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Take Aways

* Defining what makes a cell "good™ more
precisely can have advantages (additional
screening tools, management, etc).

* One way to obtain the definition is familiar
in concept to managing power-load
distribution.

* The above has actually worked in some
biosystems.
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Questions

To find, adapt, or engineer algae to
CO, + hv = Oil + X Useful Products/Markets

What are good cells?
Best culture/medium management?

What are good intracellular determining-attributes?
—>More screening tools, patterning, base-lining...

[Attribute = transformative step, +/-]



Things that Can Confound

Metabolic systems are redundant & state-
switching can occur.

Equal “phenotypes” are not equally robust.
Not all metabolic politics are local.

System validation produces different
mechanistic explanations (poorly designed
13C tracer analysis).



1. Local Politics
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1. Amplifying ACCase

National Renewable Energy Laboratory

{prm

Breakthroughs in molecular biology and genefic engineering.

Plant biotechnology 1s a field that 1s onlv now coming nto its own. Within the field of plant
biotechnology, algae research 1s one of the least trodden territories. The slower rate of advance mn this field
makes each step forward m our research all the more remarkable. Our work on the molecular biology and
genetics of algae 15 thus marked with sigmficant scientific discoveries. The program was the first to 1solate
the enzyme Acetyl CoA Carboxylase (ACCase) from a diatom. This enzyme was found to catalyze a key
metabolic step i the synthesis of oils tn algae. The gene that encodes for the production of ACCase was
eventually 1solated and cloned. This was the first report of the cloning of the full sequence of the ACCase
gene in any photosvnthetic organism.  With this gene n hand, researchers went on to develop the first
successful transformation system for diatoms—the tools and genetic components for expressing a foreign
gene. The ACCase gene and the transformation system for diatoms have both been patented. In the
closing days of the program, researchers imtiated the first experiments in metabolic engineering as a means
gene, a major milestone for the research, with the hope that mereasing the level of ACCase activity 1 the

cells would lead to higher o1l production. These early experiments did not, however, demonstrate increased :
ol production 1n the cells. :



Ex. 2 Stop E. coli Acetate-Production

PEP Glucose
PYR G6P —» HMP

Best trait to look

for or endow? Fip
lek
Minimal FJBrP
Pta capacity? * org Lt
PEP/—\‘,' PYR —» AcCoA P—tabpiké Acetate

NO-Creates a new
problem.

MaeA
PykF PykA | MaeB




System Analysis-Informed Help

A model enables sorting &/or design because

(i) Inter & intra species variants/mutants
have altered overall stoichiometries.

(i) Nice to know the range before starting
(yield horizon prediction).

(i) The most obvious endowments can
yield the least bang.

(iv) Other common markers likely exist.

(v) Know more-claim more; strengthens
|P/claims.



Analysis Means...
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Metabolic Net Analysis

1. SOLUTION SPACE

ALL MASS-ENERGY INTEGRATED
EXTREME POINT SOLNS THAT ATTAIN GOAL
NETWORK RECONSTRUCTION OR UNDERLIE PERFORMANCE
O V2 A
— Biosyn Load
mmol/g cell h

Mixed Integ%
Linear Programming

Vq
2. YIELD OR MEDIUM
Vs ANSWER(S)

min/max f(v) or [O]

Subiject to:
[S] v = 0 (flux in = flux out)
biosyn flux loads met
2 ATP formation > Sufficient
2’'NADPH formation = Sufficient

Selected flux measurements to constrain further (optional)
Etc 11




Modeling via METABOLGICA

aaaaaaa
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NADPH

G —— a1 polyamines
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State Objective, = i . T NMR Design &

Mutation, &/or - Prediction
Input Extracellular -l @ s

Measurements:

Draw Model Picture

Compute
Alternate
Flux Patterns

(Zhu et al, Metabolic Engin, 2003)

‘bisplay Alternate
Pathway Solutions

|

Also Perform
Inverse Problem
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For E. coli, Not Local-Low Pyk = Good

