Consolidated Sequestration Research Project Email Page
email
Print This Page
print
Performer: 
LBNL - Lawrence Berkeley National Laboratory

Website: 
Award Number:  FWP-ESD09-056
Project Duration:  10/01/2009 – 09/30/2015
Total Award Value:  $12,826,061.00
DOE Share:  $12,826,061.00
Performer Share:  $0.00
Technology Area:  Geologic Storage Technologies and Simulation and Risk Assessment
Key Technology: 
Location: 

Project Description

LBNL is working on a series of individual tasks with the common goal of advancing the science of geological storage through state-of-the-art research. Tasks address DOE program goals to accelerate deployment of and reduce barriers to commercialscale geologic carbon storage. Researching large-scale CO2 geological storage will further improve our understanding of the potential impacts of CO2 storage on groundwater resources. In addition, the research team is assessing storage capacity and regulation by developing pressure management schemes for storage capacity enhancement and CO2 leakage remediation, should it be necessary. Project tasks include identifying ways to improve predictions of injectivity and capacity of saline formations and depleted gas reservoirs; testing and implementing innovative, high-resolution methods for monitoring CO2 in the subsurface; researching elements of risk assessment; developing modeling and simulation techniques; measuring large scale impacts of geological storage; and collaboraitve projects to obtain information gained through global partnerships. A detailed description of each substantive task is listed below.

  • Task 1 Project Management: The program management task provides a budget for performing CSRP reporting, publication support, and programmatic travel. This task includes management and coordination for each of the four work tasks.
  • Task 2 GEO-SEQ: The goal of GEO-SEQ Project is to increase understanding of carbon dioxide storage processes and mechanisms by accomplishing two primary objectives: (1) develop ways to improve predictions of injectivity and capacity of saline formations and depleted gas reservoirs, and (2) develop and test innovative, high-resolution methods for monitoring CO2 in the subsurface. GEO-SEQ leverages scientific understanding and technology development through highly visible, ongoing, world-class carbon storage projects including the Otway Project in Australia, the In Salah Industrial-Scale CO2 Storage Project in Algeria, the Ketzin storage project in Germany (Figure 1), and the Aquistore project in Canada. Specifically, GEO-SEQ is improving current monitoring methods by investigating fundamental geochemical and petrophysical processes that underpin CCS projects using demonstration-scale pilots as testing facilities to scale up from laboratory to field scale.
  • Task 3 Fundamental Studies: This project focuses on developing new and improved methods to track CO2 in the subsurface and detect possible leaks. It is using demonstration-scale pilot projects as testing facilities, allowing laboratory-scale projects to be tested and validated at larger field-scale levels under more realistic conditions. The overall effort is developing rock-physics models for improved quantitative interpretation of seismic measurements and conducting distributed thermal-perturbation sensor measurements in observation boreholes (Figure 2) to validate use of the method for detection of CO2 in the near wellbore region.
  • Task 4 Simulation Studies: This task focuses on the comparison and evaluation of modeling and simulation activities that are relevant to carbon storage reservoirs. It supports simulation studies of large-scale hydrological impacts for CO2 storage and builds upon previous work by focusing on optimization schemes for storage management. It is working to improve current modeling methods by evaluating model uncertainties, assessing their impacts, and validating the models using field data. The effort will make lessons learned and improvements made by one research team available to other research teams, thereby contributing to better storage technologies.

Project Benefits

The overall goal of the Department of Energy’s (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2025 and 2035. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth.

Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being developed for geologic carbon storage are focused on five storage types: oil and gas reservoirs, saline formations, unmineable coal seams, basalts, and organic-rich shales. Technologies being developed will work towards meeting carbon storage programmatic goals of (1) estimating CO2 storage capacity +/- 30 percent in geologic formations; (2) ensuring 99 percent storage permanence; (3) improving efficiency of storage operations; and (4) developing best practices manuals. These technologies will lead to future CO2 management for coal-based electric power generating facilities and other industrial CO2 emitters by enabling the storage and utilization of CO2 in all storage types.

The DOE Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting (MVA) and Assessment, (3) CO2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science. The first three technology areas comprise the core research and development (R&D) that includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for GHG mitigation through carbon storage.

This project is part of the Core R&D GSRA Technology Area and works to develop technologies and simulation tools to ensure secure geologic storage of CO2. NETL funds LBNL for the Consolidated Sequestration Research Project (CSRP) as a combination of several carbon storage research efforts along with a risk assessment project. This research is attractive to industry because the CSRP program is addressing key uncertainties and technology needs for successful commercial scale deployment. The CSRP combines fundamental geologic storage research and pilot-scale programs with risk and basin-scale impact assessment projects. The final CSRP deliverables will vary for each task, but include DOE milestones and reports, along with dissemination of research results including field and laboratory data through peer-reviewed publications, and public presentations.

Goals/Objectives

LBNL’s Consolidated Sequestration Research Project provides knowledge and lessons learned from performing distinct tasks with the common overall goals of developing the knowledge base needed to enable the commercialization of carbon storage and by identifying and removing barriers to storage through targeted research. The CSRP combines GEO-SEQ’s fundamental research and pilot-scale demonstration projects with additional projects in risk assessment, model inter-comparison, geochemistry, and basin-scale impact assessment to address issues critical for successful commercial-scale carbon storage.

The research from these tasks is contributing to a greater understanding of carbon storage processes and mechanisms, improving methods to track CO2 in the subsurface and detect migration outside of the storage formation, and improving modeling and simulation methods for carbon storage activities. These efforts contribute to the Carbon Storage Division programmatic goals of estimating CO2 storage capacity +/- 30 percent in geologic formations, helping to insure permanent storage of CO2, and improving the efficiency of storage operations. Successful storage of CO2 would reduce its contribution to global warming by permanently removing it from the atmosphere.

Contact Information

Federal Project Manager 
:
Technology Manager 
:
Principal Investigator 
:

 

Click to view Presentations, Papers, and Publications