidation Across Full-Scale SCRs

100%

O No NH3
B NH3 > Full-scale data

> Large variation
in observed
oxidation

> What is it
about PRB
coals that
results in low
oxidation?

80%

60% +——

40% -

20% 1

Percent Oxidation of Hg ® across SCR

O% T T T - T

B3 (low load) B3 B5 S1 S3

7/

» Subbituminous (S1) vs. bituminous

—

——
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Project Organization

» Slipstream reactor built under
catalyst deactivation program
(DOE- NETL)

» Mercury testing carried out under
separate program (DOE — NETL)

» Additional support from EPRI and
Argillon GmbH

» Fleld test support from AEP
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INTERNATIONAL Project Te am
REI: Planning/analysis, slipstream reactor
operation
— Connie Senior, Temi Linjewile, Darren Shino, Dave
Swensen

URS: Mercury measurement and analysis
— Carl Richardson, Mandi Richardson, Tom Mahalek

AEP: Field test support and program review
— Steve Pfeister, Steve Batie
— Gary Spitznogle, Aimee Toole

Program review
— José Figueroa, Bruce Lani, Lynn Brickett (DOE-NETL)
— Chuck Dene (EPRI)
— Jeanette Bock (Argillon GmbH)
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Project Objectives

» Gather data on the behavior of mercury
across SCR catalysts

— Measurements at power plant burning blend of
bituminous, subbituminous coals
— Slipstream reactor with six catalysts
e One blank honeycomb
e Three commercial honeycomb catalysts
e Two commercial plate catalysts

» Analysis of other data (lab, pilot, full-scale)

» Simple model for predicting Hg speciation
leaving SCRs
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Slipstream Reactor

» Slipstream reactor built under
catalyst deactivation program
(DOE- NETL)

» Mercury testing carried out under
separate program (DOE — NETL)

» Additional support from EPRI and
Argillon GmbH

» Fleld test support from AEP
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Multi-catalyst Slipstream
Reactor
onescrmer W\ IS

INTERNATIONAL

Ammonia Injector

Flue Gas
Ontario Hydro
Sample Port
Duct Wall
SCR Reactor
© © ¢ ] =~ Six SCR Outlet Heated

% Sample Lines to Sequencer

— Duct Wall
Flue Gas
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Catalyst Dimensions

|Chamber: 1 (Blank) 2 3 4 6 5 |
Catalyst type: Monolith  Monolith Plate Plate Monolith  Monolith
Chamber porosity: 58.7% 70.0% 85.0% 86.9% 70.0% 68.3%
Length of catalyst in chamber

(inch): 24.40 21.50 39.25 43.25 20.06 19.75

2.5" out

A

2.5" out
<>

Il DD > Five commercial
catalysts from four

! DD manufacturers
> One blank
i 1 cordierite
v arseas T  honeycomb

. . . . . . 1/8" wall thickness
inner dimension inner dimension
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» AEP Rockport:

— Two 1300 MW, B&W opposed-wall, supercritical
boilers

— Testing on Unit 1 across air preheater
— Burn a subbituminous-bituminous blend

» Two test series (March and August, 2003)

» Measurements
— Coal, economizer ash, ESP ash composition
— Ontario Hydro measurements at inlet to slipstream

— SCEM measurements at inlet/outlet of catalyst
chambers

— NO, and O, at inlet/outlet of catalyst chambers

— Carbon trap and acid gas measurement at inlet of
catalyst
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Coal Properties
Date 3/28/03 = 4/1/03 4/2/03
(As Received): » Coal blend — 87%
Hydrogen 3.51 3.64 3.46
Oxygen 10.89  11.04 11.18 — Higher CI than
Nitrogen 0.76 0.78 0.75 typical
Sulfur 0.32 0.30 0.37 ) .
Ash 5.12 5.99 6.10 subbituminous
Moisture 28.74 = 26.45 26.39 _ 3
HHV 8,723 8,989 8,089 » 8-10 “g/dnm Hg

as-phase
(Dry Basis): (g . p
Hg. ug/g 0088 0118  0.091 equivalent)
cl. uglo 20 A0 20 % Agh contains ~6
SO, Ib/MBtu 0.74 0.67 0.82 wt%o Fe,0;, —16
0

Hg, Ib/TBtu 10.10 = 13.13 10.13 wt% CaO
Hg, ug/dnm (5%0,)  8.02 10.82 8.46
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INTERNATIONAL Flue Gas CompOSition