PEP Glucose
PTS
Zwf
PYR” “Gop =P —p —p

v Pl HMP
F6P
r = %, Pfk
I :
| \4
| H
I v
@1 v
:
: V PTS
v
I- — PEP(\' PYR =9 AcCoA P P Acetate
I Pym:.PEkA T
Ppc |
MAL
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Acetate (g/L)

Acetate, Growth, & Cell Density

Medium: M9 + 10 g/L glucose

2 ~- pyk -
- pyk+

Time (h)

25 o 5 0 16

Time (h)

(Maps also to strain variances)

Zhu et al. 2001. Biotechnol. Prog. 17:624-628.
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Problem 2

—p\]AX Rec Protein

Cheap - B. subtilis
Stuff l

MAX Folate-enriched
resid biomass

MIN CH;COOH waste

Three screens + growth medium variations; one screen is
a lengthy multi-dilution bioassay.

Combinatorics or focus effort?

15



Ex 2

Attribute that MAX Folate Synthesis?

Glucose
PEP
R2=13.470
N Pyruvate ._ c
Cell  R24=0.062 R3=4.839 ¥ > Ribulose-5P
Envelope N R11=1.545 R12=3.203
l R4=8.570 NADPH : \ R23=0.326
Cell R25=0.076 Xylulose 5P R5P naaa
F6P
Envelope2
R13=1.545
ATP s7P
R6=10.039
R37=1.545
DHAP
R26=10.03 R22=0.123 > ac
Lipid GAP
R27=0.078
R8=20.000
aa
PGP peptidoglycan
ATP A‘i R9=20.000
ioi R28=0.558 R21=8.392
Llpéc;na <«—— 3GP Organic acid
R35=0 aa lipid
R41=16.598 -
ATP Rig-ar0s ATP
aacell R29=0284 VY R5=0 t
| < PEP > Pyruvate AcCoA Acetate
envelope ATP ATP R14=0
R15=1.850
E4P \i.a:m.m/L_\, Citrat
itrate
R5p\\ ) OAA R34=0.769 NADP;()_O 128 aa
33=0.693 ATP R31=1.850 ¢ “polyamine
op \\ NADPH R32=-0.693 /'
. 3 aana KG — Glutamate
Igh folate e\
R38=0
\ R1=1.422 R18=0 \
Fumarate ¢
operon =———— AT ATP
/\ KG SuccCoA
L}
expression? e
" Succ
c / l R39=0
GLdh
Succinate
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Folate Results B. subtilis

Table 3. Folic Acid Yields of Wild-Type & Engineered B. subtilis in Glucose

Minimum Medium (5g/1).

Strain Description Doubling Folic Acid Dry Cell Mass  Volumetric
Name Time Mass Yield Concentration Yield Folic
(hour) (ug/gcel) (g/L) (ug/L)

168 trp2C 1.08§ £0.08 14.7+0.7 1.95 +0.05 28.7

1A96 trp2C, pheA 1.08§ £0.08 30.2+2.0 1.98 £ 0.04 59.8
BSZT0410 | trpC2, aroH™ 1.15+0.08 26.8+1.3 1.85+0.05 49.6
BSZT0412 | trpC2, aroH™, thtA™" 1.40 0.1 14.3+0.7 1.60 = 0.05 22.9
BSZT0408 | trpC2, mtrB::erm 1.20 £ 0.1 26.3+1.5 1.78 £0.05 46.8
BSZT0419 | trpC2, mitrB::cm, 1.50£0.1*  56.0+£4.0 1.75 = 0.05

BSZT0425 | trpC2, aroH™ 1.25+0.1*  60.0+4.0 1.90 = 0.06

BSZT0437 1.60=0.2% 113+11.0 1.45 +0.05

trpC2, aroH>=.
mirB.:ecm\pyk”

Zhu et al, Appld. Env. Microbiol. 71: 7122-7129, 2005.
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IPyk or Medium Design for B. subtilis

1.6

1.4 - O Growth Rate (h-1) 2006
Pan et al. :
1.2 - B Acetate (g/L) Biotechnol. Prog.

