
Energy Systems and Supply 
in a Carbon Constrained World

Geo A. Richards, Ph.D
Focus Area Leader

Energy System Dynamics

U.S. Department of Energy
National Energy Technology Laboratory

University Coal Research Contractor Review Meeting
Historically Black Colleges and Universities and Other Minority Institutions Contractor Review Meeting

Pittsburgh,  PA June 10, 2008

Special thank to colleagues at NETL who provided
background slides on energy supply figures:

Scott Klara
Carl Bauer

Anthony Cugini
Ken Kerns
Mike Reed



Descriptor - include initials, /org#/date

Carbon Dioxide Management & Energy Supply:
a Commercial Issue

A short chronology of articles from the Wall Street Journal
Deep in the Sahara BP tries to Put Dent in Global Warming*  Feb. 4, 2005 pp. A1
For German Firms, New Emissions Caps Roil Landscape Sept 11, 2006 pp. A1
Businesses Rethink Carbon Caps         March 3, 2007 pp. A7
U. S. Military Launches Alternative Fuel Push May 21, 2008 pp. A1
Energy Watchdog Warns of Oil-Production Crunch May 22, 2008 pp. A1

(*Subtitle: Too much Carbon for Perrier)
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U.S. data from EIA, Annual Energy Outlook 2007, years 2006 and 2030; world data from IEA, World Energy Outlook 2007, years 2005 and 2030
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Coal data: BP Statistical Review, June 2004;
Oil & gas data: EIA, Advance Summary U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 2003 Annual Report, September 22, 2004
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• Provides over half   
Nation’s electricity

• Abundant domestic 
reserves (~250 years)

(…..And, likely more to be found)

• Low, relatively stable 
prices

• But, what about CO
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Must Aim for 
Balanced Solutions

Energy Strategy Complexity

Need to Consider All
Major Consequences 
of Energy Strategy
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Our Workforce and Skills Challenge

A Two-Decade Gap 

Your students are a vital national resource!
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The problem in a nutshell

• Energy supply and demand 
matter!

• Renewables will help, but we 
need a mix to meet demand.

• Coal is big…but what about CO2?
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Technological Carbon Management Options

Improve
Efficiency

Sequester
Carbon

• Renewables
• Nuclear
• Fuel Switching

• Demand Side
• Supply Side

• Capture & Store
• Enhance Natural 

Sinks

Reduce Carbon
Intensity

All options needed to:
• Affordably meet energy 

demand
• Address environmental       

objectives
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Sequestration Enables Stabilization
CO2 Capture/storage plays a big role
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A Significant Undertaking !!!!

DOE/FE/NETL Analysis 2004



Descriptor - include initials, /org#/date

Unmineable
Coal Beds

Deep Saline
Formation

Depleted Oil
& Gas Reserves

Ocean

Carbon Dioxide Sequestration

Sources:  Derived From NETL & IEA Illustrations

Terrestrial Sinks

Ocean Sequestration

Enhanced
Oil 

Recovery

CO2 Capture &
Sequestration

Geologic Sequestration
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Source: Battelle, “A CO2 Storage Supply Curve for North America”, September 2004, PNWD-3471 

North America Geologic Storage Capacity
(> 600 Year Storage Capacity for U.S. & Canada)

Depleted
Oil Fields
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Carbon Dioxide for Energy Production

− 30+ years experience injecting CO2 into 
marginal oil wells. 

(CO2 source: natural deposit, NG clean-up)

− 34 Million tons CO2 injected in 2000.1
(equivalent CO2 emission of ~ ten 500 MW coal 
plants).

− 3500 miles of CO2 pipeline exist in U.S.2

− Weyburn Project: CO2 from North Dakota 
coal gasification plant for Canadian EOR.3

− How much/how long will the injected CO2
stay underground is a research issue.

1. Final Report, Interstate Oil and Gas Compact Commission, pp. 27 DOE DE-FC26-03NT41994.
2. Ibid., pp. 3
3. Moberg, R., Stewart, D. B., Stachniak, D. (2003).  Greenhouse Gas Control Technologies, Vol. 1, pp. 219 - 224.  Pergamon Press. 