(Inlet to Slipstream Reactor)

Calculated from coal:

HCI 6-12 ppm (5% O,)

SO, 275-325 ppm (5% O,)
Measured:

NO, 300-350 ppm (5% O,)

Total Hg 7-9 ug/dNm” (5% O,)
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Ontario Hydro Data

10

O Particulate
W Oxidized

8 O Elemental . . .

o i
X
LO 677 i
o
S
P
B
o 4
=]
=)
T
2,
0 T T T T
1 2 3 1 2 3

March August

» Hg concentration in OH ash higher than in

ESP fly ash BUT fraction of Hg in particulate
very low

» 80-90% elemental Hg at inlet to catalysts
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Hg and CI In ash

LOI,
Date wt% |Hg, ug/g | Cl, ug/g | > Economizer ash
Economizer has 10-20
3/28/03 0.08% | 0.005 29 times less Hg
8/11/03 0.00% | 0.005 <5 than ESP ash
8/15/03 0.00% | 0.000 51 Little Cl on
ESP Hopper :
2508 031% | 0081 | 20 economizer ash
3/31/03 0.37% | 0.118 25 — Expect most Cl
4/1/03 0.31% | 0.127 24 n gffophase at
42/03 0.34% | 0.101 27 slipstream
8/7/03 0.06% | 0.034 21 _ Not consistent
8/11/03 0.30% | 0.050 21 with gas
8/15/03 0.13% | 0.055 23 sampling
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LOI,
Date wt% |Hg, ug/g | Cl, ug/g [> Low LOI in ESP
Economizer ash
3/28/03 0.08% | 0.005 29 — Predominantly
8/11/03 0.00% | 0.005 <5 PRB
8/15/03 0.00% 0.000 <5 > ESP ash has
Esglzlg?opsper 0.31% | 0.081 20 very little Hg,
. 0 \ _ 0
313103 037% | 0118 | 75 HO-S ¥ of coal
4/1/03 0.31% | 0.127 24 9 écglr_‘ls('js’[e”t
412103 0.34% | 0101 | 27 wit ata)
8/7/03 0.06% | 0.034 21 |» Cl content of
8/11/03 0.30% | 0.050 21 ESP ash low
8/15/03 0.13% | 0.055 23 ~1.5% of coal
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Operating Experience

3000

2nd Test Series

| 1st Test Series I ' L

Feb-03 Mar-03 Apr-03 May-03 Jun-03 Jul-03 Aug-03 Sep-03
Test Month

N
o
o
o

Cumulative Test Time (Hours)

~2700 hours of cumulative flue gas exposure
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- - Activi
Change In NO, Activity
T x Commercial
90% ﬁ\l\ % C5 (August) CatalyStS: 85-
i ey " Lagme  90% NO,
S sow N reduction at
E b cagaugusy - full-scale space
s 7% | .G { b velocities
Z A C4 C2 (August) A t_ _t
60% - - Best fit, C2-C4 CUivi y
e decreased for
5aop A7 = TBesties | catalysts C2,
2,000 4,000 6,000 8,000 10,000 12,000 C3’ C4
Space Velocity, hr- (Corrected fOr
temperature)
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Online Hg Measurement

02-April-2003: without ammonia

S 10
mcu g . * |nlet
£ g = C1
P 7 L | :-.’ -
g6 3 - % % AC2
> O 5 ¢ o ™ X C3
i ;1 AM * |nlet
R A, . oC4
o )
e =% +

s 1 S C5
[Tm 0 T T T o C6

8:24 9:36 10:48 12:00 13:12 | ¢ Inlet

time

» Example of Hg measurement vs. time
» Switch between inlet and outlet of

catalysts
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Online Hg Measurement

02-April-2003: without ammonia

* |nlet
<& EC]l
% 5 s C2
¢ X C3
Am + ¢ Inlet
A ° o °C4
‘%&X LI +C5
@
, , ‘ o C6
8:24 9:36 10:48 12:00 13:12 | * Inlet

time

Elementall Hg (ug/Nm® at 5%

02)
OFRPNWAU O~N®OO
+
.

4

I/

» Switching channels: transients

Hg Oxidation Across SCRs — Final Briefing 4 October 2004



N

i

REACTION
ENGINEERING
INTERNATIONAL

Online Hg Measurement

Elementall Hg (ug/Nm® at 5%

02)

02-April-2003: without ammonia

0

9

8 } .

