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Actual gas turbine combustors employ multi-nozzle combustors, where 
both transverse mode and longitudinal mode instabilities have been 
observed  
 

Our current understanding of combustion dynamics in lean premixed gas 
turbine systems is primary limited to longitudinal-mode instabilities in 
single-nozzle combustors operating on natural gas.  
 

To what extent is this understanding relevant to transverse mode 
instabilities?  
 

To what extent is this understanding relevant to multi-nozzle 
combustors?  
 

This project builds on our current understanding and extends it to the 
case of longitudinal and transverse-mode instabilities in multi-nozzle 
combustors operating on high-hydrogen fuels.  
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Objectives 

1) obtain a phenomenological and quantitative understanding of 
transverse and longitudinal mode instabilities in lean premixed multi-
nozzle combustors operating on high hydrogen, coal derived fuels.  
 

2) use this understanding to develop and validate transverse flame 
response models and multi-nozzle longitudinal flame response 
models. 
 

 The flame response models will be incorporated into thermo-acoustic 
models for predicting instability frequencies and amplitudes in multi-
nozzle combustors 

 

  Such models are essential tools for preventing or minimizing the 
incidence of detrimental combustion instabilities in future gas 
turbines.  
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Penn State’s focus is on 
longitudinal oscillations 

in multi-nozzle can 
combustor configurations 

Georgia Tech’s focus is on 
transverse oscillations in 

single-nozzle annular 
combustor configurations 
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Objectives (PSU) 

1) To experimentally determine the air-forced flame transfer function of 
a multi-nozzle can combustor operating on high hydrogen content 
fuels.  
 

2) To identify and characterize the instability driving mechanisms 
through which velocity fluctuations result in heat release fluctuations 
in a multi-nozzle  combustor. 
 

3) To characterize the role of flame-flame interactions in the air-forced 
flame response of a multi-nozzle combustor. 
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Five-Nozzle Can Combustor 
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Video of Multi-Nozzle Flame 



Measurements 
 

•  ∆P across the swirler in each nozzle 
          Mean velocity in each nozzle  
•  Dynamic pressure measurements at several locations in each nozzle 

and the combustor 
  Characterize acoustic field in nozzle and combustor 

•  Two-microphone method 
  Inlet velocity fluctuation in each nozzle 

•  OH*, CH*, CO2* chemiluminescence intensity measurements 
  Characterize the temporal fluctuation of the heat release 

•  Global CH* (OH*) chemiluminescence imaging (time-averaged and 
phase-synchronized) 
   Chemiluminescence imaging to characterize flame structure and heat 

release distribution 

•  Absorption measurements 
  Temporal fluctuation of the equivalence ratio at the exit of each nozzle  
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  Tinlet Uinlet Φ u'rms / 
umean 

FGmin 
Ref. °C m/s Hz 

1 100 15.0 0.70 5% 150 
2 100 15.8 0.65 5% 150 
3 100 20.0 0.65 5% 175 
4 100 25.0 0.60 5% 190 
5 100 25.0 0.65 5% 225 
6 150 15.0 0.60 5% 150 
7 150 15.0 0.65 5% 150 
8 150 17.5 0.60 5% 150 
9 150 17.9 0.65 5% 175 

10 150 20.0 0.60 5% 175 
11 150 20.0 0.65 5% 200 
12 150 22.5 0.55 5% 180 
13 150 22.5 0.60 5% 200 
14 150 22.5 0.65 5% 200 
15 150 25.0 0.60 5% 200 
16 150 27.5 0.60 5% 225 
17 200 15.0 0.60 5% 150 
18 200 15.0 0.60 10% 150 
19 200 15.0 0.65 5% 150 
20 200 15.0 0.70 5% 150 

  Tinlet Umean Φ u'rms / 
umean 

FGmin 
Ref. °C m/s Hz 
21 200 17.5 0.65 5% 180 
22 200 17.5 0.65 5% 175 
23 200 20.0 0.50 5% 150 
24 200 20.0 0.60 5% 190 
25 200 20.0 0.60 10% 175 
26 200 20.0 0.65 5% 200 
27 200 20.0 0.70 5% 200 
28 200 22.5 0.65 5% 225 
29 200 25.0 0.55 10% 200 
30 200 25.0 0.55 5% 200 
31 200 25.0 0.60 5% 225 
32 200 25.0 0.60 10% 225 
33 200 25.0 0.65 5% 250 
34 200 30.0 0.60 5% 275 
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Operating Conditions for FTF* Measurements 
Tinlet = 100°C, 150°C, 200°C 
 

Uinlet = 15, 17.5, 20, 22.5, 25, 27.5m/s 
 

Φ = 0.50, 0.55, 0.60, 0.65, 0.70  
 

u′/Uinlet = 5%, 10% 
 

fforcing = 100 – 450 Hz 

* flame transfer function 



Flame Transfer Function 
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•  Input function, X(f): Inlet velocity or fuel flow rate fluctuations 
 

•  Output function, Y(f): Overall rate of heat release fluctuation 
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Forced Flame Response 
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Forcing Frequency (Hz) 
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Gain exhibits 
minimum and 
maximum values. 
Suggests 
interference effects. 

