CCS and Power Systems

Advanced Energy Systems - Gasification Systems


Dry Solids Pump Coal Feed Technology Program


Performer: Aerojet Rocketdyne

Project No: FE0012062


Program Background and Project Benefits

Gasification is used to convert a solid feedstock, such as coal, petcoke, or biomass, into a gaseous form, referred to as synthesis gas or syngas, which is primarily hydrogen and carbon monoxide. With gasification-based technologies, pollutants can be captured and disposed of or converted to useful products. Gasification can generate clean power by adding steam to the syngas in a water-gas-shift reactor to convert the carbon monoxide to carbon dioxide (CO2) and to produce additional hydrogen. The hydrogen and CO2 are separated—the hydrogen is used to make power and the CO2 is sent to storage, converted to useful products or used for EOR. In addition to efficiently producing electric power, a wide range of transportation fuels and chemicals can be produced from the cleaned syngas, thereby providing the flexibility needed to capitalize on the changing economic market. As a result, gasification provides a flexible technology option for using domestically available resources while meeting future environmental emission standards. Polygeneration plants that produce multiple products are uniquely possible with gasification technologies. The Gasification Systems program is developing technologies in three key areas to reduce the cost and increase the efficiency of producing syngas: (1) Feed Systems, (2) Gasifier Optimization and Plant Supporting Systems, and (3) Syngas Processing Systems.

Feed systems research is underway to reduce the cost and increase the efficiency, through design and advanced plant integration, of fuel and oxygen feed to commercial gasifiers. High-pressure solid feed systems will expand the use of our nation's Western low-cost, low-rank coals for high-pressure gasifiers (currently limited to more expensive fuel), enable co-feeding of coal with other advantageous fuels (such as biomass), and encourage higher pressure (and therefore more efficient) operation of dry feed gasifiers. ITM technology will lower the cost of oxygen production through reduced capital costs, and result in more efficient IGCC power plants through turbine integration, as compared to today's commercially available, energy intensive technology for oxygen production—cryogenic air separation

This Aerojet Rocketdyne project is developing a high-pressure dry feed pump for gasification processes to enable feeding of low-rank coal by constructing, operating, and testing a pre-commercial-scale prototype (400 tons per day at a pressure gradient of 1,000 psi). Novel dry feed technologies have the potential to significantly improve the efficiency of gasification in two ways; enabling slurry-fed gasifiers to run effectively on low rank coal, and enabling dry-fed gasifiers to run at high pressure. This would increase the efficiency of the gasifier and reduce plant capital, maintenance, and operating costs, resulting in less than half the life-cycle cost (capital and operating combined) of the state-of-the-art dry solids lock hopper feed system, and is also expected to perform with at least twice the mechanical efficiency of conventional feed systems.

This project is a continuation of an ongoing effort that has been performed by Pratt & Whitney Rocketdyne under "Development of High-Pressure Dry Feed Pump for Gasification Systems" (Contract No.: DE-FC26-04NT42237.) A Fact Sheet for the original project provides more detailed discussion of the work to develop dry solids feed pump technology.


Project Details