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CO, Storage or “Sequestration”

Mineralization

Geologic

Terrestrial

Before carbon sequestration is implemented
“commercially,” it must be tested. USDWs
are a primary consideration in ongoing tests.



Geological Sequestration: Integration of
Monitoring, Risk Assessment, and Simulation

 Monitoring critical to ensure integrity of USDWs
e Simulation critical to ensure integrity of USDWs

 Quantitative Risk Assessment critical to ensure
Integrity of USDWs

e All three are integrated and “iterative”
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Inter
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3¢ L3 Carbon- 1.3[Mton/y

untain - 16 Mton/y i Huntingtdn - 6.2 Mton/y

Hunter - 10.6 Mton/y

EXAMPLE: Utah Emissions & Capacity
Sources : 40 million tons CO, per year

Utah’s CO, Sinks and Capacities:

Oil and Gas Reservoirs: 1400 million tons
Un-mineable Coal Seams: 120 million tons
Deep Saline: 500 million tons minimum
Storage capacity in Utah is equivalent to over
50 years of its emissions!
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[/ MITIGATION \

0"or Q" Len 0%%r Q"
or Iwat™ CO; or Iwat'.'

[\ or vent* A [\ or vent*

di d

perforated
well sections

— [TLEGEND \

O =observation well

Q = production well
Iwat = water injection well
Ico, = CO; injection well  vent=vent CO; to atmosphere via wellhead valve

d,.d, = distance between wells as determined by simulation
to optimize the number of wells needed, and locations

I Footnote References \

Mitigation Operations * produce brine/water to

- . A reduce reservoir pressure
* inject water into the reservoir directly above P

the primary seal to maintain a high pressure
above the seal

tt produce CO3 to
reduce reservoir pressure

Tinject water into the primary reservoir outside
the CO2 plume to contain the CO; and prevent
migration

Normal Operations

% inject CO3 in reservoir

%¢ observation well for obtaining
samples and measurements

*+vent CO5 to the atmosphere to reduce
reservoir pressure




Site Selection: Integration of Monitoring, Risk
Assessment, and Simulation

 Monitoring critical to ensure integrity of USDWs
e Simulation critical to ensure integrity of USDWs

e Quantitative Risk Assessment critical to ensure
iIntegrity of USDWs

e All three are integrated and “iterative”



Site Selection

Candidate Sites Characterized and
Monitored —

« initial and boundary conditions for models
established

« data density - amount of geological / hydrologic
data available

» establish initial (baseline) presence of CO,

Candidate Sites’ Risk Evaluated —

* uncertainty estimated from models and
simulation results used to develop probability
density function of each risk feature / event /
process (FEP)

» consequence (usually in $ or other) of a FEP
multiplied by its probability to quantify risk

 Site with best (least) risk profile is selected

Candidate Sites Modeled —

 Establish criteria / ability to
verify containment and capacity
(HVA”)

« verify containment and
capacity

* Footprint (size) of monitoring
required

 frequency of monitoring
surveys required

* data from monitoring and
characterization used to
parameterize models

e uncertainty associated with all
processes quantified

« identify best mitigation options
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Site Operations: Integration of Monitoring,
Risk Assessment, and Simulation

 Monitoring critical to ensure integrity of USDWs
e Simulation critical to ensure integrity of USDWs

e Quantitative Risk Assessment critical to ensure
iIntegrity of USDWs

e All three are integrated and “iterative”



Site Selection and Operations

Candidate Sites Characterized and Candidate Sites Modeled —
Monitored — « Establish criteria / ability to
« initial and boundary conditions for models verify containment and capacity
established ("VA")
« data density - amount of geological / hydrologic « verify containment and
data available capacity
« establish initial (baseline) presence of CO, » Footprint (size) of monitoring
required

 frequency of monitoring

Candidate Sites’ Risk Evaluated — surveys required

* data from monitoring and
characterization used to
parameterize models

* uncertainty estimated from models and
simulation results used to develop probability

density function of each risk feature / event /
process (FEP) e uncertainty associated with all

: rocesses quantified
» consequence (usually in $ or other) of a FEP P b

multiplied by its probability to quantify risk * identify best mitigation options

 Site with best (least) risk profile is selected



Site Operations

Candidate Sites Characterized and
Monitored —

« initial and boundary conditions for models
established (updated)

* data density - amount of geological/hydrologic
data available (continuous gathering of data)

« establish initial (baseline) presence of CO,

Candidate Sites’ Risk Evaluated —

 uncertainty estimated (refined) from models
and simulation results used to develop
probability density function of each risk
feature / event / process (FEP)

» consequence (usually in $ or other) of a FEP
multiplied by its probability to quantify risk
(updated)

* Site with best (least) risk profile is selected

Candidate Sites Modeled —

 Establish criteria/ability to verify
containment and capacity (“VA”)

« verify containment and capacity
(refine)

 Footprint (size) of monitoring
required (updated)

« frequency of monitoring surveys
required (updated)

* data from monitoring and
characterization used to
parameterize (refine) models

 uncertainty associated with all
processes quantified (refined)

* identify best mitigation options
(update)



Integrated Workflow of Monitoring, Risk
Assessment, and Simulation

monitoring surveys continuous,
with initial frequency established
by site selection process...

o

...as risk profiles better defined and
risks reduced, monitoring strategy can
be tailored to reflect more focus on areas
of greater relative risk (devote fewer
resources to areas of lower risk)

PN

...as risk profiles become better

...as more monitoring and
characterization data gathered,
model resolution increases

U

...as model resolution increases,
simulation results used to guide
improvement of monitoring design

defined, injection design and
engineering can be modified to

improve and optimize - risk reduced

...as model results and monitoring
design become more effective,
uncertainty associated with probability
of FEPs will decrease, PDFs better
defined, and risk profiles (values) better
resolved




Not only is the workflow integrated, but the tools are
also integrated on a practical level:

Example: scale model grid resolution (density) and size to
the resolution of monitoring technologies;
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Site Closure: Integration of Monitoring, Risk
Assessment, and Simulation

 Monitoring critical to ensure integrity of USDWs
e Simulation critical to ensure integrity of USDWs

e Quantitative Risk Assessment critical to ensure
iIntegrity of USDWs

e All three are integrated and “iterative”



Site Closure: Integration of Monitoring,

Risk Assessment, and Simulation

f Technical Risk \

= Long\l\Te rm

= [njection Period

—
Major risks

during injection period:
Pressure and buoyancy-driven flow
through damaged wells or fracture
networks. Probability increases over

time as CO2 quantity and pressure
increases, and as "Area of Review"

= After
Injection

After injection,
pressure falls off,
and risk decreases,
but CO3z can still
migrate to open
well or faults,
so risk is still

positive.

Over the long term,
as chemical reactions occur
within reservoir, around
wells, and in caprock, the
likelihood of migration
may change, depending
on whether reactions
erode or enhance sealing

structures.

—>» 2

RIMO8 104

increases.

1000

8|0 100
Time (years)
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T
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monitoring surveys continuous,
with initial frequency established
by site selection processk

After site closure, risks to
USDWs should drop off
dramatically.

However, the same
Integrated monitoring,
modeling and risk
assessment will continue!
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Before carbon sequestration is implemented
“commercially,” it must be tested. USDWs
are a primary consideration in ongoing tests.



Effective Integration Maximizes Integrity of Future
Commercial-Scale Geologic Sequestration

 Monitoring critical to ensure integrity of USDWs
e Simulation critical to ensure integrity of USDWs

 Quantitative Risk Assessment critical to ensure
Integrity of USDWs

e All three are integrated and “iterative”