7 ¢ B

6 s - *% ‘.

5 — N

4 n +

3 a =

2 s * & o
L +

! s -

8:24 9:36 10:48 12:00

time

y

* Inlet
= C1
AC2
X C3
¢ Inlet
® C4
+Cbh
o C6
¢ Inlet

> Inlet and blank monolith showed
same level of oxidation
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Online Hg Measurement

02-April-2003: without ammonia

* |nlet

=C1

AC2

X C3

¢ |nlet

®C4

+C5

02)
OFRPNWAU O~N®OO

Elementall Hg (ug/Nm® at 5%

8:24 9:36 10:48

time

/7

o Cb6
13:12 e Inlet

» Catalysts showed oxidation relative

to inlet/blank
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Comparison with Other Pilot-Scale Data

100
90
80
70 -
60 -
50
40 -
30 -
20
10

0

—=—PRB (PC)
—e— E.Bit (PC)
—e— PRB (cyclone)
Cc2

C3

Cc4

C5

C6

Blank

xXoOb>enoo

%Hg oxidation

xx X
-10 T \ \ ;

0 2000 4000 6000 8000 10000
Space Velocity, hr™

» Blank (C1) does not show oxidation

» March data in same range as previous pilot-scale data
on flue gas (slipstream)
— Richardson, et al. 2002
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Hg oxidation

100%

75%

50%

25%

0%

-25%

Oxidation of Hg® Across Catalyst

Comparison of March and August

March
570-660 F, NH/NO 1.2-2.0

eCl
mC2
AC3|

8 mC4
AC5

A = -

A ®C6

A i
] o -
°

D

1’ ‘1 T T T
2060 4000 6000 8000 10000 12000

A,

Space velocity, hit

Hg Oxidation

100%

75%

50%

25% ~

0%

-25%

August
500-550 F, NH5/NO 0.9-1.2

¢C1
mC2

Oc4

o C6

A

AA A

A g
*®

AC3| |

AC5 | |

2,00B]J 4,000® 6000 8000 10,000 12,
(]

DOO

Space Velocity, hr

» Blank (C1) does not show oxidation
» August data (lower temperature) show some

decrease In oxidation
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Effect of Ammonia
o B
kI With NH3 __
_ 60% — S
% 50% \ ?
g N
LN \ NI
o 30% S _ \ § Q
20% \ § \ § §
10% \ % \ \ §
oee NN R OKN K
one two three four five Six

-10%

» No ammonia vs. excess ammonia (NH3;/NO — 2)

» March:

— SV interpolated to — 2,500 hr-1

— T~ 610-630 F
» Oxidation decreased in presence of ammonia
» No effect of blank monolith (C1)

Hg Oxidation Across SCRs — Final Briefing 4 October 2004
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Comparison of March and

INTERNATIONAL

August

90%

O No NH3 (March) — _
80% 17 @ with NH3 (March) || —
70% 4— OO With NH3 (August) —
60% — Q
N
S 50% §
©
S 40% § \
o \ \
O% 30% \ \
209 \ \
% \ § \
10% \ N
(] \ \ \
0% I_lml_l , o [ % N |
one two three four five Six
-10%
» August:

— SV interpolated to ~ 2,500 hr-1
— T — 500-550 F
— NH,/NO ~ 0.9-1.2

» Two catalysts (C3 and C5 ) show little change March -> August
» Other catalysts had decrease in oxidation
» No effect of blank monolith (C1)
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T Comparison with Full-Scale Data

100% ve ®* ° » Slipstream data
. » e o for blend show
o 80% * ! ¢ ® oxidation in
O ® o range of low-

G * o e o ® ® )
< 60% | Rangeot & chlorine coals
(@) Slipstream _
T o0 o o0 (full-scale data)
5 L . R » Lack of full-
T 20% scale data for
.'g ¢ High Sulfur < 500 Ug/g Cl
@) b ® Low Sulfur

0% —————————————————— 3 Full-scale data:

0 500 1000 1500 2000 10 boilers
Chlorine content, ug/g > Scatter in fU”—

scale data
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" Multicatalyst Slipstream Reactor

INTERNATIONAL

> Blank monolith showed no oxidation

» Differences In oxidation among
catalysts

» Slipstream data for PRB-bituminous
blend show oxidation in range of low-
chlorine coals (from full-scale data)

