Project No: FE0007325
Performer: University of North Dakota


Contacts

Richard A. Dennis
Technology Manager, Turbines
National Energy Technology Laboratory
3610 Collins Ferry Road
P.O. Box 880
Morgantown, WV 26507-0880
304-285-4515
richard.dennis@netl.doe.gov

Steven Richardson
Project Manager
National Energy Technology Laboratory
3610 Collins Ferry Road
P.O. Box 880
Morgantown, WV 26507-0880
304-285-4185
steven.richardson@netl.doe.gov

John P. Hurley
Principal Investigator
Energy & Environmental Research Center
University of North Dakota
15 North 23rd Street, Stop 9018
Grand Forks, ND 58202-9018
701-777-5159
jhurley@undeerc.org

Duration
Award Date:  10/01/2011
Project Date:  09/30/2015

Cost
DOE Share: $480,000.00
Performer Share: $120,000.00
Total Award Value: $600,000.00

Performer website: University of North Dakota - http://www. undeerc.org

Advanced Energy Systems - Hydrogen Turbines

Preparation and Testing of Corrosion- and Spatiation- Resistant Coatings

Project Description

This project is designed to refine the evaporative metal bonding (EMB) method, then apply the refinements to bonding a layer of corrosion- and spallation-resistant alloy, advanced powder metallurgy techology (APMT) to turbine parts composed of two nickel superalloy compositions and test the parts to determine if lifetimes have been increased. The work involves measurement of the temperature-dependent diffusion rates of zinc, the bonding metal used in the EMB process. The component superalloys of interest are CM247LC®, and Rene 80. The corrosion and spallation resistant super alloy layer is APMT. This information will help the University of North Dakota Energy & Environmental Research Center (EERC)-led project team better design the heat treatments needed to create the bonds between the super-alloys and the APMT plating and assure that the zinc completely diffuses out of the turbine components created. The team will also model force distributions in the clamped structures being plated with APMT to assure that the compressive force used to hold the APMT and superalloys together during bonding is adequately distributed over the surfaces being joined. This modeling capability will allow the team to better design the clamping fixtures and force distribution plates (buffers) that will be used to bond plates of the APMT to more complex superalloy turbine parts.

To determine the appropriate conditions for corrosion testing of the bonded parts in simulated turbine conditions, the team will measure trace constituents in combusted syngas produced in the EERC entrained-flow gasifier. This will consist of combusting a slipstream of cleaned coal derived synthesis gas (syngas) produced from the gasifier, quenching the combusted gas with nitrogen, and collecting the submicron particulates on Nuclepore surface filters and gaseous constituents in activated carbon, zeolite traps, or gas impingers. After determining the best heat treatment and clamping methods, the team will bond plates of APMT to the surface of superalloy test samples (buttons) and turbine parts provided by Siemens. Siemens will also apply thermal barrier coatings (TBCs) to some of the bonded parts and evaluate them. The EERC will perform laboratory hot corrosion tests simulating post-combustor turbine gas compositions, including relevant trace species defined in pilot-scale testing used to bond plates of the APMT to more complex superalloy turbine parts.

Finite element model used to study stress distributions during bonding.


Program Background and Project Benefits

Turbines convert heat energy to mechanical energy by expanding a hot, compressed working fluid through a series of airfoils. Combustion turbines compress air, mix and combust it with a fuel (natural gas, coal-derived synthesis gas [syngas], or hydrogen), and then expand the combustion gases through the airfoils. Expansion turbines expand a working fluid like steam or supercritical carbon dioxide (CO2) that has been heated in a heat exchanger by an external heat source. These two types of turbines are used in conjunction to form a combined cycle— with heat from the combustion gases used as the heat source for the working fluid— improving efficiency and reducing emissions. If oxygen is used for combustion in place of air, then the combustion gases consist mostly of carbon dioxide (CO2) and water, and the CO2 can be easily separated and sent to storage or used for Enhanced Oil Recovery (EOR). Alternatively, the CO2/steam combustion gases can be expanded directly in an oxy-fuel turbine. Turbines are the backbone of power generation in the US, and the diverse power cycles containing turbines provide a variety of electricity generation options for fossil derived fuels. The efficiency of combustion turbines has steadily increased as advanced technologies have provided manufacturers with the ability to produce highly advanced turbines that operate at very high temperatures. The Advanced Turbines program is developing technologies in four key areas that will accelerate turbine performance, efficiency, and cost effectiveness beyond current state-of-the-art and provide tangible benefits to the public in the form of lower cost of electricity (COE), reduced emissions of criteria pollutants, and carbon capture options. The Key Technology areas for the Advanced Hydrogen Turbines Program are: (1) Hydrogen Turbines, (2) Supercritical CO2 Power Cycles, (3) Oxy-Fueled Turbines, and (4) Advanced Steam Turbines.

Hydrogen turbine technology research is being conducted with the goal of producing reliable, affordable, and environmentally friendly electric power in response to the Nation's increasing energy challenges. NETL is leading the research, development, and demonstration of technologies to achieve power production from high hydrogen content (HHC) fuels derived from coal that is clean, efficient, and cost-effective; minimize carbon dioxide (CO2) emissions; and help maintain the Nation's leadership in the export of gas turbine equipment. These goals are being met by developing the most advanced technology in the areas of materials, cooling, heat transfer, manufacturing, aerodynamics, and machine design. Success in these areas will allow machines to be designed that have higher efficiencies and power output with lower emissions and lower cost.

The University of North Dakota will measure the temperature-dependent diffusion rates of zinc, the bonding metal used in the evaporative metal bonding (EMB) process, in order to refine the EMB method and then apply the refinements to bonding a layer of corrosion- and spallation-resistant alloy, advanced powder metallurgy technology (APMT) to turbine parts composed of two nickel superalloy compositions and test the parts to determine if lifetimes have been increased. Materials research conducted under the Advanced Turbine Program seeks to improve coating materials that will allow for higher temperature operation and increased durability. These improvements will improve turbine efficiency and reduce maintenance, leading to lower capital costs, reduced operating costs, and reduced costs of electricity for consumers.


Accomplishments