Physics-based Modeling for Advancing Carbon Capture Technology Development

Madhava Syamlal
Focus Area Leader, Computational and Basic Sciences

Anthony V. Cugini
Director, Office of Research & Development
Motivation – 1

- The lag time between discovery and commercial deployment of technologies for energy conversion is of the order of 2-3 decades.
- Although commercial technologies are available, post-combustion capture poses several challenges:
 - Factor of 5 increased CO$_2$ capture capability
 - Significantly reduced cost of capture
 - Accelerated deployment
- Need new approaches to take concepts from lab to power plant, quickly at low cost
Motivation – 2

• Here we discuss the use of physics-based modeling for accelerating technology development
 – Computational screening to enable rapid identification of better materials (sorbents, membranes, catalysts)
 – Improving designs to achieve optimal device- and plant-scale performance
 – Having designs perform correctly the first time at every scale, reducing or eliminating the cost and time for adjustments or modifications
 – Skipping costly intermediate-scale steps on the pathway to commercialization
Examples of Modeling at Various Scales

- **Materials**: Atoms/molecules
- **Particles**: Molecular clusters
- **Devices**: CO₂ sorbent reactors, Transport desulfurizer, MFIX Eulerian-Lagrangian model
- **Plants**: Powerplant water simulator, IGCC dynamic simulator

Time
- fs, ps, ns, µs, ms, s, ks, Ms, Gs

Space
- Mm, km, m, mm, µm, nm
Computational Screening CO₂ Sorbents

Screening Methodology

1. Pre-select
 - \(|\Delta E_{\text{DFT}}| < |E_0| \)
 - \(|\Delta \mu| \leq \frac{|\Delta E_{\text{DFT}}|}{RT} \)

2. ab initio energetic calculations
 - Lattice phonon calculations to obtain chemical potential of the reaction.

3. Good Candidates
 - Surface reaction kinetics
 - Particle-scale reaction kinetics
 - Device- and process-scale modeling

4. Better Candidates

5. Fine Tune

6. Best Candidates
 - Very few good candidates left

Filter 0
- Solids Bank

Filter 1
- \(\Delta \mu(T,P) = \Delta \mu^0(T) - RT \left(\ln P_{\text{CO}_2} + \ln P_{\text{H}_2\text{O}} \right) \)

Filter 2
- \(\Delta \mu(T,P) = \Delta \mu^0(T) - RT \left(\ln P_{\text{CO}_2} + \ln P_{\text{H}_2\text{O}} \right) \)

Filter 3
- \(\Delta \mu(T,P) = \Delta \mu^0(T) - RT \left(\ln P_{\text{CO}_2} + \ln P_{\text{H}_2\text{O}} \right) \)

Thermodynamics

Heat of Reaction

HSC exp. data in green

Design Ionic Liquids with Molecular Simulations

Ab initio QM
- Energy, structure
- Charge, force field
- Interaction mechanisms

Classical force-field

Monte Carlo
- Thermo dynamic Properties

Molecular Dynamics
- Transport Properties

- Search for better ILs
- Modify IL functionality
- Discover new IL

A new ionic liquid that exhibits high CO₂ permeability and CO₂/H₂ selectivity was identified with this method.
Changing Design Paradigm: Scaling-up a Transport Gasifier

Computational Studies
- Length/Diameter
- Coal feed rate
- Solids circulation rate
- Recycled syngas
- Coal jet penetration

Comparison of Pilot and Commercial-scale

<table>
<thead>
<tr>
<th></th>
<th>Pilot</th>
<th>Comm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Feed (kg/s)</td>
<td>0.6</td>
<td>30</td>
</tr>
<tr>
<td>Pressure (atm)</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td>Power (MW)</td>
<td>13 (th)</td>
<td>285 (e)</td>
</tr>
</tbody>
</table>

285 MWe Commercial-scale
Gasifier Model: Leverages NETL Expertise in Multiphase Flow Modeling

- **Confluence of two areas of research pioneered by NETL-ORD since early 1990’s**
 - Physics-based gas-solids flow Modeling
 - MFIX (Multiphase Flow with Interphase Exchanges)
 - Open source software http://mfix.netl.doe.gov
 - 2007 R&D 100 Award
 - Carbonaceous Chemistry for Computational Modeling (C₃M)
 - Detailed model for coal devolatilization, gasification and combustion reactions
 - Fuel flexibility (coal, biomass, and co-fired)
 - Patent application filed
 - 2008 FLC Tech Transfer Award
- **Extensive validation with data from Power Systems Development Facility (PSDF)**
 - Validation effort started in 2001
 - Bituminous, sub-bituminous and lignite coals under both air and oxygen blown conditions
Model Validation with Pilot-scale Data

