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Background
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• >50% of US electricity involves coal 
combustion

• Advanced steam conditions can reduce 
emissions by 30-33%

– 130 tonnes CO2/h from a current US 
coal-fired 800 MWe supercritical plant 

– 396,922,158 tonnes CO2/year from all 
US power plants (2007 data)
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Advanced Steam Cycles

• USC targets:
• Europe: 700°C/375 bar
• US: 760°C/345 bar

• New alloys needed
• No reliable design data
• Potential failure modes unknown
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Partners and Roles

US Inputs UK Inputs

ORNL
• Compilation of kinetic data
• Atmospheric P & HP testing
• Morphological evolution in 

support of spallation modeling

NETL
• Atmospheric P & HP testing
• Spallation modeling

NPL
• Collation of published data
• Atmospheric P & HP testing
• Oxidation modelling

Doosan-Babcock
• Advice on materials/conditions
• Ex-service materials/data

Cranfield
• Atmospheric P & HP testing
• Spallation evaluation & 

modelling

Alstom
• Advice on materials/conditions

Oxidation Database

Published Data

Inputs for modeling:
• metal loss
• scale spallation

+
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Objectives

• Establish current ‘state-of-knowledge’ of steam oxidation of alloys relevant to 
fossil-fueled advanced steam power plant

• Collate and analyse existing information to identify missing critical data

• Generate critical kinetic data as required

• Compile mechanistic descriptions of scale exfoliation behaviour for specific alloy 
classes

• Develop models for component lifetime prediction, especially scale exfoliation 
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State of knowledge

• Large body of data, but little in the way of coherent picture even for a single alloy 
class

• Steam oxidation is complex: need to define key factors and understand their 
influences

− thick scales; interaction among oxide growth and stress-strain development
− difficult to reproduce service conditions

• Influence of factors not usually considered in oxidation studies
− thermal gradients
− thermal conductivity
− physical constraints

• Potentially large differences among research groups
− little prior attention given to differences among test techniques

• For key alloys, subtle differences in composition can exert large influence
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Goal: data compilation: T92
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New oxidation data

ENVIRONMENTS
• Steam

– 1 bar, 650-800ºC
– 17 bar, 100 bar, 600-800ºC
– 40 bar, flowing steam

• Ar-water vapor
– 1 bar, 650-800ºC 

• Air-water vapor
– 1 bar, 650-800ºC
– isothermal & cyclic

ALLOYS
•Ferritic steels
− 9-12Cr ferritic-martensitics
− developmental 9-12 Cr

•Austenitic steels
− 18Cr-12Ni (‘advanced’: TP347-based)
− higher-Cr steels

•Ni-based alloys
− conventional (solid soln-strengthened)
− advanced (pptation-strengthened)

Over 1 million hours of steam oxidation data have been generated, 
covering 30 alloys and a range of temperatures
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Range of test procedures
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Comparison of test methods
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Inter-lab comparisons



‘9-Cr’ ferritic steels 

− New data self-consistent
− Slower rates, different activation energy to 

literature data

Oxide

T91, 4kh at 650°C, 17 bar steam
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Austenitic steels

347HFG, 600ºC+, 
11kh (reheater service)

347HFG, 650ºC, 4kh (Lab)

•Distinction between 18Cr-12Ni and higher alloys
•On 18Cr-12Ni lab vs plant comparison: 

− outer layer is Fe3O4 in lab test, Fe2O3 in plant

Fe3O4

Fe-Cr spinel      
(Fe,Ni)1.5Cr1.5O4, ≈20 at% Cr)

Fe-Cr spinel      
(Fe,Ni,Mn)0.9Cr1.8O4, ≈27 at% Cr)

‘Cr2O3’

Fe2O3

Fe3O4

Fe-Cr 
spinel
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Ni-based alloys

Nimonic 80A Nimonic 263Nimonic 90

•Increased mass gain wrt PMCr
indicative of increasing extent of 
internal oxidation

•Similar mass-gain kinetics, 
different corrosion morphologies

•Need thickness measurements
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1/2Cr2O3(s) + H2O(g) + 3/4O2(g) = CrO2(OH)2(g)
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USC steam turbine issues 

• Difficult to duplicate USC steam turbine conditions in the laboratory
• Air-water vapor mixtures provides evaporation effects
• NETL developed a model to relate rate of Cr loss to lifetimes of Cr-forming alloys
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• Air-wv as a substitute for high-pressure steam? 
• Need to better understand differences

UK-US Collaboration on Fossil Energy R&D - Advanced Materials



Modeling of scale spallation

• Many contributing factors need thorough evaluation:
– oxide growth in a thermal gradient
– oxide growth during thermal cycling
– strain development during oxide grown on the inside of a tube
– strain resulting from differences in CTE between oxide and alloy
– contribution to strain development from oxide growth
– effect of creep (alloy and oxide) on stress relaxation
– strain distribution in multi-layered scales
– criteria for scale failure (exfoliation?)
– external parameters determined by the boiler operation

• Importance of reliable oxidation kinetics
• Evolution of scale morphologies key to stress-strain accommodation & scale failure
• NPL and ORNL are developing models using these inputs

UK-US Collaboration on Fossil Energy R&D - Advanced Materials



Future activities

• Develop a unified test method with a view to future standardization 

• Better understanding of:
factors causing uncertainty in metal loss and oxide thickness data from lab. exposures

effect of steam pressure on oxidation kinetics and scale morphology

• Measure oxidation kinetics of alloy T91 for compositions within the full 
specification range

− provide a measure of the scatter likely from different alloy melts

• Understand the effects of specimen geometry and heat flux

• Further develop and validate models for:
− oxidation kinetics when accompanied by chromia evaporation
− scale exfoliation

UK-US Collaboration on Fossil Energy R&D - Advanced Materials



Acknowledgements

The research effort in the UK was sponsored by the Department of Energy & 
Climate Change, with contributions from Doosan-Babcock Energy and Alstom 
Power.  Support for research in the US was by the U.S. Department of Energy, 
Office of Fossil Energy.

The authors are grateful to the program managers at both agencies, and to the 
individual companies for their continued support.

UK-US Collaboration on Fossil Energy R&D - Advanced Materials



Mechanistic input: 9Cr

40kh boiler service 
(reheater) 

Measurement of Cr concentration profile--basis for understanding


	Clean Coal Technology Advanced Materials Program��Overview of Steam Oxidation Task��Participants�UK�National Physical Labor
	Background
	Advanced Steam Cycles
	Objectives
	State of knowledge
	Goal: data compilation: T92
	New oxidation data
	Range of test procedures
	Comparison of test methods
	‘9-Cr’ ferritic steels 
	Austenitic steels
	Ni-based alloys
	USC steam turbine issues 
	Modeling of scale spallation
	Future activities
	Acknowledgements
	Mechanistic input: 9Cr

