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Lead Contractor

 Prairie Research Initiate /University of Illinois

 Five scientific surveys including Geological Survey (ISGS)

 700 scientists and technical support staff

 Annual budget of $50 million

 Lead organization of Midwest Geological Sequestration Consortium Partnership

 Advanced Energy Technology Initiative (AETI)
− carbon capture & sequestration
− materials and systems for energy and environmental applications 
− combustion-generated air pollution control
− energy-water nexus



Project Overview 



Project Objectives

 Proof-of-concept of the Integrated Vacuum Carbonate 
Absorption Process (IVCAP) 
 Identify an effective catalyst for accelerating CO2

absorption rate 
 Identify an effective additive for reducing stripping heat
Evaluate a modified IVCAP for combined SO2 and CO2

removal
Techno-economic evaluation of the IVCAP as a post-

combustion CO2 capture technology
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Project Budget and Duration

 Total funding: $1,140 K
 DOE funding: $765 K
 Cost share 

– Calgon Carbon Corporation (in kind): $100 K
– UIUC-ISGS (in kind): $275 K

 Project duration: 10/1/2008-4/30/2012
 BP1: 10/1/2008-4/30/2010  (with 7-month no cost extension)
 BP2: 5/1/2010-4/30/2011
 BP3: 5/1/2011-4/30/2012
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Project Team

DOE/NETL: Andrew Jones (COR)

UIUC: Tatiana Djukardi (BS, Chemical eng)
Arezoo Khodayari (Graduate student, Environmental eng)
Yongqi Lu (PhD, Chemical/Environmental eng)
Mark Rood (Professor, Environmental eng)
Massoud Rostam-Abadi (PhD, Chemical eng)
David Ruhter (MS, Biology/ecology) 
Priscilia Sinata (BS, Chemical eng)
Xinhuai Ye (PhD, Chemical eng)
Shihan Zhang (PhD, environmental eng)
Zhaohui Zhang (PhD, Biochemical eng)

Calgon Carbon: Nick Pollack (PhD, Chemical eng)



Technology Fundamentals/Background
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Flow Diagram/ Concept of 
Integrated Vacuum Carbonate Absorption Process (IVCAP)

Chen, Lu, Rostam-Abadi, Patent 
Application No. 60/798,489, May 2007
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Features of IVCAP

 Absorber: 

 Stripper:

 Low T/P stripping (2-8 psia, 50-70°C)

 Allows use of low quality steam from power plant

 Part of steam used for direct heat exchange

 Reduces energy use (parasitic power use) by 25-35% compared to 
baseline MEA processes

 Employs a biocatalyst to promote absorption rate

 Combines SO2 removal with CO2 capture

32232 2KHCOOHCOCOK →++

OHCOCOKVaccumHeatKHCO 22323
,2 +↑+ →
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Feature (1) Benefit of Use of Low-Quality Steam for Solvent Regeneration

 Lower quality steam → less electricity loss
 lower stripping temperature allows use of lower quality steam

Superheated steam in power plant IP and LP turbines



Feature (2) CO2 Absorption Reactions Promoted with a Biocatalyst

Without a catalyst:
 Reaction (1) slow in water 
 Reaction (2) dominant at pH >9 (pH of K2CO3/KHCO3 solution is 9-11)

With CA enzyme
 Reaction (1) dominant when promoted by carbonic anhydrase (CA)
 Reaction (2) plays a minor role (pH of K2CO3/KHCO3 solution is 9-11)
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Feature (3) Combined SO2 Removal in CO2 Capture Process

Absorption: 

Sulfate reclamation:

Reducing [CO3
2-] to favor CaSO4 precipitation:

 High pressure CO2

 Low pH
 Appropriate temperature

Precipitation rates of CaSO4 and CaCO3:

2423222 2/1 COSOKCOKOSO +=++
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Progress and Current Status 



Note: Work completed after Sep, 2010 or currently in progress are updated here

Research Activities Performed

Task 1 Evaluation & 
Development of 

absorption catalysts

Task 2 VLE 
measurement of PC + 

additives

Task 3 Kinetic study of 
reclamation of SO42-

loaded solvent

Task 4 Techno-
economic analysis

Task/subtask Completion date
Task 1. Evaluation & develop.of catalysts

1.1 Experimental set up 11/31/08
1.2 Activity of enzyme biocatalysts 9/30/09
1.2*Long-term stability of enzymes 12/31/10
1.3 Activity of other catalysts 12/30/09
1.4 Enzyme immobilization 10/31/10