Carbon Dioxide is used for Enhanced Oil Recovery (EOR):
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Commercial CO2 Projects and Sources
in the USA

Source: Advanced Resources International
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Number of CO -EOR Projects
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Proposed CO  Pipeline
Commercial CO -EOR Fields
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Dakota Coal
Gasification

Plant

LaBarge
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McElmo Dome
Sheep Mountain

Bravo Dome

Val Verde
Gas Plants

Jackson
Dome

Enid Fertilizer
Plant

JAF01486.CDR

*

*22% CO2
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Carbon Dioxide for Energy Production (cont.)

− Coal bed methane  is 8% of lower 48 
natural gas production.1

− CO2 is preferentially adsorbed onto 
coal versus methane.

− CO2 injection increases methane 
production versus simple 
depressurization.

− Pilot since 1995 show CO2 to 
methane production ratio of 2.9. 2 

• More methane out than the CO2 in. 
• Breakthrough after four years of injection. 2

− Relevant to unmineable coal.

− How much/how long will the injected 
CO2 stay underground is a research 
issue.
1. Energy Information Agency, Annual Energy Outlook, 2004, DOE/EIA-0383(2004), Fig. 14, pp. 36.
2. Oil and Gas Journal, Vol. 101.9, mar 3, 2003, pp. 43.

Carbon Dioxide may be used for Enhanced Coal Bed Methane (ECBM):

Marshall County, West Virginia
ECBM Project
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CO2 injection into saline formations
Sleipner North Sea Project

• 1 M tons/year CO2
sequestered since 1996.
−CO2 stripped from 

natural gas recovery.
−CO2 injection avoids 

carbon tax.
• Currently monitoring CO2 

migration.

• Similar projects 
elsewhere.
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Deep Saline 
Formations

Deep Coal 
Seams

Enhanced Oil 
Recovery  
Fields

Geologic Sequestration Options

Comment:*
There are 140Mt of 
natural gas stored in 
the US each season, 
using:

•38 saline formations

•depleted oil and gas 
reservoirs

•Other (LNG etc.)

80 years of experience!  

*Final Report, Interstate Oil and Gas Compact Commission, pp. 36 &  48 DOE DE-FC26-03NT41994
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Worldwide CO2 Storage Activity

Project size (total CO2 injection)

Commercial (greater than 1 MMtCO2)

Large pilot (100 ktCO2 to 1 MMtCO2)

Micro-pilot (10 ktCO2 or less)

Pilot (11 ktCO2 to 99 ktCO2)
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Projects that are part of the Regional Carbon Sequestration Partnership Worldwide CO2 Storage Projects

a 4 MMt/yr * 10 yrs  |  b 10,000 t/d * 365 * 10 yrs  |  c 1.2 MMt/yr * 15 yrs  |  d 2,000 t/d * 365 * 10 yrs

Project Name
Injection Start 

Date
Total CO2 Injection 

(tons CO2)
Approximate Depth 

(ft) Project Name
Injection Start 

Date
Total CO2 Injection 

(tons CO2)
Approximate Depth 

(ft)

Carson 2011 40,000,000a TBD Allison Unit 1995 360,000 3,100

Gorgon 2009 >36,000,000b 7,500 Otway Basin 2006 100,000 6,500

Sleipner 1996 20,000,000 2,600-3,300 Ketzin 2006 60,000 2,300

Weyburn 2000 20,000,000 4,800 Minami-Nagaoka 2002 10,000 3,600

Miller Field 2009 18,000,000c 13,000 West Pearl Queen 2002 2,100 TBD

In Salah 2004 17,000,000 5,900 Frio 2004 1,600 4,900

K12B 2004 8,000,000 13,000 Fenn Big Valley 1998 200 4,300

Snohvit 2006 >7,000,000d 8,500 Yubari 2004 200 2,950

Secunda 2010 TBD TBD Qinshui Basin 2003 150 1,650

RECOPOL 2003 10 3,600
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1,000750Illinois BasinMGSC

