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Hybrid Technology

B SYNERGY

« Efficiency higher than combination of components
» Costs for a given efficiency are lower

® ENVIRONMENT
« Extremely low criteria pollutant (NOx, SOx, CO, HC)
» Lower global climate change gas emission (e.g., CO,)

m TIMING

» High temperature fuel cell performance (power, scale,
longevity)

 Fuel cell pilot production, prototype plants
» Micro-turbine generator emergence
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Hybrid Technology

®m Myriad Cycles
e Topping Mode
- Fuel Cell replaces combustor and generator of Gas
Turbine
- Gas Turbine is balance of plant - with some
generation
e Bottoming Mode
- Fuel Cell uses Gas Turbine exhaust as air supply
- Gas Turbine is balance of plant
* Indirect Systems
e high termperature heat excha
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Hybrid M odeling Needs

m System Transient Performance
m System Dynamic Control Requirements

m Electrical outputs (FC and GT), power inversion,
and control

®m Flow requirements (fuel, air, water, diluents) and
control

®m Heat exchanger/ancillary component transient
response

® Varying Time Scales
- Fuel Cell thermal mass

- Turbine response times
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Model Developments

® Technical Status

® Current Approach:
« Simplified treatment of system components:
- 1-D reformer and combustor (“state-of-the-art”)
- simplified gas turbine model (Morre-Grietzer?)
- 1-D fuel cell mass and energy transport--non cross-flow
- elc.
» Model-constants specified with available data
» Generic results published

 Establish partnerships for proprietary models and other
technical assessments
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Dynamic Analysis Software

® ProTRAX

» Reasonable cost/licensing
Previously employed for fuel cells--Kortbeek, et al. (1998)
Models most standard power plant equipment

- heat exchangers

- control valves and controller characteristics
- gas compressors and turbines

No Fuel Cell or Reformer modules

Build FORTRAN code for integration w/ ProTRAX




Dynamic Modelsin Power Generation
Applications--Reformer Transients
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Reformer M odel

m External Steam-Methane Catalytic Reformer
* Literature:

- Alatigi & Mezion (1-D, transient

- XU & Froment ( |

- Murray & Snyder  (1-

D, steady state)
- Onl, Smitn & Stein (0-D, transient)
- He (0-D, transient

» Current Development:
- Counter-flow packed bed reformer.
- 1-D, transient model following Alatiqi.

W

- Nickel based catalysts with dedicated model

‘/_

equations available through literatur
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Reformer Geometry
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Reformer M odel

®m Stoichiometry
» Reforming: CH, + H,0 = CO + 3H, » Watershift: CO + H,0 = CO, + H,
e Overal: CH,+2H,0=CO0O, +4H,

m Assumptions

» A standard porous media heat transfer coefficient is used for the reformer-
side heat transfer (Xu & Froment).

Heat transfer from hot side path is by convection and wall-to-wall radiation.
There is no carbon deposition.

Methane conversion is given by (Hyman):

_ 2 _od
"cn, =HKoFen, P o™, Feo)

The CO, concentration is proportional to the methane conversion:

g: i =[0.666-0.102 %gXH—EO 10§<
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Basic Fuel Cdll Electrochemistry
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Fuel Cell Model
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Electrode/Electrolyte Dynamics:
«Complex, but main features understood.

*Assume:
QS electrode-electrolyte chemistry.

Thermally massive electrode-electrolyte and gases.

*Employ overpotential models as appropriate;

e.g. Butler-Volmer.

*Neglect carbon deposition.

*Specify unknown parameters with available data.

e '

Model Equations:

ENernst =-AG°/ nF

Ohmic Loss:
I R
Concentration LosSs:
-R,T In(2-i/i)) I nF
Activation Loss;
R,T In(i/i,) / anF
Fundamental Heat Loss:

-4.18 ASi / nF
NFCRC




Fuel Cell
Geometry

® Bipolar Planar FC
®m Co-Flow
# One-Dim. Analysis
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Decrease Reformer Gas Flow
(30% by val.)
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Decrease Refor mer Gas Flow

(30% by val.)
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Fuel Cdl Modd Results
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Fuel Cell Results (cont.)
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Summary

B Past steady state model results provide motivation for
Hybrid Technology.

® Need dynamic analysis/prediction capability.

# NFCRC/FETC modeling activity achieves:
 predictive tools for hybrid systems.
 technology development & transfer through future partnerships.
 provide direction to future DOE programs.

® Present results begin to show generic behavior for
reformers and fuel cells, with future applications
showing implications for hybrid systems.
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