1 - 22:1451-1455.
0.8 -
0.6 -
04 -
0.2 -

0

WT 0 0.05 0.20 1.0

~— mM IPTG to iPyk —

One key attribute, low pyk, yields all three positive outcomes.

Achieve with Ca?*/citrate in medium or engineer strain directly.
19



Other By-Products to Think About

CO, = Bio-Oil + Algal Cell Mass Resid

Bio-Oil MW tuning for input into HC processes
Diesel + Glycerol

Insulin + CO,

Glycerol is superior to glucose as a substrate.

CO, & Algae can be linked to high value things
too.

20



Summary

. The positive attributes of promising strains may not be due
to improved local politics.

. Load/constrained resource allocation analyses can provide
guidance for what defines “good,” & results concur

Nil by-product strains of E. coli
Nil by-product, high folate, high rec prot B. subtilis
High tDNA-yielding E. coli strains

. Results are being linked to fithess/competitive results.

4. Helps to demystify & baseline (e.g. pyk common denom in

problem subset).

. May be additional value-added facets to hv-derived

biofuels.
21



Applications to Algae

Delineate differences between high & low
producers.

Fitness projection by MOMA or other
methods.

Susceptibility to population successions
examined when viewed dynamically with
cyclic forcing.

Map other value-channels for resid.

22
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Some Strategies

+

* Mine & Try <
Find a strain that works (Fairly easy)
* Inquiring minds want to know why, & other uses

Characterize cell internal works to build
knowledge (How interpret info?)

» Deliberate Engineering

Pinch & enlarge capacities in the metabolic
network (Really know where to start?).

24



How Know Loads? Know Paths & Stoich

Biosynthetic Load Profile for E_coli

Glycolysis HMP Path  Krebs Cycle

hesis from amphibolic precursoss in Escherichia

Table 3-1. Metabolic ¢ost of monomer

coli Bfr".
Monomer \ aé;[A;s used i;lt b];%ﬁhﬁ\
content G6P F6P TP RSP E4P 3PG PEP PYR AcCoAOAA KG CO;
Ala 0.488 0.488
Arg 0.281 0.281 0.281
Asn 0.229 0.229
Asp 0229 0.229
Cys 0.087 0.087
Gin 0.250 0.250
Glu 0.250 0.250
Gly 0.582 0.582
His 0.090 0.090
Ile 0.276 0.276 0.276 -0.276
AA Leu 0428 0.856 0.428 -0.856
PYR + O 9 LYSINE Lys 0326 0.326 0.326 -0.326
Met 0.146 0.146
Phe 0.176 0.176 0.352 -0.176
Pro 0.210 0.210
Ser 0.205 0.205
Thr 0.241 0.241
Trp 0.054 0054 0.054 0.054 -0.054
Tyr 0.131 0.131 0.262 -0.131
Val 0.402 0.804 -0.402
| ATP  0.165 0.165 0.165 0.165
| GTP  0.203 0203 0.203 0.203
1 CIP (k126 0.126 0.126
UTP 0136 0.136 0.136
dATP 00247 0.0247 0.0247 0.0247
dGTP 0.0254 0.0254 0.0254 0.0254
dCTP  0.0254 0.0254 0.0254
dTTP  0.0244 0.0244 0.0244
Lipid A 0.129 0.129 0.129
Lipid B 0.258 21156
Lipo A 00157 0.0157 0.0157
Lipo B 0.02350.0353 0.0235 0.0235 0.0235 0.329
Pep A 00276 0.0552 0.0276 0.0276 0.0552 0.0276 0.0276
PepB  0.0552 0.0552
Glyc  0.154 0.154
1C 0.0485 0.0485
Om 0.0593 0.0593

Sum___ 6.582 0205 0.0709 0.129( 0.897 3361 1493 0.71912.833 20928 1.786 1.078 -1.522

m, ef al., 1983; units are mmole/g dried cells. The
synthesis have been examined and comrected according

* All values obtained from Ingr
| costs of precursors for amino acj
] to Mandelstam, et al., 1982,
Precursor abbreviations: sef Figure 2-1.