2,300-5,0001,000Black Warrior BasinSECARB1,0003,000Duperow FormationPCOR

1,0001,000Central AppalachianSECARB2,7003,000Grand Ronde BasaltBig Sky

8,0002,000Kaiparowits BasinWESTCARB10,0007,500Gulf CoastSECARB

4,0002,000Central Valley CAWESTCARB8,0007,500Gulf CoastSECARB

5,0002,000Central Valley CAWESTCARB2,500-4,00010,000Appalachian BasinMRCSP

6,0002,000Paradox BasinSRCSP4,00010,000Michigan BasinMRCSP

2,800-3,1502,500Illinois BasinMGSC8,000-10,00010,000Cincinnati ArchMRCSP

2,800-3,1502,500Illinois BasinMGSC5,000-10,00010,000Illinois BasinMGSC

Up to 3,1502,500Illinois BasinMGSC3,00075,000San Juan BasinSRCSP

1,200-2,8002,500Illinois BasinMGSC4,900250,000Keg River FormationPCOR

7,5003,000Mississippi Salt BasinSECARB5,700300,000Permian BasinSRCSP

>5003,000Williston BasinPCOR5,800525,000Paradox BasinSRCSP

Approximate Depth 
(ft)

Total CO2
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CO2)Geologic ProvincePartnership
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CO2 Storage Very Large But Within the 
Capability of U.S. Geologic Storage Capacity

Stabilization Thru 2100

• Would fill Lake Erie 
twice

This is equal to:
• 5% of the land mass 

of the contiguous 
U.S.

Based on assumed average thickness of appropriate geological formations, CO2 properties…..
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Not just electricity…transportation fuel too!
Carbon cycle for coal +biomass

CH
coal

biomass

CHx CHn

e-

CO2 to sequestration

n=2 for transportation
n=4 for natural gas

O2

CO2

H2O

CO2 H2O

O2 O2

• Biomass + coal +sequestration
− Negative CO2 emissions
− Mixes good economics of coal w/variable feed bio/waste supplies
− Could make transportation fuel from coal (FT liquids)
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Coal/Biomass to Liquids (CBTL)
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Management
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CBTL Overall Carbon Credits and Debits
# Description Switch Grass

Carbon (TPY)
Corn Stover

Carbon (TPY)
1 Total Carbon In 1,024,023 1,029,499
2 Biomass Carbon 73,610 77,060
3 Biomass Production 2,671 2,063
4 Biomass Transport 503 250
5 Coal Prod & Transportation 10,575 10,598
6 Diesel Transportation 517 517
7 Power Credit 8,829 8,829
8 Sequestration 551,299 556,403
9 Total Effective Carbon 405,172 400,635
10 Diesel Effective Carbon 281,594 278,441
11 Overall Efficiency 50.8% (HHV) 50.9% (HHV)

Tables 22&23, http://www.netl.doe.gov/publications/press/2007/070829-NETL-USAF_Release_Feasility_Study.html
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Technology % Change Greenhouse Gas 
Emissions over Petroleum

CTL w/o CCS 80 to 119
GTL Diesel 9
Liquid H2 7
CTL w/ CCS -5 to 4
Methanol -9
LPG -20
Corn Ethanol -22
CBTL w/ CSS (10% Switchgrass) -22
LNG -23
CNG -29
Gaseous H2 -41
Electricity -47
Ethanol (from Sugar) -56
Biodiesel -68
CBTL w/ CSS (28% Switchgrass)* -76
Ethanol (from Cellulose) -91
CBTL w/ CSS (38% Switchgrass or 21% Mixed Prairie 
Grass)*

-100
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Sequestration Summary

• Geological Sequestration is 
already being practiced.

• Some benefit to oil and gas 
production via injected CO2.

• Estimates of potential storage 
capacity exceed the need.

• If you mix coal and biomass, 
you have the potential for 
negative CO2 emission.

• But, what do we need to do to 
capture the CO2?
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Energy Systems to Capture CO2

• Flue gas scrubbing 
from Pulverized Coal 
Plants.

• Fuel gas scrubbing 
from Integrated 
Gasification Combined 
Cycle (IGCC).

• Advanced Concepts:
− Oxy-fuel
− Chemical looping
− SOFC fuel 

cell/turbine hybrids 
w/o anode air mix
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Pulverized Coal Flue Gas CO2 Scrubbing
• Amine scrubbing: already in use 

for gas scrubbing, at smaller 
scale.

