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CO2 Storage or “Sequestration”

Before carbon sequestration is implemented 
“commercially,” it must be tested. USDWs 

are a primary consideration in ongoing tests.



Geological Sequestration:  Integration of
Monitoring, Risk Assessment, and Simulation

• Monitoring critical to ensure integrity of USDWs

• Simulation critical to ensure integrity of USDWs

• Quantitative Risk Assessment critical to ensure 
integrity of USDWs

• All three are integrated and “iterative”
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Site Selection

Key Considerations:
• design and distribution of
injection, monitoring and 
mitigation wells

• degree of “stacking” in 
stacked system

• depth of seals and “backup”
storage reservoirs in stacked 
system (safety and costs)

• vertical and lateral distance of 
USDWs

• storage capacity

• presence of CO2

• surface features; population

• mitigation options
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Bonanza - 4.3 Mton/y

Huntington - 6.2 Mton/y

Hunter - 10.6 Mton/y

Intermountain - 16 Mton/y

West Valley - 383,000 ton/y

Gadsby - 220,000 ton/y

Carbon- 1.3 Mton/y

EXAMPLE: Utah Emissions & Capacity
Sources : 40 million tons CO2 per year

Utah’s CO2 Sinks and Capacities:
Oil and Gas Reservoirs: 1400 million tons
Un-mineable Coal Seams: 120 million tons
Deep Saline: 500 million tons minimum
Storage capacity in Utah is equivalent to over 
50 years of its emissions!
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Site Selection: Integration of Monitoring, Risk 
Assessment, and Simulation
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Integrated Workflow of Monitoring, Risk 
Assessment, and Simulation



Not only is the workflow integrated, but the tools are 
also integrated on a practical level:

•For example: Example:  scale model grid resolution (density) and size to 
the resolution of monitoring technologies; example:
subsurface resolution of seismic imaging techniques and
areal size of surveys
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Site Closure: Integration of Monitoring, Risk 
Assessment, and Simulation

• Monitoring critical to ensure integrity of USDWs

• Simulation critical to ensure integrity of USDWs

• Quantitative Risk Assessment critical to ensure 
integrity of USDWs

• All three are integrated and “iterative”



Site Closure: Integration of Monitoring,
Risk Assessment, and Simulation

After site closure, risks to 
USDWs should drop off 

dramatically. 

However, the same 
integrated monitoring, 

modeling and risk 
assessment will continue!

monitoring surveys continuous,
with initial frequency established
by site selection processÉ
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CO2 Storage or “Sequestration”

Before carbon sequestration is implemented 
“commercially,” it must be tested. USDWs 

are a primary consideration in ongoing tests.



• Monitoring critical to ensure integrity of USDWs

• Simulation critical to ensure integrity of USDWs

• Quantitative Risk Assessment critical to ensure 
integrity of USDWs

• All three are integrated and “iterative”

Effective Integration Maximizes Integrity of Future 
Commercial-Scale Geologic Sequestration


