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Principal Approaches for the Study of  
Particulate Flows

• Continuum model (two-fluid model)
– Both the fluid phase and solid phase are treated as continuous media

– Need empirical inputs: εs, β some of which cannot be measured directly;
– Not very accurate at present, accuracy depends greatly on empirical inputs.

• Discrete particle model (one-way coupling)
– The solid particles are treated as point particles; hydrodynamic drag force is 

given by closure equations.
– The fluid phase is treated as continuous phase; the effect of solid particles to 

the fluid phase is modeled.
• Direct Numerical Simulation (DNS) 

– The Navier-Stokes equation for the fluid phase and the equations of motion 
for the solid particles are solved simultaneously.

– Two-way coupling. 
– Exact method.
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DNS Methods for Particulate Flow

• Stokesian Dynamics (Brady & Bossis, 1980s)
– Valid for Stokes flow (Re<<1), spherical particles

• Finite Element Method (Dan Joseph’s group,  1990s)
– High Reynolds number, high accuracy, need mesh-adaptive, very 

expensive, two dimensional simulations.

• Fictitious Domain Method (Glowinski et al, 1998)
– Low to medium Reynolds number, complicated to implement, 

computationally intensive.

• Lattice Boltzmann Method (Ladd, 1994 and after)
– Low Reynolds number, high efficiency and fast, suitable for parallel 

computing

• Proteus Method (Feng and Michaelides, 2005)
– Low to medium Reynolds number, easy to implement, improved 

accuracy compared to LBM.
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Inclusion of Heat Transfer - Objectives

• Extend the DNS method to take into account 
the energy transfer to/from particles.

• Apply the Immersed Boundary Method (IBM) 
and the Direct Forcing (DF) scheme to 
momentum as well as the energy transfer 
problems.

• This is accomplished by substituting the 
surface of the particle with a series of forces 
and heat sources/sinks.
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Conceptual Model and Governing 
Equations
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Immersed Boundary Method

DOE 5/4/10

fuuuu
+∇−∇=






 ∇•+
∂
∂ p

t
2µρ

0=•∇ u

( ) ( ) ( )( )∫Γ −= ssXxsFxf dttt ,,, δ

( ) ( )( )∫
Ω

−=
∂
∂ xsXxxuX dtt

t
,, δ

Fluid

Fiber

Lattice site

Fiber 
point

Fluid + Solid / Fiber Fluid  with force distribution



Assumptions

• Boussinesq approximation on the effect of 
temperature on fluid properties.

• Particles have uniform temperature (Bi=0) that 
is, particles are very small or their conductivity 
is much higher than that of the fluid.

• No-slip at the particle surface.
• Equal temperatures (Tf=Ts) at the particle 

surface.
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Momentum-side equations for the domain 
of particles
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Heat transfer-side equations for the 
domain of particles

In analogy with the momentum 
forcing: λρρ ++∇=∇•+
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Model validation/verification
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Comparison with falling particle data by ten Cate et al. (2002)



The Drafting-Kissing-Tumbling motion of 
two light particles – A

Physical parameters:

• Domain size: Ω = [-1,1]X[0,6]; 
• particle radius: r = 0.125; 

• initial position of the two particles: xp1=[0, 5.2], and 
xp2=[0.001, 4.8]; 

• Particle/fluid density ratio: ρr=1.01. 

• Fluid viscosity: ν=0.001.  
• The grid is 200x600, and the dimensionless time step 
δt=0.005. 
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The Drafting-Kissing-Tumbling motion of 
two light particles – B
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Case A: Θp=Θf=0; Gr=0;
Case B: ambient fluid Θf = 0;
Θp = -1; Gr=1000;
Case C: ambient fluid Θf = 0; 
Θp = 1; Gr=1000.
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The Drafting-Kissing-Tumbling motion of 
two light particles – C 
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Sedimentation of 56 “hot” particles – A 

t=3 t=9t=6
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Sedimentation of 56 “hot” particles – B 
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Use of the DNS model to determine 
the behavior of the particulate 

phase(s) near walls
• Use a physically meaningful wall-particle 

interaction model.

• Observe the behavior of a statistically large 
number of particles in the wall region.

• Determine the average behavior of the particles.

• Deduce the appropriate “boundary condition.”
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Collision Model with the Wall – reflection 
method (Glowinski et al. (2001)

When the gap between a particle and the wall is less than a given threshold,
ζ, a repulsive force is applied to the particle, which is added to a total force
the particle experiences.
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where cij is the force scale factor, εw is the stiffness parameter of the collision,
Ri is the radius of the particle, ζ is the threshold or the “safe zone, and xi,j is
the position of the fictitious particle Pi,j, which is located symmetrically on the
other side of the wall.



Near-wall particle trajectories – 264 
particles of d=0.6 cm 
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Vertical Velocities at the Wall
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The effect of the parameter cij
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The effect of the parameter cij – all 
averaged results for d=0.4 and 0.6 cm

DOE 5/4/10

y = -5.2967E-10x - 3.8253E-01

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 5,000,000 10,000,000 15,000,000

v a
av

er
ag

e,
 d

im
en

sio
nl

es
s

cij

y = 1.34727E-09x - 4.09610E-01

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 5,000,000 10,000,000 15,000,000

v a
av

e
ra

ge
, 

d
im

e
n

si
o

n
le

ss

cij



Single-sphere collision with walls – the 
soft sphere collision scheme
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Spring-dashpot model with 
normal and tangential forces

The relative tangential velocity 
component at the contact point may 
be computed as follows

With friction at contact, the tangential contact 
force becomes:



Results of the soft-sphere collision 
scheme – A 
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θ=45o, η=50 dyn.s/cm
r≈0.65



Results of the soft-sphere collision 
scheme – B
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θ=45o, k=1,000,000 dyn/cm
0.54<r<0.76



Summary – Conclusions
• A DNS with a forcing scheme, used to ensure rigid body motion, 

has been developed for the motion of the particles. In analogy 
with the momentum forcing scheme, a heat transfer forcing 
scheme was developed for the determination of the temperature 
field in the fluid.

• The collision parameters affect significantly the behavior of 
particles close to the wall. Having an accurate collision model is 
paramount for accuracy. 

• Particle interactions close to the wall influence the trajectories, 
the wall collisions and, hence, the boundary conditions at the 
wall.

• There is significant evidence that particles “slip” near a vertical 
wall with a velocity close to 0.4 of their terminal velocity.

• The single-particle collision model with viscous fluids may  be 
used more extensively to analyzed better single-particle collisions 
with a wall.
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