• Reversible chemical reaction with 
CO2 releases CO2 with heat 
addition.

 

Boiler

Ash
27,000 lb/h

ESP

Power

Air
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Flue Gas
3,440,000 lb/h

CO2
Comp.

CO2
10,000 ton/day
1,500 Psia

FGD

Steam
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CO2 Capture

ID

CO2
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Low Press. 
Steam

1,215,000 lb/h

Coal
4,000 

ton/day

Boiler
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27,000 lb/h

ESP

Power

Air

Limestone

Flue Gas
3,440,000 lb/h

CO2
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CO2
10,000 ton/day
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FGD

Steam

MEA
CO2 Capture

ID

CO2
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Low Press. 
Steam

1,215,000 lb/h

Coal
4,000 

ton/day

• Some amine applications 
for coal flue gas where CO2
is needed for commercial 
products.

Net power (MWe) 400 400
CO2 capture load - 21
CO2 compression - 35
Efficiency (HHV) 40% 28%*

Basis CO2 compressed to 1500 psi, 50 mile transport

Base w/Capture

*These numbers are specific to cases studied prior to 2005 by the NETL systems group. Updated cases, more 
detail in 2006, larger plant size, are not significantly different:: 39.1%base versus 27.2% w/capture. 

How good could it be?
These numbers are approximately 5 times (or more)  the 
reversible separation work: 
(Gottlicher, G. (2004).  The Energetics of Carbon 
Dioxide Capture in Power plants)

CLEVER IDEAS NEEDED 
TO

REDUCE THIS PENALTY!
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Carbon Capture Research at NETL
• Modifications to existing power plants:

− Aqueous ammonia: now in commercial 
development (Powerspan Corporation)

− Solid CO2 sorbents: expected energy 
and systems benefit being quantified with 
lab tests, numeric modeling –
• Sorbent types developed and tested with 

conventional preparation and advanced.
• Medicine nanobiotechnology approach used to make 

adsorbent layers on substrates (at right).
• Sorbent reactor concepts being modeled with NETL 

simulation tools, fluidization tests

Schematic shows how layers (red/green & black)
are deposited. (upper). Experimental 
deposition on 600 micron porous spheres
showing “tagged” red/green adsorbent deposition
via confocal fluorescence microscopy (lower)

Measurement of sorbent reaction heatCO2 Sorbent testing

Numeric simulation of reactor concept 
for solid sorbents

Flue
gas

Disclaimer:
actual 
concept
not shown!
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Integrated Gasification Combined Cycle w/Fuel Gas CO2 Scrubbing

• Gasification creates CO + H2
(syngas) from coal.

• Shift reaction used:
CO + H2O H2 + CO2

• CO2 removal possible with existing 
technology:
− Selexol may remove sulfur, too.

• Physical absorption avoids thermal 
energy to regenerate amine scrubbing.

Net power (MWe) 425 387
CO2 capture load - 9
CO2 compression - 23
Efficiency (HHV) 43% 35%*

Basis CO2 compressed to 1500 psi, 50 mile transport

Base w/Capture
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3,800 
ton/day

Air + Steam 
Recy.

4,300,650 lb/h

Gasifier
800 Psig

O2
3,160 

ton/day

Sulfur
104 

ton/day

Raw Syngas
677,350 lb/h
H2 30%
CO        40%
CO2 10%

PM 
Removal

12% Syngas 
Recycle

105oF
700 Psia

478 MW
(387 MW Net)

Combustion & 
Steam Turbine 

Island

H2O
1,600 

ton/day

Flue Gas
4,800,000 lb/h

Water Gas
Shift

Steam
3,500 

ton/day

Shifted Syngas
811,000 lb/h
H2 55%
CO           1%
CO2 39%

Fuel Gas
102,000 lb/h
70oF
695 Psia

CO2
Comp.

CO2
682,000 lb/h
70oF
25 Psia

CO2
105oF
1,500 Psia

Syngas
Cooling

Saturator

2-Stage 
Selexol Unit

*These numbers are specific to cases studied prior to 2005 by the NETL systems group. Updated cases, more 
detail in 2006, larger plant size, are not significantly different: 41.1 %base versus 32% w/capture for one type of 
gasifier.  Other gasifiers have different capture penalties.   On the  NETL web, 2007.

