CCS and Power Systems

Carbon Capture - Post-Combustion Capture


High Performance Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture


Performer: General Electric Company

Project No: FE0007514


Project Description

General Electric Global Research (GE) and partners will develop high performance, thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion CO2 capture from coal-fired flue gas. The project will utilize novel phosphazene polymeric materials to develop economical and scalable composite hollow fiber membrane modules capable of efficiently separating CO2 from coal-based flue gas. The membranes will be optimized at bench scale, including tuning the properties of the phosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project will also define the processes for coating the fiber support to manufacture ultra-thin, defect-free composite hollow fiber membranes. The physical, chemical, and mechanical stability of the materials (individual and composite) to coal-based flue gas components will be evaluated using exposure and performance tests. Membrane fouling and cleanability studies will define long-term performance.

GE and the Georgia Institute of Technology (Georgia Tech) will work together on developing processes to apply the ultra-thin layer coating formulations onto the hollow fiber supports. GE will leverage the knowledge gained from using its flat sheet film coating apparatus to enable development of the continuous dip process for coating of hollow fiber membrane supports. Georgia Tech will use the in situ process developed to coat porous cellulose acetate hollow fibers with defect-free layers as a benchmark, which will be further adapted to obtain thin, defect-free coated layers. Both the continuous dip coating and batch in situ processes will be optimized to provide economical and scalable coated composite hollow fiber membranes. Working with Idaho National Laboratory (INL), Georgia Tech will characterize phosphazene material properties in films cast on porous polymer supports to elucidate polymer properties including aging, membrane fouling, and cleanability. The characterization techniques will enable a better understanding of polymer and composite membrane performance. Membrane performance validation testing in coal-fired flue-gas will be performed at Western Research Institute’s coal combustion test facility in the final budget period. Module design and technical and economic feasibility analyses will be conducted to evaluate the overall performance and impact of the process on the COE.


Project Details