» Coal chlorine content important for Hg®

oxidation
» Oxidation of mercury increased

without ammonia present
» Observed in other pilot-scale studies

Hg Oxidation Across SCRs — Final Briefing 4 October 2004
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vy Review of Lab, Pilot and

Full-Scale Data

INTERNATIONAL

» Laboratory data

— Effects of temperature, ammonia,
HCI, space velocity

— Adsorption of Hg®

> Pilot data

— Effects of temperature, ammonia,
space velocity, flue gas

— Transients
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—=% SCR Catalysts Adsorb Hg°

» Lab data from Hocquel et al.

injected Hg(g) total concentration 27.8 pg/Nm3 Hotal

injprtinn time 10 min Ir’put Hgiotas measured behind catalyst
100
S 80 -
3_ 60 — adsorbed
£ —
qu: "0 — eleased through 37 mg/nt HCI
< 20 —
e
7] 0 |

0.4 mg/Nm® HCI 3.7mg/Nm®*HCl  37.0 mg/Nm® HCl 122.1 mg/Nm°® HCl

» Net adsorption of Hg® by catalyst in ten-
minute experiments

» Amount of Hg® adsorbed decreased with
Increasing HCI concentration

» HCI interferes with Hg® adsorption?

Hg Oxidation Across SCRs — Final Briefing 4 October 2004
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Adsorption of Hg

INTERNATIONAL

Pilot-Scale Data

80%

|
one two three four five SiX B No NH3
(blank)
ANH3
60% - —
H -
S a0% = 5
_5;" A
- —
2 - =
@]
5 20% - !
2 A |
=
% T g =
-20%

» Rockport data: loss of total Hg across
catalysts observed in April, not in August

» No apparent loss across blank monolith

Hg Oxidation Across SCRs — Final Briefing 4 October 2004
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Adsorption of Hg

Full-Scale Data

INTERNATIONAL

» Adsorption of Hg observed in full-
scale measurements?

12

> Yes, In some 0

& NH3
. . B No NH3

cases loss of §
Hg° higher 2. \

- % l‘
tqa‘n galn Of é, * Topelow the line. the o @ ’)0\
Hg*2 across g . |dcesenngs

L o 4
. . +2 ’0‘\
SC R o | increase in Hg . :

2

-12 -10 -8 -6 -4 -2 0 2
Change in Hgo’ ug/dncm
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Ammonia Affects HgP®

ENGINEERING
INTERNATIONAL

Adsorption

Catalyst C2
8 NH; off : NHs on 600 .
! PLONO, red » Transient from
SV =5,100 hr' e SV=5100h" -+ 500
NHs/NO =0 NHs/NO = 1.2 R OoC pr rt
6
5 . w o » Turning
- ¢ ammonia on
2 | "¢ causes spike in
° + 200 é H go
i \ » NHj; interferes
—&— Elemental H e T 100 -
1 |— NIH3 (Wetl@g% 02 Wlth H go
—=— NOx (wet @5% 02 -
: — | | ; adsorption?
22:21:00 22:39:00 22:57:00 23:15:00 23:33:00

Time
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AmMmonia Affects Oxidation
100
80 *
[
i)
g 60
é \\
°_ 40 o
T
X
20
0 T T T T
0 0.2 04 0.6 0.8 1
Dataset NH3/NO

» Slipstream data (Richardson et al.)
» Pilot-scale SCR with PRB flue gas
» Ammonia decreases Hg® oxidation
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INTERNATIONAL

Pilot-Scale

100 > Pilot-scale
SCR
(Richardson

et al.)
—— 600 F (PRB) ] ]
—®— 700 F (PRB) - Oxidation

80D (PRE) decreases

= = = 600 F (Bit)
60 = £ = 700 F (Bit) when

- o = i
or temperature

50 increases
0 2000 4000 6000 8000

Space Velocity, hr-1

%Hg oxidation
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e Temperature Affects Oxidation
INTERNATIONAL
Full-Scale
100%
S ‘:: > Full-scale data
’ -
800 R . (19 bo_llers)
” g * = > Oxidation
§ 60% | ¢ , ¢ ¢ decreases when
< ¢ = temperature
2 40% ¢ . INncreases
- . > Confirms pilot-
%) osn
S 20% . o NH3 On scale data
. m NH3 Off > Much scatter
0% , ‘ ,
600 650 700 750 800

Temperature, F
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=% HCI| Promotes Hg® Oxidation

» Lab data from Hocquel et al.