Task 2. VLE measurement
2.1 Experimental set up 6/30/10
2.2 VLE of PC w/o an additive 9/30/10
2.3 VLE of PC with additives 12/31/10

Task 3. SO2-loaded solvent reclamation
3.1 Batch test of solvent reclamation 4/30/11
3.2 Semi-continuous test In progress

A1. Evaluation of new thermophilic CAs In progress
A2. Develop. & evaluation of novel support 

material/method for CA immobilization In progress



(1) Stability of CA Enzyme – Long Term Thermal Stability

 CA enzyme from Provider A (ACA1) 
 A technical-grade CA enzyme produced in a pilot unit
 As received sample not purified

0.10,

,0,

−

−

CA

tCACA

E
EE

Activity loss =                        x100%

 Relatively stable at 25°C (20% loss in 6 months)
 Stability loss at 40°C (70% in 6 months)

 2.5-3 times annual enzyme makeup



Stability of CA Enzyme – Chemical Stability with Flue Gas Impurities

 Presence of SO4
2-, NO3

-, and Cl-, either alone or a mixture, in PC+CA 
solution resulted in <10.2% loss of initial CA activity
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-, and 0.7M Cl- are ~20, 100, and 1 times higher than FGD wastewater (high S/Cl coal)



CA Enzyme with Improved Thermophilic Performance

 Fresh ACA2 exhibited comparable activity at 40°C; ~30% higher activity at 50°C 
(data not shown)

 ACA2 stable at 40°C and stability improved at 50°C 
 BCA retained 40% activity after 1 month at 60°C vs. ACA1 lost activity in days 

(data not shown)

 ACA2
 As-received liquid sample not purified
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(2) Enzyme Immobilization

CA enzymes
 Sigma-Aldrich (SCA)
 ACA1

Support materials
 Controlled pore glass

 CPG100 (200-400 mesh)

 CPG38

 Porous AC

 

Average 
pore size, 

nm

BET 
surface, 

m2/g

Pore 
volume, 
cm3/g

AC 3.8 1007.0 0.50*
CPG38 38.1 64.5 1.06
CPG100 100 21.8 0.79

* Pores of 2-20 nm contributed 20%



Enzyme Loading onto Support and Activity of Immobilized CA Enzyme

Sample Enzyme loading
(mg CA/g support)

Immobilization 
factor (IF) CA activity

SCA-CPG100 18.3 0.383 p-NPA hydrolysis
0.159 CO2 hydration

SCA-CPG38 32.6 0.351 p-NPA hydrolysis
0.209 CO2 hydration

SCA-AC 10.7 0.229 CO2 hydration
ACA-CPG100 14.2 0.279 CO2 hydration
ACA-CPG38 27.1 0.345 CO2 hydration

ACA-AC 9.6 0.217 CO2 hydration

enzymefreeofactivitySpecific
enzymedimmobilizeofactivitySpecific

IF =
Immobilization factor (IF)
represents efficiency of enzyme 
immobilization



Stability of Immobilized CA Enzymes

 Immobilized CA enzymes 
exhibited significantly 
improved thermal stability
 Immobilized CAs retained 

62-92% of initial activities 
after 90 days at 50°C vs. 
~33% for free CAs

 ACA-CPG38 retained 53% 
activity after 30 days at 
60°C vs. ~0% for free ACA
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Development of New Support Materials for CA immobilization

 Nano-sized (<100 nm) support/carrier particles
 Minimize intra-particle diffusion
 Offer a large external surface area for high CA loading
 Can be separation-ready
 Synthesis using flame spray pyrolysis (FSP)

 Current work on synthesis of silica-based materials 
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SCA immobilized onto FSP silica at different pH

Immobilization pH CA loading
(mg CA/g support)

10 30.5
8 67.5
7 45.4
5 30.8

 CA loading tripled that onto CPG or AC
 Work in progress to improve activity 

(IF=~40% currently)



(3) Vapor-Liquid Phase Equilibrium (VLE) Measurement Cell

 Screening and VLE measurements of 
additives

 Gas analysis using GC and RH 
analyzers

 Liquid analysis using a back-titration 
method

61%
10%

29% Stripping heat

Reaction heat

Sensible heat

Breakdown of heat use in IVCAP 



Equilibrium Pressure of Water Vapor over 20wt% PC + Additives

 Two additives, AD1 and AD2, identified to be effective for lowering water 
vapor pressure