Monomer abbreviations/ Lipid A, glycerol phosphate and serine in lipid components;
Lipid B, average fatty #cid (Cj¢:q fatty acid : Cj¢;) fatty acid : Cyg.) fatty acid =43 : 33 :
24) in lipid compgnents; Lipo A, uridine-diphosphate-glucose and thymidine-

Total mM R5P used in all major pathways to produce amino acids
& other things: Load = u * 0.897 [mmol R5P/g cell h]

25



Another Key Step: 3C NMR

Send in a tracer & spectra “output” allows
one to "measure’ individual/key rates.

Spend a lot of $ & supposed to get THE
answer.

Before-answer sets baseline, & after
answer supports or refutes strategy.

If refutes, provides important feedback.

26



Problems

« Experimental design (labeling of input
materials, analyte selection) provides low
contrast between feasible/viable
outcomes.

» Data - rates numerics quits after finding
close or alternate solution, but not the real
deal. Compounded by the 1st.

27
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Metabolic Flux Responses to Pyruvate Kinase Knockout in
Escherichia coli

Marcel Emmerling,'s Michael Dauner,’ Aamn Ponti,' J DCE]}’HE Fiaux,” Michel Hochuli,”
Thomas Szyperski,” Kurt Wuthrlch J. E. Baﬂey and Uwe Sauer'*

Institute of Biotechnology' and Institute of Molecular Biology and Biophysics,> ETH Ziirich, CH-8093 Ziirich,

Switzerland, and Department of Chemistry, University at Bu {fa.fa Stare University of New York,
D odlala Ao Viaal- 1470

. Both looked at same mutant, yet found different
- metabolic fluxes from 3C NMR data !!
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FEMS Microbiology Letters 235 (Z004) 25{3-3

www. fems-microbiology.org

Effect of a pyruvate kinase (pykF-genc) knockout mutatmn on
| the control of gene expression and metabolic fluxes in Escherichia co!z

‘Khandaker Al Zaid Siddiquee * Marcos J. Arauzo-Bravo °, Kazuyuki Shimizu >

% Depariment of Blochemical, Engineering and Science, Kyushu Instiiute of Technology, Tizuko, Fukuoka 8208507, Japan
Y Fustitute for Advanced Biosciences, Kein University, Tsuroka, Yamagata PRTR017, Japan

Received 20 January 2004; recsived in revised form 12 March 2004; accepied § April 2004

First published oniine 16 April 2004
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General Solution Outline

Predict alternatives in advance.
Design °C expt to distinguish alternatives.

Rank contrast, & pick cheapest with
sufficient contrast.

Ghosh et al, “A three-level problem-centric strategy for

selecting NMR precursor labeling & analytes,” Metabolic
Engineering, 2006.

29



Experiment Design Flowsheet

METABOLIC NETWORK

SCREEN II SCREEN III SCREEN IV
SCREEN | : Economics
NMR Unique
Location Contrast Over que Related Overall
> — » Determination — Utilitv Index
Abundance Narrowed of Flux Maps y
Hietory & SNR Flux Space (OUI)
Story o Not falling into Gain for pain$
Criterion for both 2 local numerical P
label & analyte trap
selection.
FINAL

LABEL/ANALYTE
COMBINATION

Ghosh, Grossmann, Ataai, & Domach. 2006. A three-level problem-centric strategy for 30

selecting NMR precursors & analytes. Metabolic Engineering, 8: 491-507.



