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Oxygen Reduction @ Cathode

Porous electrodes
Oxygen reduction kinetics

Rate constants
Energy barriers

J. Van Herle et al., Electrochim. Acta, 
41, 1996  

M. J. Jorgensen et al., J. Electrochem. 
Soc. 148,  2001

Y. Arachi et al., Solid State Ionics, 121, 
1999

Dense thin-film electrodes
Reaction pathways
Surface segregation
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J. Fleig, Fuel Cells, 8, 2008
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G.J. la O’ et al., J. Electrochem. Soc., 154 , 2007
R.A. De Souza et al., Mater. Lett., 43, 2000

Structure, composition, electronic structure Oxygen reduction (OR) kinetics

Probe surface ~ f (T, PO2,V, ε)

Piskunov et al., Phys.  Rev. B 78, 
(2008)

Lee and Morgan et al., Phys.  
Rev. B 80, (2009)

Mastrikov et al., J. Phys. Chem. C 
114 (2010)

Simulations
Stable surface phases
Energies (thermodynamic 
and kinetic) in OR steps

T. Sholklapper et al. ESSL, 10 (2007)
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Objective: assess governing factors of OR activity
Model “strained” systems: 

La1-xSrxMnO3, La1-xSrxCoO3 

dense thin films, at high temperature

1) Chemical environment 
 Sr segregation, and 
oxygen vacancies 

2) Electronic structure 
 Energy gap, density of 
states (DOS) at EF
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“Strain” in high temperature ionic materials?

 Thin films
 (Y2O3,ZrO2)(YSZ) [1]
 (Gd2O3,CeO2)(GDC) [2]
 (La,Sr)CoO3 [3]

Hetero-layer system
 CaF2/BaF2 [4]
 YSZ/SrTiO3(STO) [5]
 Ce0.8Sm0.2O2/YSZ [6]
 (La,Sr)CoO3/(La,Sr)2CoO4 [7]

[1] Korte et al., Phys. Chem. Chem. Phys., 10 (2008)
[2] Beckel, Rupp, Gaukcler et al.,  J. Pow. Sources (2007)
[3] Januchevsky and Fleig et al. Adv. Func. Mat. (2009)

La’O et al. Ang.Chem. Int. Ed. (2010)
[4] Sata and Maier et al., Nature, 408 (2000)

Strain as a driver of defect chemistry, ionic transport and 
oxygen reduction (OR) rates at the nano-scale interfaces? 

Ionic conductivity↑ Surface reactivity↑

[5] Garcia-Barriocanal, Science 321 (2008)
Schichtel and Janek, PCCP., 11 (2009)
Kushima and Yildiz, J. Mat. Chem. 20 (2010)
[6] Sanna, Small, 6 (2010)
[7] Sase, Solid State Ionics, 178 (2008)
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Compressed

Stretched

• N adsorption enhanced by ~20x
• Attributed to decreased barrier
for NO dissociation on the 
stretched surfaces

Wintterlin, J., et al. 
Angew. Chem. Int. Ed. 2002 42 2850

Lattice strain as a driver of oxygen reduction kinetics?

Strasser, P, et al. 
Nat. Chem. 2010, 2 454.

• shift in the d band center
• broader d band structure 
• O 2p and Pt 5d antibonding

downshift to higher occupancy
Mavrikakis, M., et al. 
Phys. Rev. Lett. 1998, 81 2819.

Oxygen K-edge X-ray absorption and 
emission spectra (XAS, XES)

XES

Strain
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Approach

XPSSurface chemical state
X-ray Photoelectron 
Spectroscopy (XPS)

EB

STM

Surface electronic structure
Scanning Tunneling 

Microscopy / Spectroscopy 
(STM/STS), in situ

Mechanisms and kinetics of 
processes at the atomic-scale
Electronic structure (DFT+U)
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Objective: assess governing factors of OR activity
Model “strained” systems: 

La1-xSrxMnO3, La1-xSrxCoO3 

dense thin films, at high temperature

1) Chemical environment 
 Sr segregation, and 
oxygen vacancies 

2) Electronic structure 
 Energy gap, 
density of states at EF
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Model “strained” systems La0.7Sr0.3MnO3, La0.8Sr0.2CoO3

9

(100) epitaxial Substrate Abbr. ε % (RT) ε % (500 oC)
La0.7Sr0.3MnO3 SrTiO3 (100) LSM/STO + 0.8 + 0.6
La0.7Sr0.3MnO3 LaAlO3 (100) LSM/LAO -2.1 -2.3
La0.8Sr0.2CoO3 SrTiO3 (100) LSC/STO +1.4 +1.0
La0.8Sr0.2CoO3 LaAlO3 (100) LSC/LAO -1.5 -1.9
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LSM and LSC thin film surface structure

