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MotivationMotivation

• Advanced modeling and simulations for design 
and optimization of fuel-flexible gas turbine 
combustors by high-fidelity extensively-tested 
LES and state-of-the-art models for premixed 
turbulent combustion

• Advanced modeling by using
• Large-eddy simulation
• Consistent flame propagation models [1,2]
• Coupled progress variable / level set method
• Heat transfer at the boundaries and through 

thermal radiation
• Application, adaptation, and improvement of 

modeling techniques to hydrogen-enriched 
premixed and partially premixed gas-turbine 
combustion

AccomplishmentsAccomplishments

Premixed combustion in a stationary gas turbine

Work in progressWork in progress
• Prediction of flow field and inlet boundary conditions

- Simulating flow in a nozzle with swirlers
- Generation of inflow boundary conditions

• Effect of fuel composition on laminar flame speed
- Tabulation of a laminar flame speed vs pressure,

temperature, fuel compositions and equivalence ratio
- Validation with experimental data on blowout and 

flashback
• Simulation of turbulent premixed burning in model 

combustors
- Implementation of various models for premixed 

combustion applicable to hydrogen enriched flames
- Validation using turbine combustors
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ObjectiveObjective

• Gas turbines must operate robustly on fuels from 
gasification of coal and feed-stocks (biomass, 
petroleum coke)

• Enable computational simulation assisted design 
and development of fuel-flexible gas turbines with 
high thermal efficiency and near-zero NOx
emissions

• Demonstrate advanced simulations of flexible fuel 
combustion validated by reliable experimental data

[1] E. Knudsen, H. Pitsch, A partially premixed combustion approach 
for presumed-PDF LES, SIAM 12th International Numerical 
Combustion Conference, Monterey, CA, Apr 1, 2008.
[2] E. Knudsen, H. Pitsch, A general flamelet transformation useful for 
distinguishing between diffusive and premixed modes of combustion, 
submitted.
[3] J.U. Schluter, H. Pitsch, P. Moin, Large eddy simulation inflow 
conditions with Reynolds-averaged flow solvers, AIAA 42, 478 (2004).

• The objective of the project is the demonstration of 
predictive simulations for hydrogen enriched 
combustion in gas-turbine engines 

• Validation studies include simple flame DNS and 
experiments and more realistic model combustors

• Role of the fuel composition, non-unity Lewis numbers 
and other effects in blowout and flashback
- Adaptation and improvement of the model for 

hydrogen enriched fuels
• Incorporation of wall heat transfer into combustion 

model
• Effect of thermal radiation on flame propagation 

and NO concentration
• Simulation of real turbine combustor

- LES of burning in a real Siemens gas turbine 
combustor

Future workFuture work

SummarySummary

Characteristic flame shape shown by the 
isotherms: 900K (left) and 1200K (right).
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• LES of turbulent lean-premixed hydrogen-air 
combustion in a low-swirl burner
• Equivalence ratio: φ = 0.37
• Laminar flame speed SL = 10.4 cm/s

• Configuration corresponds to DNS performed 
at at Lawrence Berkeley National Laboratories 

LES inflow conditions [3]:

Cold Cold flow simulation of low swirl burnerflow simulation of low swirl burner

Simulation of reacting lean hydrogen/air low swirl burnerSimulation of reacting lean hydrogen/air low swirl burner

Time averaged swirl burner parameters (top) and rms-parameters (bottom) 
Left-to-right: temperature and axial, radial, and azimuthal velocities

Velocity Magnitude: Values from 0.35m/s (blue) to 12m/s (red). 
Left to-right: Axial plane and three radial planes at 0, 5 and 15 cm 
downstream of the nozzle

Mean inflow velocity profiles: 
DNS (dashed) and LES (solid) 

Time averaged swirl burner velocity (top) and rms-velocity (bottom) profiles
Left-to-right: Axial, radial, and azimuthal velocities
D = 5cm – nozzle diameter; U0 = 6.34 m/s – mean inflow velocity in the axial direction 
The co-flow is axial and uniform, with Uco = 0.35m/s

i = z, r, θ, ui’2 = < ui
2 > - < ui >2

ui,DNS - from the DNS, ui,DB - from the database [2]

• Statistics of cold and reacting flows are similar
• Small effects of heat release since SL Tb / Tf = 0.45 m/s << Urms << U0
• Simulations previously validated with experimental data for methane fuel
• Comparison with hydrogen DNS data forthcoming

Temperature field in 
axial (left) and radial
(above) planes: Values 
range from 300K (blue) to 
1350K (red).

Characteristic flow velocity
isosurface |U|=U0=6.34 m/s

Total velocity field: Values range from 0.35m/s (blue) to 12m/s (red)
Left-to-right: three radial planes taken at 0, 5 and 15 cm ahead of the nozzle, and axial plane 

where

Characteristic dynamics of turbulent flame front 
Temperature field is shown by colors ranging from 300K (blue) to 1350K (red)