Our ‘Integrated’ Approach

Mixed Integer Linear
Programming

>
Depth First Search

Optimal Label &

13
Ce ISOTOPIC LABELING Analyte Design

NMR SPECTRUM

Isotopomer>
Mapping

Correct

(Ghosh et al, 2005, 2006) Fluxes 31




Redundancy?

Based on cellular macromolecule composition & known
energetics

MIN 1/30 mol ATP = 1 g cells
Many ATP-generating rxns to 2'to fulfill total

18 mmol NADPH - 1 g cell

2 or more NADPH dehydrogenases &
transhydrogenase to enable reductive chemistry

Many ways to traffic resources to do above & satisfy fixed
loads such as

For u=0.4 h"', 0.431 mmol/ g h a-KG from TCA - Glut

32



Why? Redundancy in Pyk- E. coli

Two Extreme Flux Patterns

SCENARIO I (a =0)

Glucose
HMP
GOP =—p-
t Pathway
F6P : |
amino t
acids TfP
\ ~ m PEP
no eiéess o Citrate Oc’j\\
carbon to 'iy &
produce acids @?\' 4
Succ

SCENARIO Il (a =1)

Glucose
HMP
G6P —
Pathway
F6P -
amino t
acids TfP
\ /i,PEP
PYR<~
Nno excess
carbon to

produce acids

Actual a lies between these 2 cases —

supposed to be resolved by NMR. | 33




Redundancy Example for B. subtilis

Two extreme ways to get same thing done—produce 0 by-products &
cometabolize glucose + citrate to same (+/- 10%) overall carbon yield.
A) Glycose 2 (B) Glucose
r | 3.09 H| HMP .-.lj.u:a LOW HMP

5 3.01 - 2
G6P —2==—— Ribulose 5P 1, 0.082

/" R OOES = 3 ’/ GoP

1l envel 12
cell envelope A/Y \ 129

rmI 0.0

Xylulose 5P
000084 o i iy nucleic acid - :
x, , 5 : F6P o 1

I
3 R 0.359 amino acid 1
E4p H amino acid I . 3 0.052

r: 0.649

P Ribulose 5P

cell envelope

nucleic acid
0.35¢ amino acid

10.052 oy <
fipid: ~M=lIs==es 1p (1 e lipid TP i 0144 amfa:j J
rg | .11 T
amino acid NS amino acid - 1
nucleic acid 4" 3pg 7z v nucleic acid 4 3pg -
lipid 0.60 /  organidacid lipid 0.60 _ // organjg acid
g | 3.52 / / rg| 4.19 /
i i : [ 0.0 # amino acid E : re 0.0/ _amino acid
amino acid 2 peo r/ peptidoglycan amino acid r PEP / peptidoglycan
cellenvelope  2gg =~ ss27re ~ 7 & 3 . cellenvelope 288 = Lammrag «
0 3 1.13 ra 1.1 lipid synthesis R s 1.13 13 1.1; lipid synthesis
s it Al pyR AcCoA T === AMINQ acid s, fe 08 PYR™—% AcCoA T wmm 2Min0 acid
L o 146 L0 % . S 9 clo — iy
LTI 31 g mﬁ‘*ucetate LT 11 ey 213 . ;?ﬁ'd‘*acem?
& A n 7
! 2 0.293 = 0.794 200962 \ = - =
i Ty Iy
amino acid ry cir CIT amino acid T % W g eI 5oL CIT
nueleic acid 74 0AA e 0.377 0.515 nucleic acid ;?14 0AAC 0.50¢€
&ru\!h 0.0 Fas 0.808 :Tum'.h 1.04
e T T AL Y 0377 » = ~ VAL 1,104
I; r r amino acid Tag I I amino acid
ot % Dy, A e — <1 S iy
pccinate <_(;;T,_ Suge 0.377 ) 0.431 polyamines e uy P 1.U4 2 polyamines

