CCS and Power Systems

Crosscutting Research - Plant Optimization Technologies


Modeling Creep-Fatigue-Environment Interactions in Stream Turbine Rotor Materials for Advanced Ultras


Project No: FE0005859


Program Background and Project Benefits

The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE’s National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. One goal of the AR Materials Program is to conduct research leading to a scientific understanding of high-performance materials capable of service in the hostile environments associated with advanced ultrasupercritical (A-USC) coal-fired power plants.

A-USC plants will increase coal-fired power plant efficiency by allowing operation at increased temperatures and pressures up to 760 degrees Celsius [1400 degrees Fahrenheit; °F] and 35 megapascals [5,000 pounds force per square inch]. Additionally, A-USC combined with oxycombustion will provide a carbon dioxide (CO2)-ready stream for CO2 capture.

In order to develop boiler and steam turbine materials technology for A-USC systems, materials need to be able to withstand and operate at A-USC conditions for at least 20 years. NETL has teamed with General Electric (GE) Global Research, GE Energy, and a University of Pennsylvania project team to address an important aspect of materials design and service life prediction in future A-USC power plants—the creep-fatigue environment interactions in steam turbine rotor materials.

The methods developed in the project are expected to be applicable to other metal alloys in similar steam/oxidation environments. Haynes 282 was selected for this project because it is one of the leading candidate materials for the high temperature/pressure section of an A-USC steam turbine. This project will help provide better materials for fossil energy production that can withstand higher temperatures and pressures and provide better creep resistance. The technology developed in this project is expected to enable more accurate prediction of long service life of advanced alloys for A-USC power plants and provide faster and more effective materials design, development, and implementation than current state-of-the-art computational and experimental methods.

Goals and Objectives

The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for A-USC coal power plants, develop and demonstrate computational algorithms for alloy property predictions, and determine and model key mechanisms that contribute to the damage caused by creep-fatigue-environment interactions. The technology developed in this project is expected to enable more accurate predictions of long service life of advanced alloys for A-USC power plants and provide faster and more effective materials design, development, and implementation than current state-of-the-art computational and experimental methods.


Project Details