Can we do better?
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• CO2 Capture from coal synthesis gas
− Ionic Liquids used as a solvent for elevated 

temperature.
− Ionic liquids used to create impregnated 

membranes.
− Solids sorbents developed for ambient or warm-

gas conditions
• Combined with water gas shift for enhanced 

hydrogen production
− Novel sorbent development

• Molecular organic framework (MOF)*
• Novel phase change polymers

Carbon Capture Research at NETL (cont.)

CO2

Molecular
modeling used
to optimize
CO2 interaction
with polyionic
liquid

Insulated reactor for
CO2 absorption in

Ionic liquid solvent (Pitt)

Preparation of MOF material for testing
*(w/ CBS focus area)

CO2 membrane with increasing ionic liquid content, l to r.
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The Status of Gasification & IGCC
• Lots of gasifiers and plants operating 

− 2007 world gasification capacity was 56,238 
MWth* syngas, 144 plants, and 427 gasifiers.

− Dominant feedstock is inexpensive coal.
− Dominant product is chemicals.

• Smaller number of plants using coal for 
electricity
− Wabash, Tampa, Buggenum, Puertollano.

• Opportunities for gasification:
− Chemicals from coal (liquid fuel, plastics)?
− Substitute natural gas from coal?

• Technical advances yet to make
− IGCC cost compared to PC coal.
− Shifting and separating CO2 on a large scale.
− Efficient integration of the thermal energy.
− A personal favorite: clean, premixed H2 

combustion. 
− Can we mix in biomass?

Data and charts from Gasification World Survey Results 2007: www.netl.doe.gov. The units are megawatts thermal syngas.
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Coal + Biomass  gasification
• Significant experience with individual fuels:

− Coal gasification: pressurized, entrained-flow gasifiers typical.
− Biomass gasification: Atmospheric fixed or circulating fluid bed.

• Mixtures? New concerns and opportunities:
− Preparing the biomass 
− Aggressive biomass ash
− Eliminate biomass tars
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Direct biomass grinding

Extrapolated !

Torrefied
biomass

Grinding energy for woody biomass and coal

Bergman, P. C. A., Boersma, A. R., Kiel, J. H. A., Prins, M. J., Ptasinski, K. J., Janssen, F. J. J. G. (2005).  Torrefaction For Entrained-Flow 
Gasification of Biomass, ECN-C05-067, available from the Energy Research Center of the Netherlands (ECN), www.ecn.nl/biomass. 

Coal
& 

biomass

From refractory 
durability tests
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Hydrogen in Gas Turbines
• Hydrogen is already used in turbines

− First propulsion turbine used hydrogen (1937)
− Current IGCC plants use more than 60% H2

• Challenge: meeting stringent NOx emissions:
− State of the art engines: premixed for NOx control
− Premixing is a problem for hydrogen

• Very high flame speed
• Very small quenching diameter

Henkel S-1 Engine (1937); hydrogen fueled

Wabash River IGCC

Tampa Electric Company’s IGCC

If carbon emissions are
limited…….

What do I need to do
To switch to H2 in 

my engine?
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Simultaneous Temperature and OH-PLIF

• OH concentration fairly uniform along flamefront

Bunsen Flame Forced @ 200 Hz

CH4 & Air
Φ=0.82
V=2.3 m/s
Tad=2026K
SL=30 cm/s

T(K)

OH

1 cm

Methane 
(like natural gas)

Notice the round cusps
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Simultaneous Temperature and OH-PLIF

• Strong preferential diffusion effects observed.
− Excess OH in regions of positive flame curvature (positive strain).

− Lower OH in regions of negative curvature.