Comparison of predictions with pilot-scale data

Predicted oxygen breakthrough was later experimentally confirmed

Solids vol. fraction iso-surfaces colored by carbon mass fraction

Commercial Scale TRIG (Transport Integrated Gasification)

- **Parametric studies requested by KBR for the commercial scale TRIG**
 - Effect of recycled syngas
 - Coal jet penetration (focus of an ongoing INCITE project)

- **Parametric studies requested by Southern Co. for the commercial scale TRIG**
 - Influence on gasifier diameter
 - L/D ratios 27, 23, 21, 20
 - Influence on solids circulation rate
 - Influence on coal feed rate
Predicted Commercial-Scale Syngas Composition

Mole fraction values removed
New Insight from Commercial Scale Gasifier Simulations

- Considerably higher peak temperature for certain cases!
- Led to further experimental investigation

Gas temperature values removed
Reducing Cost and Time of Development

<table>
<thead>
<tr>
<th>Pilot-scale modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Time (wk)</td>
</tr>
<tr>
<td>Cost ($K)</td>
</tr>
</tbody>
</table>

- Discover designs unreachable by traditional methods
 - e.g., improving coal jet design → eliminate high T regions → reduce operational problems → increase availability → reduce start up time by 3-10 years, saving $230-767 M?

- Get the design right the first time at every scale
 - Avoiding rework could save months of downtime and the cost of rework ($63 M rough estimate based on “six-tenths rule”)?

- Skip building and testing at multiple intermediate scales
 - Tens of millions of dollars and 3-5 years at every scale avoided

- Learn from operations → Model as a knowledge repository
Changing Design Paradigm: Design of Pilot-scale Hydrogasifier

- **CFD model developed for the design of Arizona Public Service’s Hydrogasifier**
 - Model based on C$_3$M, MFIX and Ansys/FLUENT
 - 17 simulations conducted based on different parameters: shooting angle, swirl, coal and H$_2$ feed rates, and nozzle ID
 - Statistical analysis of CFD results using solids flux and temperature as response variables

- **Final design parameters selected based on CFD analysis**
 - Large H$_2$ nozzle ID
 - 45° downward nozzle orientation
 - 30° degree swirl
Changing Design Paradigm: Scaling up RTI/Eastman Warm Gas Clean-up Process

- Transport Desulfurizer Model being validated with data from the 0.3 MWe Eastman Unit
- Validated model will be used for scaling up to 50 MWe

0.3 MWe Unit at Eastman Chemical

Syngas + Air + SO₂ → ZnS(s) + ZnO(s)

50 MWe Unit scheduled for commissioning in 1Q FY 2012 at Tampa Electric, Polk Power station
Changing Design Paradigm: Evaluating Conceptual Designs

- **Absorption Riser**
 - Fast Fluidized Bed
 - $T \approx 330-360 \text{ K}$
 - $\text{K}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O} \rightarrow 2\text{KHCO}_3 + \text{heat}$

- **Regeneration Bubbling Bed**
 - $T \approx 390-490 \text{ K}$
 - $2\text{KHCO}_3 + \text{heat} \rightarrow \text{K}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O}$

- **Pressure drop**
 - DP1: 114 mm H$_2$O
 - DP2: 423 mm H$_2$O
 - DP3: 413 mm H$_2$O
 - DP4: 370 mm H$_2$O

- **Absorption**
 - Risers
 - $T \approx 330-360 \text{ K}$

- **Regeneration**
 - Bubbling Bed
 - $T \approx 390-490 \text{ K}$

- Predicted 60-80% removal rate of CO$_2$ comparable to data

- Yi et al. (2007)

- CO$_2$ capture reactor model being validated with lab-scale data from Korea Institute of Energy Research (KIER)

- Simulation Results
Changing Design Paradigm: Evaluating Conceptual Designs

Absorption
Riser

Absorption
Fast Fluidized Bed
$T \approx 330-360 \text{ K}$
$\text{K}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O} \rightarrow 2\text{KHCO}_3 + \text{heat}$

Regeneration
Bubbling Bed
$T \approx 390-490 \text{ K}$
$2\text{KHCO}_3 + \text{heat} \rightarrow \text{K}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O}$

$\text{H}_2\text{O}/\text{N}_2$

$\text{N}_2/\text{H}_2\text{O}/\text{CO}_2$

Yi et al. (2007)

- The animations show void fraction and CO$_2$ mass fraction distribution in the absorber
Changing Design Paradigm: Evaluating Conceptual Designs

- Evaluate conceptual designs of NETL design for absorber heat management (patent pending)
 - Optimal sorbent and inert particle sizes and densities
 - Reactor configurations
- Validate the model with data from NETL-KIER Experiments
 - Test NETL sorbent (patented) in KIER Reactor
 - Calibrate the reaction kinetics in CFD model for NETL Sorbent
APECS: Optimize operating strategy
Power & Hydrogen Production with CO₂ Capture