100 100
RE-HD 1
NT-LD 1 LD 2 -
/ - . HD 1
80 \ 80 A " }’//
Durmmy no catalyst e "" /
) at 140°C - )
Fa ) P
= 60 . =60 1 4
g 8 !
=]
= T / 4
® 40 = S 40 / fg
o 4 o
8 no catalyst _::u Dummy r
w LD 2 ]
. o [/
20 20 | /
/
no SO, g with 502
0 T T 0 T T T
0,1 1 10 100 1000 0,1 1 10 100 1000

HCl-concentration [mg/m?] HCl-concentration [mg/m?]

» Increasing HCI content of simulated flue
gas increases oxidation

» Little effect of SO,

» HCI reacts with adsorbed Hg® or is itself
adsorbed?

Hg Oxidation Across SCRs — Final Briefing 4 October 2004
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=% HCI| Promotes Hg® Oxidation

> Full-scale data

100%

| | ¢ L3
Qo
. » ¢ P
G 80% | . * e »
o v
S 60% - o+ * ?°
f 40% | 4
8 .
S 20% -
° ¢ NH3 On
; B NH3 Off
0% ‘ ‘ ,
0 500 1000 1500 2000

Coal chlorine, ug/g

» Influence of coal
chlorine (HCI)

» Other factors:
— Space velocity
— Temperature
— Ammonia

Hg Oxidation Across SCRs — Final Briefing 4 October 2004
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44 Suggested Mechanisms and

Critical Parameters

INTERNATIONAL

»\What does a catalyst do?

Moves a chemical reaction
toward equilibrium

» Hypothesis:

SCR catalysts drive Hg® and
HgCl, to equilibrium values at
outlet
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Equilibrium Calculations
100% —
r
» HSC software g gcw/i.go
used to calculate & o N
flue gas an Subbituminous \ Bituminous
equilibrium for g "
typical coal o0
compositions: M
— Bituminous 0%550 7!30 9230 \1;30
(higher Chlorine) Temperature, F
all oxidized at SCR Subbi Bt
temperatures AT TR
— Subbituminous g‘f[)l"/']/] = i
(low chlorine) SO, [ppm] 350 1000
ool 62T o2
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% Hg0 at SCR Inlet

60%
40% +
20% -+

0% +

Hg Speciation at SCR
Temperatures

L 2
700 F

‘\ ) 0‘

660 \ . wt
\ " e
\ %e .

\
L 4
\ \ “‘ e
A &
‘I * LR
L
\‘ - ’0
L 2
\
\
A\
“ ¢ NH3 On
§ m NH3 Off
.. - I L1
100 1,000 10,000 100,000 1,000,000

Cl/Hg Molar Ratio

Inlet speciation
far from
equilibrium
Expected from
gas-phase
Kinetic
calculations
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e Hg Speciation at SCR

ENGINEERING

INTERNATIONAL

Temperatures

R IE ¢ NH3 On - Qutlet
3 \ 750 F = NH3 Off . :

s TN X speciation
% - mXOOF\ . approaches
: o \ X equilibrium
T 0% v - Other effects:
S \\ " o — Ammonia

20% e |

N ~4 — Space velocity
" | | ~‘£. —_— Temperature

100 1,000 10,000 100,000 1,000,000 — 77
Cl/Hg Molar Ratio
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4 Conclusions:

Mechanisms

ENGINEERING

INTERNATIONAL

» Predicting Hg oxidation across SCRs
requires greater understanding of inlet
Hg®

» BUT predicting outlet speciation
apears straightforward

» Equilibrium (T, Cl) primary factor for
outlet speciation

» Why don’t we get to equilibrium?
— Ammonia, sulfur?, other factors?