Bunsen Flame Forced @ 200 Hz

80%H2 / 20%CH4 & Air
Φ=0.50
V=3.2 m/s
Tad=1564K
SL=20 cm/s

T(K)

OH

1 cm

Hydrogen 

Notice the “finger” cusps

Can we predict what happens
If we want to 

change fuel to H2, syngas, 
blends..?
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SimVal Combustor 
Optical combustor, full-scale geometry and conditions

Acoustic 
Boundary

Resonant 
Exhaust 
Section

Acoustic 
Section

Fuel Injection
(current)

Fuel Injection
(future)

Combustor 
Section

Center-
body

Center-
body

Center-
body

Laser sheet 
illumination
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Experiment (Average OH)RANS (OH) LES (Average OH)

• FLUENT  1.1 M Grid Cells, ARM9 Mechanism
• EDC Comb Model
• RANS - ke model 
• LES - LDKM Subgrid Stress Model
• DO WSGG Radiation Model

P=1 atm, φ=0.6, H2=0%
OH PLIF: Test25

Corrected for Attenuation

• LES produces a much more realistic OH field and 
captures flame-holding upstream of dump plane.

Assessing Current Modeling Capabilities
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Emerging ideas/options
• Existing power cycles were developed before 

CO2 management was an issue
−A century back, producing CO2 was a good thing!

• What would energy systems look like if we 
started all over?
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One option: the “oxygen” economy?

The chief difficulty with CO2 separation is the 
nitrogen in air - consider CH2 (representative HC):

CH2 + 3/2 (O2 + 3.8N2) CO2 + H2O + 5.7N2 + energy

But if you supply pure oxygen

CH2 + 3/2 O2 CO2 + H2O + energy

In practice, you need to dilute the oxygen with 
cooled, recycled H2O or CO2 (why?).

Cooling the exhaust will condense water
and  leave just CO2 - very easy!

Lots of nitrogen to separate
from CO2 before storage.  No!
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Power cycles that produce CO2 streams

CxHy 1450 C?combustor

O2

CO2
H2O

CO2

CxHy 600 C?combustor

O2

Liquid H2O

Condenser
H2O, CO2

CO2
diluted
oxy-fuel

H20 
diluted
oxy-fuel

Metal
oxide

(Me)

(MeO)

Metal

Air
(Ambient)

Fuel

CO2
H2O

Air
(Hot)

Metal
oxide

(Me)

(MeO)

Metal

Air
(Ambient)

Fuel

CO2
H2O

Air
(Hot)

O2-

Air (O2, N2)

Reformed 
hydrocarbon 
(H2, CO) H2O, CO2

electrolyte

Electric
Load

e-

e-

O2-

Air (O2, N2)

Reformed 
hydrocarbon 
(H2, CO) H2O, CO2

electrolyte O2-

Air (O2, N2)

Reformed 
hydrocarbon 
(H2, CO) H2O, CO2

electrolyte

Electric
Load

Electric
Load

e-

e-

Chemical 
looping

SOFC fuel
Cell without
Anode/air

combustion



Descriptor - include initials, /org#/date

Operating oxy-fuel power plant.

• The photos show the Kimberlina Power Plant, 
located near Bakersfield, California.

• The plant was developed by Clean Energy 
Systems, Inc.

• The plant has been successfully connected to 
the electric power grid.

• Up to date details:  
www.cleanenergysystems.com

• Oxygen supplied from cryogenic sources
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Current and Future Arrangement
• Concept: burn fuel and 

oxygen to create steam and 
CO2 product to drive a 
turbine.

• Condense water from 
exhaust: pure CO2 stream 
for sequestration option.

• High efficiency is produced 
by expansion + reheat.

• Reheat via oxy-fuel 
combustion in steam 
diluent from HP turbine 
exhaust.

HP Turbine

LP Turbine

Gas
Generator

NG Steam or water

NG

Reheater
570 K

10 Atm

1480 K
10 Atm

O2

O2

Condense
Water

CO2

How  to design the reheat combustor?

Today

Future
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Technical Challenges
Differences from conventional combustion:

− Water or CO2 diluent, not nitrogen
− Desire 0% oxygen in products
− Initially supply pure oxygen

Oxygen
+

Steam

Fuel

To 
Turbine

Steam diluted oxy-fuel combustor
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CES Testing at NASA-Plum Brook HTF

Zero-emission combustion
• The blue flame produces CO2 and H2O products (mostly)
• Research challenges remain to squeak out full efficiency

Flow

12.5 cm
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Current and Future Arrangement
• Concept: burn fuel and 

oxygen to create steam and 
CO2 product to drive a 
turbine.

• Condense water from 
exhaust: pure CO2 stream 
for sequestration option.