• Process Simulation
 – Aspen Plus® steady-state
 – All major plant sections
 – Over 250 unit ops

• CFD Simulations
 – Entrained-Flow Gasifier
 • FLUENT® 3D/ROM
 • Accurate calculation of synthesis gas composition
 • Embedded in syngas recycle loop
 • Optimized flow of coal slurry and syngas recycle to 2nd stage

• Gas Turbine Combustor
 • FLUENT® 3D/ROM with partially pre-mixed combustion
 • Accurate calculation of GT inlet temperature
 • Embedded in design spec loop to determine power/H₂ production
 • Optimized cooling strategy to minimize NOₓ
APECS: Optimize Geometric Design

Entrained-Flow Gasifier Design

- Geometry parameterization within process simulation via CAPE-OPEN parameters
- Automated regeneration of CFD geometry/mesh
 - GAMBIT => FLUENT® => Aspen Plus®
- Case study: Gasifier design optimization
 - Geometry and inlet cross-sections scale with coal throughput in order to preserve cross-sectional velocities and residence times
 - Vary oxygen flow rate to maximize cold gas efficiency (CGE) for a given coal throughput

Source: ALSTOM Power (2009)
APECS Application Projects at ALSTOM Power

Oxy-Combustion
- 18 MW\textsubscript{th} Boiler Simulation Facility (BSF)
- BSF island (gas side only) with flue gas recycle (FGR)
- FLUENT® 3D CFD boiler with pollutant species (NO\textsubscript{x}, SO\textsubscript{x}) exposed to Aspen Plus® via CAPE-OPEN parameters
- Characterize impact of various FGR and cleanup scenarios on pollutant emissions for candidate BSF configurations

IGCC with CO\textsubscript{2} Capture
- 556 MW\textsubscript{e} IGCC simulated in Aspen Plus®
- FLUENT® CFD models
 - Single-stage, downward-fired, coal-fed, entrained-flow gasifier
 - Radiant syngas cooler (RSC)
- Transfer multi-dimensional boundary conditions
- Analyze integration of gasifier and RSC
- Optimize heat integration with overall plant

Chemical Looping Combustion
- APECS co-simulation of 65 kW\textsubscript{th} pilot-scale facility
- FLUENT® 3D CFD/ROMs for solid fuel and air reactors
- Dense, multiphase flow using E-E solution
Optimal Design of Pressure Swing Adsorption (PSA) Cycles for Pre- and Post-Combustion CO$_2$ Capture

- Systematic methodology to develop, evaluate, and optimize PSA cycles for high purity pre- and post-combustion CO$_2$ capture
 - Maximize CO$_2$ recovery for a given purity
 - Maximize feed throughput
 - Minimize power requirement for a given level of CO$_2$ purity and recovery
- Optimal sequence of operating steps is achieved through the formulation of an optimal control problem
 - Partial differential algebraic equation (PDAE)-based model of the PSA system and the cyclic steady state condition
- Approach is very promising and useful for evaluating the suitability of different adsorbents, feedstocks, and operating strategies for PSA, and assessing its usefulness for CO$_2$ capture

Plant-wide IGCC Dynamic Simulation

Operability and Control Analysis

- Dynamic simulation and control of plant-wide IGCC with CO₂ capture
- Detailed dynamic models
 - Elevated-pressure air separation unit (ASU)
 - Entrained-flow gasifier
 - Claus plant
 - Dual-stage Selexol for H₂S and CO₂ removal
 - Combined cycle
- Aspen Dynamics® pressure-driven simulation with more than 250 unit operations
- Performing operability studies and analyzing control strategies

Response to a 5% ramp increase in coal feed flow rate

NETL’s IGCC Dynamic Simulator
Research and Training Center

• **Plant-wide IGCC dynamic simulator**
 – Generic IGCC plant with CO$_2$ capture
 – Full-scope operator training simulator (OTS)
 • IGCC plant start-up, shutdown, normal and faulted operations as well as safety and risk analysis
 • Full DCS emulation and control strategy analysis
 • Instructor capabilities, scenarios, trending, etc.
 – Immersive training system (ITS)
 • Real-time, 3D, immersive, interactive virtual environment for training plant engineers and outside field operators

• **NETL Collaboration Partners**
 – Universities: WVU, CMU, Pitt
 – Software: Invensys Process Systems
 – Core Consultants: FCS, Enginomix, EPRI
 – CoalFleet: AEP, BP, Doosan, GRE, Southern
 – External Consultants: Gasification Solutions, Energy Resources Consultancy, Gas Processing Solutions, TECO-Polk, Robertson-Bryan, Inc.