N o -
Figure 1. Metabolite trafficking patterns that are predicted by linear programming to confer high earbon vield ;ul?igre—e to within 10% with the observed yield. Flux values shown
correspond to mmol/h g cell (basis growth rate is 0.4 h=). The maximized yield solutions also correspond to minimized (a) pyruvate kinase (r1s) or (b) hexose monophosphate pathway (rz)
flux. Potentially reversible steps are shown. Abbreviation: AcCoA, acetyl-CoA; CIT, citrate; E4P, erythrose-4-phosphate; F6P, fructose-6-phosphate; G6P, glucose-6-phosphate; a-KG,
u-ketoglutarate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PYR, pyruvate; R5P, ribose-5-phosphate; Ru5P, ribulose-5-phosphate; Suce, suceinyl-CoA; TP, triose phosphate; Xu5P,
xylulose-5-phosphate; 3PG, 3-phosphoglycerate; MAL, malate; PYK, pyruvate kinase; and PFK, phosphofructose kinase.

34
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Basic Computation Idea: Simultaneously
Optimize While Insuring Viability

Look at cell from Linear Programming standpoint
R = metabolic flux (mmol/g cell h)
L = biosynthetic load on a pathway (e.g. pyr = ala)

Given a growth rate u

l R1 MIN [R1] = resource use (Objective)
Subject to (Constraints):
R1=R2
R2=L1+R3+R5
R5 + R6 = R7
And other IN = OUT “balances”

2ATP produced from R/’s > 30.3u
2NADPH produced from R;s =18u

L3 = constant * u (e.g. a-ketoglutarate
drained off TCA = 1.078)

L1 = constant’ * u

L2 = constant” * u

Etc

35



Classic Thinking

ATP production tightly controlled to match use.

Example: Acceptor control mechanism in
mitochondria

Precise partitioning of resources between energy
production & biosynthesis.

Genes are expressed only when needed.

Unique solutions to problems.

36



A Model of Efficiency?

Theoretical ATP Yield Yy,,rp = 30 g cell/mol ATP

Reality: E. coli or B. subtilis growth on glucose
w/O,

*Observed ATP Yield ~ 10 g cell/mol ATP
~40% input carbon lost as acetate

37



Explanations

Not fully documented consumptive processes (e.g. so-
called maintenance energy).

Complex system where not simultaneously optimize the
integration of everything.

Waste = acetate?

Inefficiency is actually good. =
Significant redundancy in system eX|sts & somehow
related.

38



Inefficiency Derived from Imbedded
Reqgulation Actually Serves a Purpose?

Greedy Cancer Cells Resemble Many Bacteria Metabolically
From Business Week Online

CANCER WATCH

Giving A Sugar Shock To Cancer Cells

The drug, glufosfamide, consists of a traditional chemotherapy treatment,
ifosfamide, with a glucose molecule attached. Normal cells take in little of the
drug, but cancer cells, greedy for glucose, suck in large amounts and die. In
Phase 2 studies of glufosfamide used against advanced pancreatic cancer,
patients survived a median of 5.6 months, two months longer than the average for
late-stage disease. Threshold President George Tidmarsh says 9% of patients in
the trial are still alive after two years. Glufosfamide's side effects included nausea,
vomiting, and kidney impairment, which are common to chemotherapy.

It may also prove useful for lymphomas and breast and colon cancer, Tidmarsh
says. Threshold is recruiting pancreatic-cancer patients for a Phase 3 trial, and
results are expected in a year.

39



Inefficiency Derived from Imbedded
Reqgulation Actually Serves a Purpose?

Cooperation and Competition in
the Evolution of ATP-Producing
Pathways

Thomas Pfeiffer,’* Stefan Schuster,? Sebastian Bonhoeffer*+

Heterotrophic organisms generally face a trade-off between rate and yield of
adenosine triphosphate (ATP) production. This trade-off may result in an evo-
lutionary dilemma, because cells with a higher rate but lower yield of ATP
production may gain a selective advantage when competing for shared energy
resources. Using an analysis of model simulations and biochemical observa-
tions, we show that ATP production with a low rate and high yield can be viewed
as a form of cooperative resource use and may evolve in spatially structured
environments. Furthermore, we argue that the high ATP yield of respiration may
have facilitated the evolutionary transition from unicellular to undifferentiated
multicellular organisms.