• High efficiency is produced 
by expansion + reheat.

• Reheat via oxy-fuel 
combustion in steam 
diluent from HP turbine 
exhaust.

HP Turbine

LP Turbine

Gas
Generator

NG Steam or water

NG

Reheater
570 K

10 Atm

1480 K
10 Atm

O2

O2

Condense
Water

CO2Today

Future

Can you make 
this work
at higher
temperatures?
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Materials and cooling for new turbine cycles
• Existing gas turbines use natural gas with first 

stage temperature < 1700K.
• Syngas, hydrogen, and oxyfuel temperatures 

all limited by cooling and materials.

Syngas fuel
1700K

913
966 1073

1127
1180

1234
1287

1341
1394

1020

900K 1100K 1300K

Oxy-fuel
1700K

Protective TBC layers

Current
gas turbine

New materials needed? New approaches for cooling needed?

Figures courtesty M/. Alvin, NETL, M. Chyu, W. Slaughter, University of PIttsburghPhoto courtesy GE
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A near-term option: oxy-fuel, pulverized coal?
• Oxy-fuel pulverized coal boiler

−Use oxygen (not air) for combustion
−Recycle steam or CO2 to control 

temperature
−Why not start tomorrow?

• Consider oxygen required:
Gasification:  need 1/2 = 2/4 mole oxygen

CH + 1/2 O2 CO + 1/2 H2 
(+ shift CO with water)

Oxy-fuel: need 5/4 mole oxygen
CH +  5/4 O2 CO2 + 1/2 H2O

Opportunity for low cost, energy efficient oxygen production (any ideas?)
Requires 2.5x more oxygen than gasification.  Existing IGCC uses 5-7% plant output to make oxygen!

Oxy-fuel combustion studies to record
flame properties need to optimize oxy-fuel systems 
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Chemical Looping
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Chemical looping
• Avoids need for direct oxygen production
• Demonstrations for gas-fueled boiler applications 

already exist at the lab scale
• NETL studies: how to connect with coal?

Eide, Anheden, Lyngfelt, Abanades, Younes, Clodic, Bill, Feron, Rojey and F. Giroudière,
“Novel Capture Processes,” Oil & Gas Science and Technology – Rev. IFP, 60, No. 3, 497-508, 2005.

Metal
oxide

(Me)

(MeO)

Metal

Air
(Ambient)

Fuel

CO2
H2O

Air
(Hot)

Metal
oxide

(Me)

(MeO)

Metal

Air
(Ambient)

Fuel

CO2
H2O

Air
(Hot) Nickel-BHA

nanoparticles
In oxygen carrier

50 nm

50 nm

NETL & University of Pittsburgh
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High pressure flow reactor studies with metal 
oxide carriers utilizing coal derived synthesis gas
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High pressure (50 psi) pulse mass analyzer data of 
chemical looping combustion of simulated coal-

derived synthesis gas with NiO/Bentonite at 800°C

-2.5E-02

-2.0E-02

-1.5E-02

-1.0E-02

-5.0E-03

0.0E+00

5.0E-03

1.0E-02

200 210 220 230 240 250 260 270

Time (minutes)

D
M

as
s 

(g
)

Reducing Conditions:
45 cc/min mix gas (36% CO, 27% H2, 25% He, and 

12% CO2) for 10 minutes

Oxidation Conditions:
45 cc/min air (21% O2, N2 balance) for 60 minutes

Reduction
Oxidation

Inert
Flushing
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TGA Profile of Coal +CuO in N2

Can we use coal directly?
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Coal + CuO = CO2
+water + heat
….w/o steam input

Data so far: rates are reasonable,
Impurities may not be a problem,
and cyclic tests look good…….