1 Martin Phys. Rev. B 53 (1996)
2 Bertacco et al. Surf. Sci. 511 (2002)
3 Thongtem et al. Mater. Lett. 64 (2010)
4 Hu et al. Adv. Mater. 19 (2007)
5 Zheng et al. J. Electrochem. Soc 146 (1999)

Mn,
Co

La,Sr

O

LSC/STO

LSC/LAO

LSM/LAO

LSM/STORT, PO2= 10-10mbar

Compound Lattice parameters
1La0.7Sr0.3MnO3 a=b=c= 3.88 Å 

2SrO a=b=c=5.16 Å
3SrCO3 a=5.1, b=8.4,  c=6.0 Å
4 La2O3 a=b= 3.4, c=6.1 Å

5(La,Sr)2MnO4 a=b=3.84 , c=12.5 Å

Jalili, Han et al., J. Phys. Chem. 
Lett. 2 (2011) 801-807

Cai et al. in review (2011)

On STO Sr/(Sr+La) A/B

LSM 0.37 2.46

LSC 0.42 3.02

Sr AO-terminated 
perovskite surface, 

Sr-increase on A-site



Objective: assess governing factors of OR activity
Model “strained” systems: 

La1-xSrxMnO3, La1-xSrxCoO3 

dense thin films, at high temperature

1) Chemical environment 
 a) Sr segregation,

b) oxygen vacancies 

2) Electronic structure 
 Energy gap, 
density of states at EF
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1-a) Strain-driven Sr enrichment on the A-site
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 Srsurface on La1-xSrxMnO3, La1-xSrxCoO3

Under-coordinated Sr on perovskite
Sr-OH

van der Heide et. al 
Chem. Phys. Lett. 1998, 297.

Dupin, J.-C. et al. 
Phys. Chem. Chem. Phys. 2000, 2.

Hudson, L. et al. 
Phys. Rev. B 1993, 47.
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1-a) Strain-driven Sr enrichment on the A-site
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Jalili, Han et al., J. Phys. Chem. Lett. 2 (2011) 801-807

on LAO on STO



1-b) Strain-driven oxygen vacancy formation

 Vacancy formation is easier with tensile strain due to 
weaker cation-oxygen bonds in lattice.
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Jalili, Han et al., J. Phys. Chem. Lett. 2 (2011) 801-807

Kushima, Yip and Yildiz, Phys. Rev. B. 82 (2010) 115435
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1-b) Strain-driven oxygen vacancy formation
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 Vacancy formation is easier with 
tensile strain due to weaker 
cation-oxygen bonds in lattice.
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Jalili, Han et al., J. Phys. Chem. Lett. 2 (2011) 801-807

Kushima, Yip and Yildiz, Phys. Rev. B. 82 (2010) 115435
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Objective: assess governing factors of OR activity
Model “strained” systems: 

La1-xSrxMnO3, La1-xSrxCoO3 

dense thin films, at high temperature

1) Chemical environment 
 Sr segregation, and 
oxygen vacancies 

2) Electronic structure 
 Energy gap, density of 
states (DOS) at EF
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2) Surface electron transfer, reactivity; f(T,ε)

A reversible gap-nogap
transition at ~400 oC for LSM,   

at ~300 oC for LSC.

Larger density of states at Ef
for tensile LSM and LSC.
 reactivity favors tensile?

Role of the surface cation and anion 
chemistry? Restructuring?

Feibelman and Hamann, Phys. Rev. Lett. (1984)
Yang and Parr, Proc. Nat. Acad. Sci. (1985).
Raccah and Goodenough, Phys. Rev. (1967).

Jalili, Han et al., J. Phys. Chem. Lett. 2 (2011) 801-807, Cai et al. in review (2011)
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2) Surface electron transfer, chemistry; f(T,ε)

Cai et al. in review (2011)
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2) Surface electron transfer, chemistry; f(T,ε)
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Thickness   ,  A/B   ,  Eg .
Tdeposition ,  A/B  ,  Eg .
Lattice strain
Substrate effect?

Effect of thickness/strain on LSM/YSZ, f(t,ε)
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Surface chemistry, electronic structure, f(ε,Τ) – OR activity
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 Sr enriches more with 
tensile strain on the A-site.

 Oxygen vacancy formation 
is easier with tensile strain.

 Electronic DOS at EF is 
larger with tensile strain at 
high temperature; driven 
by oxygen vacancies.
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