
LDV Measurements and 
Analysis of Gas and Particulate 

Phase Velocity Profiles in a 
Vertical Jet Plume in a 2D 

Bubbling Fluidized Bed

Alexander G. Mychkovsky
Steven Ceccio

Jennifer Sinclair Curtis
University of Michigan

Dept of Mechanical Engineering



2

Overview

 Background
 Laser Doppler Velocimetry (LDV) Measurement Technique
 Single Phase Gas Jet in the Empty 2D Bed
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Background



 High speed gas jets are injected into a bed emulsion, rapidly 
entraining and mixing bed particles and interstitial gas
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Jets in Fluidized Beds

C. Xuereb, C. Laguerie, T. Baron.  “Etude du comportement de jets continues 
horizontaux ou inclines introduits dans un lit fluidise par un gaz Deuxieme partie: profiles 
de vitesse du gaz dans les jets horizontaux,” Powder Tech. 64 (3), 271-283 (1991)  

 Quantitative measurements of the mass and momentum 
transport in the jet plume are needed for characterization 
and modeling
 Requires knowledge of the particulate and gas phase velocity profiles

 Not widely reported in the literature

 Jet dynamics are critical to the efficiency and design of the 
system
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Prior Work Characterizing these Jets
 Gas velocity profiles considered 

analogous to single phase jets
 Bell Curve Transverse Profile
 Power Law Axial Profile
 Linear Plume Expansion
 Coefficients are often empirical 

functions of particle properties and 
fluidization state

P.E. Roach. “The penetration of jets into fluidized beds,” Fluid. Dyna. Res. 
(11): 197-216, 1993.

 Particle velocity profiles derived 
from particle acceleration 
models
 Entrainment
 Drag
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Our 2D Fluidized Bed

Vertical Gas Jet 
(orifice flush with 

distributor surface)

Dj = 9.2 mm, Vj = 92 m/s

Vfl /Vmf = 1.15

838 μm SMD HDPE micropellets

Quartz viewing windows 

(102 mm x 153 mm x 5mm thick)

Acrylic walls 

(457 mm wide x 12.7 mm gap)

Velocity profile scans at

y = 60, 70, 100, 130 mm
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Prior Measurement Techniques
 Experimental data is difficult to obtain since the gas –

particle flow in a fluidized bed is opaque and harsh.

 Non-intrusive but often qualitative methods to determine 
jet plume geometry and fluctuations
 High speed video 
 Pressure measurements
 X-ray imaging

 Quantitative but intrusive probes to measure velocity or 
concentration
 Pitot tubes
 Optical probes
 Triboelectric probes



LDV Measurement Technique

8
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Laser Doppler Velocimetry (LDV)
 Particle scatters light as it traverses 

the fringe pattern established by 
intersecting laser beams (δf  ~ 3.5 μm) 

Particle speed ~ frequency of scattered light

( ) fBffv δ−=  : velocitymeasured

 Directional ambiguity
 One of the beams is frequency 

shifted (fB = 40 MHz) by an 
acousto-optic element (Bragg Cell) 
causing the light fringes to move 
(~140 m/s)

 Shifted beam intensity fluctuates 
at 2fB, which causes problems for 
large particle measurements

A. Mychkovsky , N. Chang, S.Ceccio.  “Spurious LDV signals due to Bragg 
Cell laser intensity modulation,”  Appl. Opt. (48) 3468-3474 (2009) 
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LDV Signal Contamination
 Intensity modulation causes frequency mixing

( ) ( ) ( )[ ] ( )[ ]tfftfftftf BBB −++= 22cos
2
122cos

2
12cos22cos ππππ

Bragg Mixing Laser Mode Hop Mixing

A. Mychkovsky , N. Chang, S.Ceccio.  “Spurious LDV signals due to Bragg 
Cell laser intensity modulation,”  Appl. Opt. (48) 3468-3474 (2009) 
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 Laser beam intensity fluctuates at C/2L (125 MHz for a 1.2 m laser tube)
 Mixed peaks problematic due to proximity to Doppler burst frequency (f )

 Resolve problem by orienting LDV fringe motion in the direction of the bulk 
particle motion (f < 40 MHz) and use appropriate band pass filters
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LDV in Two Phase Gas-Particle flow

 Simultaneously measure bed particle 
(~1,000 μm) and jet gas (~1 μm tracers) 
velocity profiles (2 component)

 Jet gas is seeded by rapidly condensing 
moisture in the air to produce ice crystals 
(Tj = -5oC, ρj = 1.32 kg/m3)

 Burst intensity subranging to distinguish the 
two phase measurements
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Intensity Subranging
 Bed particles (dp>>δf ,St>>1) produce larger amplitude, lower velocity 

Doppler bursts than gas tracer ice crystals (dp~ δf ,St<<1)

R. S. Barlow & C. Q. Morrison. “Two-phase velocity measurements in dense 
particle-laden jets,” Exp. Fluids.  9 (1-2) 93-104 (1990)
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Intensity Histograms and Distributions
99% of bed particle bursts > 200 mV 99% of ice crystal bursts < 500 mV
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Intensity Subranging
 Bed particles: I > 500 mV
 Ice Crystals: I < 200 mV
 Neglect bursts in the overlap region

 No correlation between burst intensity and velocity for either phase thus 
this method does not systematically bias the measured velocity values
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Velocity Histogram Separation
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Measurement Uncertainty
 Low at the center, increasing towards the plume boundary

 Higher burst count in the jet core for both phases
 Unsteady bed dynamics (particle variation, plume fluctuations)