…..not sure if it can
cure the common cold.
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A Role for Fuel Cells
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Background on Fuel Cells
• Several types of fuel cells, circa 1993 [1]:

− Alkaline electrolyte (KOH) used in space flight
• Shuttle application – 70oC, 1A/cm2, 4 atm pp.44

− Phosphoric acid electrolyte for stationary power
• 200 oC, 325mA/cm2, 8 atm pp.50

− Molten carbonate electrolyte for stationary power
• 650 oC, 160mA/cm2, 1atm, pp. 54

− Polymer electrolyte membrane
• 85 C, 1 atm, pp. 63

− Direct methanol
− Solid oxide electrolyte

• 1000 C, 1atm, pp. 58

1.  Bloment, L., Mugerwa, M. (eds.) 1993. Fuel cell systems, Plenum Press
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Background on Fuel Cells
• Several types of fuel cells, circa 1993 [1]:

− Alkaline electrolyte (KOH) used in space flight
• Shuttle application – 70oC, 1A/cm2, 4 atm pp.44

− Phosphoric acid electrolyte for stationary power
• 200 oC, 325mA/cm2, 8 atm pp.50

− Molten carbonate electrolyte for stationary power
• 650 oC, 160mA/cm2, 1atm, pp. 54

− Polymer electrolyte membrane
• 85 C, 1 atm, pp. 63

− Direct methanol
− Solid oxide electrolyte

• 1000 C, 1atm, pp. 58

1.  Bloment, L., Mugerwa, M. (eds.) 1993. Fuel cell systems, Plenum Press

Lots of progress on all these since 1993 !

Focus of today’s talk:  SOFC:

•Can directly use gasified coal (not pure hydrogen)

•High grade heat can operate bottoming cycle
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SOFC basics
• Notice how you can separate the CO2 automatically.
• The air supplied to the cathode must be heated (~700C example)
• Cell operation rejects heat to the cathode exit air (~ 850C or more) 

− Internal losses,  unused fuel combustion (not described here)
• What can you do with that heat?

Fuel gas
from coal

Can simply 
separate CO2 by 
condensing 
water

Excess heat can also be used
to produce power in “hybrid” systems.

Fuel gas
from coal
Fuel gas
from coal

Can simply 
separate CO2 by 
condensing 
water

Excess heat can also be used
to produce power in “hybrid” systems.
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Combined Cycle Efficiency
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Fuel cell

Heat engine

• Improving the fuel 
cell –
− A bettter cathode
− Robust anode 

tolerance to 
impurity = lower 
syngas cleanup 
penalty

• Improving the heat 
engine
− System integration!
− Unusual “usuals”

• Pressure losses
• Heat losses
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Comparing the bottoming cycles
• Higher efficiency is produced by using the FC 

rejected heat at the full thermodynamic 
potential (hottest condition)

700 C

The heat engine peak temperature
Is set by the steam cycle (600C supercritical)
The availability of the 850C stream is reduced. 

20 C600C

The heat engine uses the cathode 
Heat from 850 C to 700 C to produce work; 
i.e., at the full availability

850 C = 1561F, “easy” turbine condition
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NETL Hybrid Performance Test Facilities

Addressing the question:
How do you control and operate the combined power plant?
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Summary
•• Coal is a major fuel resource, carbon management is a key.Coal is a major fuel resource, carbon management is a key.
•• Carbon dioxide capture and sequestration could produce a Carbon dioxide capture and sequestration could produce a 

sizeable dent in COsizeable dent in CO22 emissions.emissions.
•• Coal + biomass =  promising option for electricity and liquid fuCoal + biomass =  promising option for electricity and liquid fuel.el.
•• Described research needs/areas for current and future optionsDescribed research needs/areas for current and future options

−− PC coal with scrubbingPC coal with scrubbing
•• Efficient CO2 capture and compressionEfficient CO2 capture and compression

−− IGCC Hydrogen with COIGCC Hydrogen with CO22 Capture Capture 
•• efficiency, CO shift, CO2 separation, biomass simulating H2 and efficiency, CO shift, CO2 separation, biomass simulating H2 and mixed fuel mixed fuel 

combustion, materialscombustion, materials
−− OxyOxy--fuel Systems fuel Systems 

•• oxygen production, materialsoxygen production, materials
−− Chemical LoopingChemical Looping

•• Just starting!Just starting!
−− Hybrid Fuel Cell CyclesHybrid Fuel Cell Cycles

•• Reduce cathode losses, coal gas impurities, system efficiency, iReduce cathode losses, coal gas impurities, system efficiency, inherent CO2 nherent CO2 
separation, control, system configuration.separation, control, system configuration.
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