CCS and Power Systems

Crosscutting Research - Plant Optimization Technologies

Influence of Processing on Microstructure and Properties of Iron Aluminides and Coatings

Performer: Idaho National Laboratory

Project No: FWP-1168-100159

Program Background and Project Benefits

The search for cleaner processes and greater efficiencies in fossil energy power production has generated efforts to conduct fossil fuel based power production processes at higher operating temperatures and pressures. This has created a need for materials capable of withstanding elevated temperatures, pressures, and corrosive environments found in boilers and turbines.

Advanced coatings provide environmental degradation resistance to high-temperature structural alloys that may not otherwise have the corrosion resistance necessary for use in modern, high-efficiency, fossil-energy power plants. Thermal spray application of coatings is relatively inexpensive and rapid compared to conventional means, such as weld overlay application. High-temperature, corrosion-resistant coatings may enable the development of high-temperature, high-efficiency (greater than 50 percent conversion) power production, which can lead to a reduction of total greenhouse emissions, conservation of fossil energy reserves, and a decrease in U.S. dependency on foreign fossil energy sources.

The Idaho National Laboratory’s long history in the area of thermal spray coatings has focused on assessing the impact of various thermal spray parameters on coating characteristics (coating porosity, coating microstructure, residual stress in the coating, etc.), the development of coating compositions that resist environmental degradation, and thermal spray diagnostics. Feedback from advanced in situ diagnostics is used to control thermal spray parameters to produce consistent and reproducible coatings. It also allows the residual stress (compressive or tensile) in the coating/substrate system to be controlled and tailored to the desired application.

An effective test suite and optimized thermal spray methods and materials will contribute to the use of thermal and environmental barrier coatings in fossil energy power production. These coatings will permit the cost-effective operation of power plants at the elevated temperatures and pressures required to meet DOE’s efficiency and emissions targets. Achieving these targets will help to lower power production costs, conserve resources, limit dependence on foreign energy sources, and reduce emissions of greenhouse gases and other pollutants, thereby enhancing environmental management.

Goals and Objectives

The project’s goal is to increase the efficiency of power production from fossil fuels by enabling operation at higher temperatures and pressures. Specifically, the project will determine the influence of thermal spray processing parameters on the microstructure, stress state, and performance of advanced coatings for high temperature corrosion and oxidation resistance in fossil energy applications. Coating performance tests will include measures of coating adhesion, durability, and corrosion/oxidation resistance under constant and cyclic temperature conditions.

Project Details