CCS and Power Systems

Carbon Capture - Pre-Combustion Capture


Pilot Testing of a Highly Effective Pre-Combustion Sorbent-Based Carbon Capture System


Performer: TDA Research Inc.

Project No: FE0013105


Program Background and Project Benefits

The mission of the U.S. Department of Energy Office of Fossil Energy’s (DOE FE) Carbon
Capture Research & Development (R&D) Program, implemented through the National
Energy Technology Laboratory (NETL), is to develop innovative carbon dioxide (CO2)
emissions control technologies for fossil fuel-based power plants. The Carbon Capture
R&D Program portfolio of pre- and post-combustion CO2 emissions control technologies
and related CO2 compression is focused on advancing technological options for new
and existing power plants to enable cost-effective CO2 capture for beneficial use or
storage of CO2 and ensure that the United States will continue to have access to safe,
reliable, and affordable energy from fossil fuels. The DOE FE/NETL goal is to demonstrate
second-generation technologies that can capture 90 percent of the CO2 at less than $40
per metric ton (tonne) in the 2020-2025 timeframe. DOE is also committed to extend
R&D support to even more advanced transformational carbon capture technologies
that will increase competitiveness of fossil-based energy systems beyond 2035.
Pre-combustion CO2 capture technologies are applicable to integrated gasification
combined cycle (IGCC) power plants, where solid fuel is converted into gaseous
components (synthesis gas or syngas) by applying heat under pressure in the presence
of steam and oxygen. The carbon is captured from the syngas before combustion and
power production occurs. Pre-combustion carbon separation and capture is relatively
simple and less expensive compared to post-combustion capture as it has a greater
driving force, with the processed syngas at a much lower volume, at a higher pressure,
and containing a higher concentration of CO2. Pilot-scale testing with actual coal-derived
syngas is a key step in the continued development of promising sorbent-based precombustion
CO2 capture technologies.


TDA’s high temperature PSA-based CO2 removal technology holds potential to significantly improve the IGCC process efficiency needed for economically viable production of power from coal and other heavy feedstocks. Higher net plant efficiency and lower capital and operating costs result in a substantial reduction in the cost of electricity for the IGCC plant. Continued development and validation of the process will put it on a path to be ready for first-of-a-kind commercial-size demonstration by 2025.


Project Details