 Equilibrium pressure of water vapor reduced by ~20% at 70°C and >20% 
at 50°C with 20wt% additives

 

AD1 
AD1 

 

AD2 
AD2 



Equilibrium Pressure of CO2 over 20wt% PC + Additives

 CO2 solubility in PC+AD1 
(or AD2) increased, which 
favors the absorption of 
CO2

 AD1, AD2 and their 
dissociation species in PC 
are only slightly volatile (<1 
ppmv at 70ºC, data not 
shown) 

 Energy use (stripping heat) 
of IVCAP could be reduced 
by using additives

 Addition of 20wt% AD1 or 
AD2 exhibited some degree 
of inhibition on enzyme 
activity;  further evaluation 
needed to identify tradeoff 
between activity impact and 
energy saving

 

AD1 AD1 

 

AD2 AD2 



(4) SO2-Loaded Solvent (Sulfate) Reclamation

 Batch test
 Reaction of CaCl2 with KHCO3-K2CO3-K2SO4 in solution to simulate Ca(OH)2

in real application 

 Reduced initial K2CO3 concentration to partly simulate solution after reaction 
with high pressure CO2 (CO3

2-+CO2+H2O=2HCO3
-)

25°C       Initial solution makeup (M) Equilibrium ratio based 
on initial makeup

SR* of 
CaSO4

SR of 
CaCO3

KHCO3 K2CO3 K2SO4 CaCl2 SO4
2-/CO3

2-

2 0 0.12 0.12 5.3 459 809,407

2 0.006 0.12 0.12 4.7 459 919,238

2 0.1 0.12 0.12 1.2 459 3,730,195

0.4 0.02 0.421 0.421 20.2 5,645 2,617,354

0.2 0.01 0.211 0.211 20.2 1,418 655,893

SR: supersaturation ratio



Composition of Precipitation Products

 Calcite/vaterite crystal dominant in precipitate at SO4
2-/CO3

2- =5.3, 4.7, 1.2
 Gypsum and syngenite shared 60-70 wt% at SO4

2-/CO3
2- =20.2 

 Precipitation of CaSO4 competitive to CaCO3 at high SO4
2-/CO3

2- ratio 
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 Reduced “salting-out” effect 
in diluted solution 
eliminated syngenite 
formation

 Solution less saturated at 
50°C than at 25°C, wt% of 
syngenite reduced
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Semi-Continuous Tests Using a High Pressure Autoclave System for Sulfate 
Reclamation

Parr Instrument Company, 
model 4534 
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Main Conclusions/Findings

 ACA is stable in presence of major flue gas impurities (SO4
2-, NO3

-, and Cl-). 

 ACA1 is stable at 25°C, but lost 70% of initial activity at 40oC in 6 months.

 ACA2 exhibited improved activity and higher stability compared to ACA (at ≥40°C)

 Immobilization of CAs had significantly improved thermal stability compared to free CAs

 New support materials under development; immobilized CA onto a new support tripled 
enzyme loading

 Two additives reduced equilibrium pressure of water vapor over 20wt% PC by ~20% at 70°C 
and >20% at 50°C with 20wt% addition; stripping heat could be reduced by using the 
additives

 In batch test, gypsum and syngenite products shared 60-70 wt% at SO4
2-/CO3

2- =21; 
precipitation of CaSO4 competitive to CaCO3 at high SO4

2-/CO3
2- ratio; semi-continuous test 

in progress to improve CaSO4 yield



Plans for future testing/ development/ 
commercialization



Resarch Plan in the Future

 Evaluation of new thermophilic CA enzymes; Development and evaluation of new 
immobilization support/carrier materials and approaches

 Semi-continuous tests for reclaiming SO2-loaded solvent to enable combined SO2
removal with CO2 capture

 Conduct techno-economic studies for the IVCAP installed in a 500MWe power 
plant

Pathways for next stage technology development
 Conduct techno-economic analysis studies

 If techno-economically viable, 
– Seek federal, state, and industrial support for a pilot-scale test (0.5-3 

MWe)
– Identify industrial partners (engineering companies, enzyme 

manufactures) for pilot-scale demonstration
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