» More high-quality lab and pilot-scale
data needed
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e Kinetic Analysis of Full-

ENGINEERING
INTERNATIONAL

Scale Data

» Why kinetic analysis?
— Full-scale data show less oxidation than pilot-
scale data (at similar space velocities)

— Full-scale data show alg)oproach to equilibrium at
SCR outlet, but equilibriL\JrqE,[_\Qt reackesfpam onPRB ﬂue\
80

nac (nn ach)

c
(@]
E 60 100% -
> ApproaCh -g :ﬁ.\ 750 F @ NH3 On
i 40 9 0‘. ] |
— Determine appropr £ . NH3 Off
N ~ 700 F
— Determine kinetic | 208 .\ .
0 ﬁ L
°m 40%

20% 1

0% ‘ e
100 1,000 10,000 100,000 1,000,000
Cl/Hg Molar Ratio
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Determine Rate Equation

concentration

RHQ
W

X dX
Foj

0 —RHg

» Full-scale data provide “plug flow”
experiments with variation in catalyst
volume (space velocity) and inlet Hg

» Integral analysis of rate of Hg oxidation,

(W = weight of catalyst
F, = input Hg flow, mol/s
X = conversion of Hg®

| Ry, = rate of conversion per g of catalyst

» Plot W/F, versus X ==> slope = Ry,

Hg Oxidation Across SCRs — Final Briefing 4 October 2004
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Concentration of Hg®

Based on C
1.0 XSS o .

:“ o 0 > Full-scale data
0.8 -

R using
NN concentration
of A % !

x [ ) O Of Hg aS
0.4 [ . ©606-631 Variable
. oo e > Conclusion:
02 0693702 F concentration
S ®716-773 F 0
y o of Hg® may
. 0 5E+13 1E+14 1.5E+14 2E+14 nOt be the
WiFo right variable
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Approach to Equilibrium

» Concentration

12 expressed as
(C-Ce9), where Ced
1 73 . .y -
¢ <o
% o o o IS the equn.lbrlum

08 | B o concentration of

<,

4 elemental Hg

X 0.6 %E.D .

o > HCI concentration
04 {8 eplate,noNH3 | may be important:
[ O I honeycomb, no NH3 .

" o plate, NH3 i — Very low chlorine

- O honeycomb, NH3 C0a|S (<1OO ug/g)
0 ‘ , , appear to be
0 5E+14 1E+15 1.5E+15 2E+15 d Iffe re nt
W/Fo

> No differences
among catalyst
types or ammonia
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Rate Equation

> Proposed rate
6 || eserenr equation:
577 O717-770 F
_ _ _ (=
g, L Rig = K Cric1 (Cr CHg)
2
5 |
= 3 (J
= ¢ = > Integral form:
2 A ' ([ ] A
A’ O ~ [ 1
o2 B W 1
L #xe = - In( j
. B 0 | Fo kC,u(Cy —Ciy)o (1-X
0.0E+00 5.0E-10 1.0E-09
Chcr*Chgo*W/F, » Rate equation appears

to fit full-scale data
» Temperature effects
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Effect of Temperature

.
m sy ,+» Temperature affects
67 o wromr o rate of reaction rate
5 || o e s (slope of line)
Fit (606-631) I
Q4 AT e Al .-* » More data needed to
S ° L om derive k(T)
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= 3 %6 ,-/ > Fit to specific
A & //. b ¢ :
2 ARSI temperature ranges for
* @ .’ |
%
0 ‘

0.0E+00 5.0E-10 1.0E-09
CHCI.kCHgo.kW/Fo
Rate Constants:
T, °F 606-631 642-659 667-681 693-702 717-770
Kk 3.22E+09 4.86E+09 | 6.58E+09 | 4.50E+09 | 4.30E+09
r? 0.56 -3.10 0.31 0.51 -0.21
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Outlet Hg® Speciation
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Hg® Oxidation
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4.4 Summary of Modeling
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INTERNATIONAL

Activity

» Rate equation fits full-scale data,
showing dependence of Hg oxidation
on
— Concentration of Hg®
— Approach to equilibrium
— Concentration of HCI
— Temperature

» No dependence on NH; observed
— Little full-scale data without NH,
— Laboratory/pilot-scale data needed
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Use of Oxidation Model

» Example of

100% ) ]
oxidation as a
- - function of
5 oo / length in SCR
£ 4o — Plate catalyst
: e — SV = 2000 hr-t
20%
— T = 700°F
0% | | | | — Bituminous coal
0 0.2 0.4 0.6 0.8 1
Length of SCR reactor (l/L) - 0.11 ug/g Hg
e 800 ug/g Cl
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4 Conclusions:
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Strategies for SCRs

» Full-scale SCRs do not reach maximum Hg°
oxidation at outlet

» High levels of oxidation may be possible,
even with low chlorine coals

How to maximize Hg?* at SCR exit?

» Sufficient residence time

» Increase chlorine content of flue gas
» Lower temperature in SCR, Iif possible
» New catalyst formulations?
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