Gas Velocity Profiles Particle Velocity Profiles

 Majority of mass and momentum transport occurs in the core region
 Calculated mass and momentum transport values within 5%
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Single Phase Gas Jet
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Empty Bed Transverse Velocity Profiles

 Single phase gas jet plume velocity profiles are self-similar 
with a Gaussian bell-curve shape
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Empty Bed Axial Velocity Profiles
 Single phase gas jet plume centerline axial velocity decay 

and velocity profile width expansion are consistent with a 
free 2D turbulent jet

Axial Velocity Profile Velocity Profile Expansion
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Empty Bed Momentum Transport
 Axial momentum transport 

 Conserved in free jets
 Calculated by numerically integrating LDV data points or analytically 

integrating Gaussian profiles

∫
−

=
b
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7.0           )(1
1,1, =≈= ∫ CvCdzzv

w
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w
avgg

….Downstream calculated values nearly double the inlet value!          
(This has been noted in the literature but not properly considered)

C. Xuereb, C. Laguerie, T. Baron.  “Etude du comportement de jets continues 
horizontaux ou inclines introduits dans un lit fluidise par un gaz Deuxieme partie: profiles 
de vitesse du gaz dans les jets horizontaux,” Powder Tech. 64 (3), 271-283 (1991)  
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Mass and Momentum Transport Calculations
 Self-similar velocity profiles enable transport values to be calculated 

from velocity centerline and half-point values.

 Axial momentum transport 
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Gas Jets in a Bubbling Bed



Bubbling Bed Vertical Jet Velocity Profiles
 Jet gas and bed particle velocities obtained simultaneously

 838μm HDPE particles
 Fluidization: Vfl = 33.4 cm/s (Vfl /Vmf = 1.15)

Gas Velocity Profiles
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Particle Velocity Profiles
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Transverse Velocity Profile Self-Similarity

 The gas and particulate phase velocity profiles appear 
self-similar, thus they can be fully characterized by 
 Consistent profile shape: f(x/x1/2)
 Centerline velocity:  vm(y)
 Velocity profile width:  x1/2(y)

Particulate Velocity Profiles
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Gas Velocity Profiles
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Centerline Velocity and Profile Width
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 The presence of bed particles significantly reduces the gas 
phase velocity
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Axial Velocity Profile Velocity Profile Expansion

 Velocity profile width for the gas phase in the bubbling and 
empty bed is very similar
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Volumetric Void Fraction (ε)
 Indirectly determined from a momentum balance using 

the measured velocity profiles
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Mass Flow and Momentum Transfer
 Bed particles are entrained into the jet plume while the 

gas phase mass flow remains nearly constant for this 
fluidization level

Mass flow in jet plume Momentum transfer in jet plume
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 Momentum is rapidly transferred from the jet gas to the 
entrained particles



Coefficient of Drag
 LDV measures Eularian (field variable) not 

Lagrangian (particle tracking) velocity

 Decreasing particulate phase axial velocity 
due to particles entrained from rest
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Particle Reynolds Number Profiles
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Coefficient of Drag for a Sphere

30

Rep = 1,000

CD = 0.4



31

 Fluidization level varied from spouted bed to 50% beyond minimum 
fluidization

 838 μm HDPE micropellets
 Vj = 92 m/s

Effect of Fluidization on Jet Dynamics

Vfl/Vmf = 0 Vfl/Vmf = 1 Vfl/Vmf = 1.5
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Effect of Fluidization on Velocity Profiles
 Increasing the fluidization velocity decreases the maximum 

centerline velocity and widens the velocity profiles for both phases 
Gas Phase Particulate Phase
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Effect of Fluidization on Void Fraction
 Void fraction in the jet plume increases with emulsion fluidization 
 This effect is not mentioned in the literature

P.E. Roach. “The penetration of jets into fluidized beds,” Fluid. Dyna. Res. 
(11): 197-216, 1993.

Void Fraction
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Effect of Fluidization on Momentum Transport
 As the fluidization rate increases, the gas phase momentum 

increases due to increased interstitial gas entrainment
 Particulate phase momentum decreases with increasing fluidization
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Effect of Fluidization on Mass Transport
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Gas Phase Mass Flow

 As the fluidization rate increases, the gas phase mass flow increases
 Below minimum fluidization, jet gas diffuses into the emulsion to locally fluidize 

the particles
 Above minimum fluidization, interstitial gas and bubbles in the emulsion are 

entrained into the jet plume
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 Particulate phase mass flow in the plume decreases with 
increasing fluidization due to competition with the interstitial gas 
entrainment

Effect of Fluidization on Mass Transport

Particulate Phase Mass Flow
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 Turbulence statistics profiles in the jet plume
 Enhancement or suppression of turbulence by entrained bed particles 
 Only ‘initially loaded’ particle laden free jets reported in the literature

 Direct measurements of volume fraction profiles in the jet 
plume
 X-ray densitometry
 Imaging

Future Work

M.A. Mergheni, J.C. Sautet, G. Godard, H. Ben Ticha, S. Ben Nasrallah. 
“Experimental investigation of turbulence modulation in particle-laden coaxial jets by 
Phase Doppler Anemometry.” Exp. Therm Fluid Sci. 33 (3), 517-526 (2009)
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LDV Bursts
 Large particles span several fringes so that the intensity of the beam 

fluctuation is greater than the intensity of the Doppler burst 
 Traditional tracer particles are small (dp~ δf) so that the fringe 

visibility is not greatly affected by laser intensity fluctuations 
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