Project No: FE0007045
Performer: University of California, Irvine


Contacts

Richard A. Dennis
Technology Manager, Turbines
National Energy Technology Laboratory
3610 Collins Ferry Road
P.O. Box 880
Morgantown, WV 26507-0880
304-285-4515
richard.dennis@netl.doe.gov

Steven Richardson
Project Manager
National Energy Technology Laboratory
3610 Collins Ferry Road
P.O. Box 880
Morgantown, WV 26507-0880
304-285-4185
steven.richardson@netl.doe.gov

Vincent McDonell
Principal Investigator
University of California, Irvine
UCI Combustion Laboratory
Irvine, CA 92697-3550
949-824-5950 x11121
mcdonell@apep.uci.edu

Duration
Award Date:  10/01/2011
Project Date:  03/31/2015

Cost
DOE Share: $499,999.00
Performer Share: $125,000.00
Total Award Value: $624,999.00

Performer website: University of California, Irvine - http://www.uci.edu

Advanced Energy Systems - Hydrogen Turbines

Development of Criteria for Flameholding Tendencies within Premixer Passages for High Hydrogen Content Fuels

Project Description

This research will provide a systematic evaluation of flameholding tendencies in various combustor fuel/air premixer passage geometries. This evaluation will be completed for different fuel types (including high hydrogen content [HHC] fuels) at operating conditions (temperature, pressure, etc.) typical of those encountered in industrial-scale turbines. The observations made relative to flameholding tendencies will be analyzed and used to develop design guides that can be used to infer when flameholding will occur as a function of the parameters studied.

The high pressures and temperatures required to simulate the environment of a premixing passage for a natural gas-fired gas turbine will be generated at the University of California, Irvine Combustion Lab high pressure facility. The facility is capable of generating a preheated airflow at temperatures up to 1200 degrees Fahrenheit, pressures exceeding ten atmospheres, and a maximum flow rate that exceeds three pounds per second. To provide the planned conditions, a modular test apparatus will be used.


Completed test apparatus.

Completed test apparatus.


Program Background and Project Benefits

Turbines convert heat energy to mechanical energy by expanding a hot, compressed working fluid through a series of airfoils. Combustion turbines compress air, mix and combust it with a fuel (natural gas, coal-derived synthesis gas [syngas], or hydrogen), and then expand the combustion gases through the airfoils. Expansion turbines expand a working fluid like steam or supercritical carbon dioxide (CO2) that has been heated in a heat exchanger by an external heat source. These two types of turbines are used in conjunction to form a combined cycle— with heat from the combustion gases used as the heat source for the working fluid— improving efficiency and reducing emissions. If oxygen is used for combustion in place of air, then the combustion gases consist mostly of carbon dioxide (CO2) and water, and the CO2 can be easily separated and sent to storage or used for Enhanced Oil Recovery (EOR). Alternatively, the CO2/steam combustion gases can be expanded directly in an oxy-fuel turbine. Turbines are the backbone of power generation in the US, and the diverse power cycles containing turbines provide a variety of electricity generation options for fossil derived fuels. The efficiency of combustion turbines has steadily increased as advanced technologies have provided manufacturers with the ability to produce highly advanced turbines that operate at very high temperatures. The Advanced Turbines program is developing technologies in four key areas that will accelerate turbine performance, efficiency, and cost effectiveness beyond current state-of-the-art and provide tangible benefits to the public in the form of lower cost of electricity (COE), reduced emissions of criteria pollutants, and carbon capture options. The Key Technology areas for the Advanced Hydrogen Turbines Program are: (1) Hydrogen Turbines, (2) Supercritical CO2 Power Cycles, (3) Oxy-Fueled Turbines, and (4) Advanced Steam Turbines.

Hydrogen turbine technology research is being conducted with the goal of producing reliable, affordable, and environmentally friendly electric power in response to the Nation's increasing energy challenges. NETL is leading the research, development, and demonstration of technologies to achieve power production from high hydrogen content (HHC) fuels derived from coal that is clean, efficient, and cost-effective; minimize carbon dioxide (CO2) emissions; and help maintain the Nation's leadership in the export of gas turbine equipment. These goals are being met by developing the most advanced technology in the areas of materials, cooling, heat transfer, manufacturing, aerodynamics, and machine design. Success in these areas will allow machines to be designed that have higher efficiencies and power output with lower emissions and lower cost.

The University of California, Irvine will provide a systematic evaluation of flameholding tendencies in various combustor fuel/air premixer passage geometries. This evaluation will be completed for different fuel types (including high hydrogen content [HHC] fuels) at operating conditions (temperature, pressure, etc.) typical of those encountered in industrial-scale turbines generated at the UC Irvine Combustion Lab high pressure facility. The observations made will be analyzed and used to develop design guides that can be used to infer when flameholding will occur as a function of the parameters studied. Combustion research conducted under the Advanced Turbine Program seeks to improve the understanding of hydrogen combustion and develop improved tools to model combustion behavior. This research will lead to combustor designs that can successfully utilize hydrogen and reduce emissions.


Accomplishments