• **Deployment Status**
 – OTS deployment in 3-4QFY10
 – ITS deployment in 1QFY11

How can we increase the fidelity of models?

- Fidelity of models at each scale depends upon submodels representing physical phenomena at a lower scale; for example,
 - Force fields in MD simulations of ionic liquids
 - Gas-solids drag or solids stress in CFD models
 - Equilibrium Reactor in process models
- They are: assumptions, derived from experiments at a lower-scale, based on analytic models of the lower-scale phenomena, or formulas adjusted to fit experimental data at the current-scale
- The appropriate level for demonstration is at the scale when empirical information in the models may require recalibration
- Recalibration at intermediate scales can be avoided by making the models more and more physics-based, which is the idea behind multi-scale modeling
CO$_2$ Capture Simulator?

Linking models at various scales using reduced order models (ROM) and deriving lower-scale specifications through an inverse optimization formulation.

Computational screening of capture materials:
- ionic liquids
- solid sorbents

APECS simulation of poly-generation plant with carbon capture includes CFD models of turbine combustor and gasifier.

MFIX Gas-solids device simulation on 1000's of processors provided by a SCIDAC grant.
The Research Challenge

Time and Length Scales cover over 15 orders of magnitude

- Reflect behavior from atomistic levels to process units and networks

Strongly coupled

- Components at smaller scales provide building blocks for scales above
- Demands at larger scales impose specifications below
Proposed Integration Approach

- Detailed, Precise and Computationally Expensive Models at All Levels
- Construction of Reduced Order Models (ROMs) allow model interaction
- ROMs must be validated and verified over application domain
- ROM Approximation Errors must be bounded and quantified
- Integration among ROMs effected through a large-scale optimization framework
Reduced Order Models

Levels of ROMs

– *Process Level* - Analytic models are derived from simplified, limiting behaviors of transport, reaction and equilibrium phenomena and conservation laws, e.g., macroscopic models for rate laws, vapor liquid equilibrium and thermodynamic properties.

– *Device level*, proper orthogonal decomposition (POD), variable resolutions models on meshes with varying degrees of refinement, variable-fidelity physics models (e.g. inviscid, irrotational, incompressible flow).

– *Atomistic and molecular levels*, infer thermodynamic and kinetic properties and constants and regress to physics-based ROMs.

– General regression-based model are derived that apply data-driven regression approaches (e.g., PCA, compressed sensing, neural nets, wavelets).

Open questions and research challenges:

– Efficient, systematic ROM development at all length and time scales

– Verification and validation of ROMs both with limits on performance and bounded uncertainties (e.g., statistically derived confidence regions)

– Development of large-scale optimization formulations that incorporate the limitations of the ROM and the uncertainty description
Quantifying Uncertainty

Formal methodology for producing upper and lower error bounds on simulations with quantified uncertainty based on experimental observations.

- Integrate computational and experimental data to quantify predictivity of reduced order model
- Quantify uncertainty in model parameters, boundary conditions, numerical uncertainty and experimental uncertainty.
- Assess sensitivities of the output function to the input uncertainties.
- Using candidate approximate models, develop quantified uncertainty in resulting output function ($u_{\text{lower}} < E < u_{\text{upper}}$).
- Provide level of confidence in decision implementation and optimization.

(From Phil Smith, U. of Utah)
Optimization

Enabling “glue” for integration of multi-scale modeling and decision-making

- Link ROMs and their uncertainty bounds to high-level models
- Decomposition levels and over-approximation strategies
- Trust region-based strategies for ROM adaptation
- Very efficient large-scale open optimization environments and algorithms
- Continuous optimization (local) – millions of variables, thousands of degrees of freedom, linear complexity
- Mixed integer optimization – both discrete and continuous optimization with thousands of variables
- Global optimization – guaranteed global solutions in logistics, bio-informatics, large-scale planning

Multi-scale optimization <=> Optimization under uncertainty:

- Deterministic models and ROMs with two uncertainty types: randomness and limited knowledge
- Leads to optimal solutions that
 - Incorporate all multi-scale information
 - Robust to ROM uncertainty bounds
 - Adapt ROMs to changing input conditions
CO₂ capture simulator requirements

- Reverse the flow of information to reason backwards from process requirements to generate specs at lower scales (?)

- Bed type: moving, fluidized, transport
 - absorber/regenerator geometry
 - Inlet/outlet

- Retrofit flowsheet
- Capture system flowsheet
- Operating conditions

- >90% capture at <35% COE increase
- Global resource/environmental constraints
This cartoon appeared in a 1965 article by Gordon Moore, co-founder of Intel, which contained the observation now well known as Moore’s Law.
For Additional Information

Office of Fossil Energy
www.fe.doe.gov

NETL
www.netl.doe.gov