Tinlet = 200˚C     Uinlet = 25 m/s    Φ = .60   u’/U = 5% 

At minimum gain 
frequencies there 
is an inflection in 
phase curves. 

Slope = τconvective 

The slope of the 
phase vs frequency 
curve equals the 
time between  the 
input perturbation 
(V’) and the output 
perturbation (Q’).  
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Tinlet = 100°C, 150°C, 200°C 
 

Uinlet = 15, 17.5, 20, 22.5, 25, 27.5m/s 
 

Φ = 0.50, 0.55, 0.60, 0.65, 0.70  
 

u′/Uinlet = 5%, 10% 
 



– Acoustic (axial) velocity fluctuations 
– Azimuthal velocity fluctuations 
– Swirl fluctuations 
– Vortical structures shed off  injector 

and/or swirler 
– Flame angle fluctuations 
– Flame near-field effects 

• Flame anchoring 
– Flame far-field effects 

• Vortical dissipation 
• Kinematic restoration 

v' 

v' 

vortical structures  
shed off centerbody 

and/or swirler v' 

v' vθ' 

α' 

α' 

v' 

v' 

Near-field Far-field 

Velocity-Forced Flame Response Mechanisms 
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Strouhal Number Scaling 

Strouhal Number = St =           
τperturbation 
τforcing 

τforcing  =  1/fforcing 

τperturbation 

 ♦   The convective time of a perturbation generated  
        at the swirl vanes to the end of the centerbody: 
 

 ♦   The sound propagation time from the swirler exit  
        to the end of the centerbody: 
 

 ♦  The flame’s characteristic response time to a  
       perturbation at the entrance to the combustor: 

τ1 =        ∆sw 
U 

τ2 =        ∆sw 
c 

τ3 =        Lflame 
U 
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Phase-Synchronized Flame Structure Evolution at Minimum 
and Maximum Gain Conditions 

Minimum Gain Maximum Gain 
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Tinlet = 200 ˚C      Vinlet = 25 m/s       Φ = .6       u’/umean = 5% 
G

ai
n 

Frequency 

Destructive Interference? Constructive Interference? 
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Tinlet = 200 ˚C      Vinlet = 25 m/s       Φ = .6       u’/umean = 5% 
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Tinlet = 200 ˚C      Vinlet = 25 m/s       Φ = .6       u’/umean = 5% 

Distance from Centerbody (m) 



Axial Heat Release Distribution Fluctuations 
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Tinlet = 200 ˚C      Vinlet = 25 m/s       Φ = .6       u’/umean = 5% 

Minimum Gain at 225 Hz Maximum Gain at 325 Hz 

Note that λconv-225  <  λconv-325, therefore, this behavior can 
not be attributed to a single convective perturbation.   
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PPM Stable Flame Imaging with 20m/s Inlet Velocity & 200oC Preheat for Flames 
with Varying Equivalence Ratio and H2 Percentage in the Fuel 

• CH* chemiluminescence 
• All images use the same scaling factor 
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Flame Length Comparison for 3 flames with Inlet Velocity 20m/s, 5% forcing, 
200oC Inlet Temp. but varying φ and Percent H2 Enrichment 

 

•  For the same inlet conditions, it is possible to get the same flame length by varying equivalence 
ratio/H2 percentage in the fuel 
 

•  The result of having the same flame length and inlet conditions is that the Strouhal number is  
the same for  these flames 

Flame Length Comparison for 3 flames with Inlet Velocity 20m/s, 5% forcing, 200oC Inlet Temp. 
but varying φ and Percent H2 Enrichment 

Φ0.65 10% H2 Φ0.55 30%H2 Φ0.6 20% H2 
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Comparison of Normalised OH* Chemiluminescence Response from Flames 
with Differing Equivlance Ratio but Similar Flame Lengths with 20m/s Inlet 

Vel, 200oC Inlet T, 5% Forcing 

Comparison of Normalised OH* Chemiluminescence Response for Flames with Differing 
Equivalence Ratio & H2 Percentage in the Fuel but Similar Flame Lengths 

(20m/s Inlet Velocity, 200oC Preheat and 5% Forcing) 
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3-D Imaging of Multi-Nozzle Flames 
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Integrated line-of sight 
images obtained at 

various angles 

Horizontal slices of 
images at all angles 
are input as an array 

into the inverse radon 
transform 

Inverse radon 
transform reconstructs 
a horizontal slice of the 

flame 

Horizontal slices are 
stacked up to obtain a 3D 
image matrix 

3-D Image Processing 
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3-D Flame Image – Stable Flame 
3D inverse Radon Transform based reconstruction of five nozzle flame (Background Removed) 
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3-D Flame Imaging Validation – Stable Flame 

Downstream image at same 
operating conditions 

Image of summed horizontal slices 
of inverse radon reconstruction 
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