20 APRIL 2001 VOL 292 SCIENCE www.sciencemag.org
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Editorial

* Most analysts include maintenance energy as a hard
constraint to reduce degrees of freedom. Math-driven &
concerned about multiplicity.

 If apparent maintenance is, in part, a manifestation of
structural conflicts & regulation, & engineering is
intended to “fix” the cell, why constrain the possibility
space in the design phase?

|

Worrying about your future mother in-law when only on
the first date!

41



The best E. coli can do is 72 theoretical w/o assuming
maintenance. Or is the conflict part of maintenance
along with imbedded regulation”? Zero acetate is
possible for Pyk = 0.

B. subtilis has potential closer to theoretical & no
conflicts. Imbedded regulation makes it behave
suboptimally from engineering viewpoint? Zero acetate is
possible for Pyk ~ 0.

Why do people use E. coli vs B. subtilis?

Let optimization guide improvements in also recombinant
protein production 2> -
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Model of Recombinant Protein Production

Goal:

NADPH
..,...,...p- GBP_/_'p- 6PGL —p 6PG _NADPH
: &
& PYR o o E4P

MAX r-protein synthesis assuming
normal biomass demand is met

Note: aa comp GFP = cell

Objective

— Maximize GFP production
— s.t. constraints, parameter
Solver = METABOLOGICA

— Linear optimization via 2-phase
simplex method + depth first
search

System Parameter: u

Constrained Fluxes

— Biomass loads, NADPH, min ATP
Metabolite Pools Constrained
(steady state => d[ J/dt = 0)

Ru5P

o

cell envelops * FEP

ATP i

FBP R5P *. amine acids, nucleic acids
11 RSP
NADH DHAP «— GAP S7P
+ b 9 24 E4P
lipids
ATP NADH 4{ 47 PEP
* G 333IPG
FADH 112 PYR P
ATP 19 Ac-CoA
40 KG
ids, nucleic acids, lipid * 3IPG 84 OAA
I 525 NADPH
1273 ATP
2PG
amino acid velope * PEP FADH
NADH ATP < NAD
aming acids, cell envelope * PYR OAA * ami ds, nucleic acids

NADH

Succ-CoA

NADH

NADH
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palyaminas * KG

Ac-P
]
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E. coli Modeling Results Further

Acetate by-production:

constrained / not constrained , _
Max GFP production solution

[ Y GFP?1 as acidsy

Intuitive because acids are
byproducts that waste carbon.
Divert raw materials away from what
you don’t want to what you do.

M
o

N
(9]

More interestingly,

GFP1T as Pykd

GFP Flux (umol/g/h)
» o

o
v

E. coli produces the most
recombinant protein when fluxes

10
8 15 converge to pyk-deficient E. coli

Pyk Flux (mmol/g/h) TAcids Flux (mmol/g/h)

Note: Feasible flux space generated from all solutions 44



Reqgulatory Check: Pyk  E. coll

PEP Glucose
KO pykF pykA X,Ts
PYR

— Causes PEP accumulation

G6P —» HMP
« 2 Ways to Accommodate T PEP Fip
— PEP allosteric inhibition of Pfk r = Pk
- J, glycolytic carbon use : Fip
-4 HMP pathway carbonuse ~ ©;
~ “Trickle” effect via Ppc :L Vo N
* PEP provides OAA precursor ~ PEP PYR > AcCoA =P = Acetate
« PTS-derived PYR provides PYKF PykA TMaeB
sufficient AcCoA precursor Ppc

« Keeps TCA cycle fed, but...

little leftover carbon to overflow as
acetate



Editorial

* Natural regulation helps in this case.

* Find a way to develop MILP & other
network models with & without regulation?
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