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Hybrid TechnologyHybrid Technology

� SYNERGY
• Efficiency higher than combination of components

• Costs for a given efficiency are lower

� ENVIRONMENT
• Extremely low criteria pollutant (NOx, SOx, CO, HC)
• Lower global climate change gas emission (e.g., CO2)

� TIMING
• High temperature fuel cell performance (power, scale,

longevity)

• Fuel cell pilot production, prototype plants
• Micro-turbine generator emergence
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Hybrid TechnologyHybrid Technology

� Myriad Cycles
• Topping Mode

– Fuel Cell replaces combustor and generator of Gas
Turbine

– Gas Turbine is balance of plant - with some
generation

• Bottoming Mode
– Fuel Cell uses Gas Turbine exhaust as air supply
– Gas Turbine is balance of plant

• Indirect Systems
– Use high temperature heat exchangers
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Hybrid Technology
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Hybrid TechnologyHybrid Technology
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Hybrid Modeling NeedsHybrid Modeling Needs

� System Transient Performance
� System Dynamic Control Requirements
� Electrical outputs (FC and GT), power inversion,

and control
� Flow requirements (fuel, air, water, diluents)  and

control
� Heat exchanger/ancillary component transient

response
� Varying Time Scales

– Fuel Cell thermal mass
– Turbine response times
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Model DevelopmentsModel Developments

� Technical Status
� Current Approach:

• Simplified treatment of system components:
– 1-D reformer and combustor (“state-of-the-art”)
– simplified gas turbine model (Morre-Grietzer?)
– 1-D fuel cell mass and energy transport--non cross-flow
– etc.

• Model-constants specified with available data

• Generic results published

• Establish partnerships for proprietary models and other
technical assessments
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Dynamic Analysis SoftwareDynamic Analysis Software

� ProTRAX
• Reasonable cost/licensing

• Previously employed for fuel cells--Kortbeek, et al. (1998)

• Models most standard power plant equipment
– heat exchangers
– control valves and controller characteristics
– gas compressors and turbines

• No Fuel Cell or Reformer modules
• Build FORTRAN code for integration w/ ProTRAX
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Dynamic Models in Power Generation
Applications--Reformer Transients
Dynamic Models in Power Generation
Applications--Reformer Transients

� Reformer transients cause  fuel
& temperature variations
downstream and influences fuel
cell performance...

� FETC combustion work shows
flame-out or poor combustor
performance possible.
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Reformer ModelReformer Model

� External Steam-Methane Catalytic Reformer
• Literature:

– Alatiqi & Mezion     (1-D, transient)
– Xu & Froment         (1-D, steady state)
– Murray & Snyder    (1-D, steady state)
– Ohl, Smith & Stein  (0-D, transient)
– He                           (0-D, transient)

• Current Development:
– Counter-flow packed bed reformer.
– 1-D, transient model following Alatiqi.
– Nickel based catalysts with dedicated model

equations available through literature.
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Reformer GeometryReformer Geometry
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Reformer ModelReformer Model

� Stoichiometry
• Reforming: CH4 + H2O = CO + 3H2

• Overall:      CH4 + 2H2O = CO2 + 4H2

� Assumptions
• A standard porous media heat transfer coefficient is used for the reformer-

side heat transfer (Xu & Froment).

• Heat transfer from hot side path is by convection and wall-to-wall radiation.
• There is no carbon deposition.
• Methane conversion is given by (Hyman):

• The CO2 concentration is proportional to the methane conversion:
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• Watershift: CO + H2O = CO2 + H2• Watershift: CO + H2O = CO2 + H2
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Basic Fuel Cell Electrochemistry
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Fuel Cell ModelFuel Cell Model

Electrode/Electrolyte Dynamics:
•Complex, but main features understood.
•Assume:

QS electrode-electrolyte chemistry.
Thermally massive electrode-electrolyte and gases.

•Employ overpotential models as appropriate;
 e.g. Butler-Volmer.
•Neglect carbon deposition.
•Specify unknown parameters with available data.

E = ENernst - Σ ηj

ηj = Overpotential = f(i,T,P)

Model Equations:

ENernst = -∆Go / nF

Ohmic Loss:
      i R

Concentration Loss:
     -RuT ln(1-i/iL) / nF

Activation Loss:
     RuT ln(i/io) / αnF

Fundamental Heat Loss:
     -4.18 ∆S i / nF

δ1

δ2 Electrolyte

Anode

Cathode

-

+
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Fuel Cell
Geometry
Fuel Cell
Geometry

� Bipolar Planar FC
� Co-Flow
� One-Dim. Analysis
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Decrease Reformer Gas Flow
(30% by vol.)
Decrease Reformer Gas Flow
(30% by vol.)
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Decrease Reformer Gas Flow
(30% by vol.)
Decrease Reformer Gas Flow
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Fuel Cell Model Results
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Fuel Cell Results (cont.)Fuel Cell Results (cont.)

Velocity Transients Following 20% Load Resistance Incr.
"Planar SOFC"
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Future DirectionFuture Direction
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SummarySummary

� Past steady state model results provide motivation for
Hybrid Technology.

� Need dynamic analysis/prediction capability.
� NFCRC/FETC modeling activity achieves:

• predictive tools for hybrid systems.
• technology development & transfer through future partnerships.

• provide direction to future DOE programs.

� Present results begin to show generic behavior for
reformers and fuel cells, with future applications
showing implications for hybrid systems.
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