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Projected Global Energy Demand & Supply

Source: International Energy Outlook-2006 Report #:DOE/EIA-0484 (June 2006)



Petroleum-based vs. Synthetic Liquid Fuels
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Where could CTL Work?
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Coal-to-Liquid process using Chemical Looping process 
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Carbon Dioxide Sequestration Options

• Necessary Characteristics

- Capacity and price

- Environmentally benign fate

- Stability

Separation Transportation Sequestration

CO2 Removal



Carbon Dioxide Disposal Options

• Geological sequestration

• Ocean sequestration

• Biological sequestration

• Mineral sequestration

- Safe and permanent



Killer Lake

21m high self-sustained soda fountain

Photo: Bernard Canet, March 1995

In 1986, a tremendous explosion of 

CO2 from the lake Nyos, West of 

Cameroon, killed more than 1700 

people and livestock up to 25 km 

away.  Both lakes still contain huge 

amounts of CO2 (10 and 300 

millions m3 in Monoun and Nyos, 

respectively) 

http://perso.orange.fr/tppmsgs/msgs0.htm


Mineral Sequestration of CO2

• Mimics natural chemical 

transformation of CO2

MgO + CO2  MgCO3

• Thermodynamically stable

product

• Exothermic transformation

• Appropriate for long-term (U.S. DOE, 1999)

environmentally benign and unmonitored storage



Availability of Minerals

Rockville Quarry, Maryland (May 1999)

Serpentinite Ore Bodies

Mg resources that far exceed 
world wide coal reserves 
(10,000 Gt) 

World-wide distribution of Mg-rich ultramafic rocks 
(Los Alamos National Laboratory)



Direct Carbonation Studies: G-S reaction

Olivine reaction:

Mg2SiO4 + 2CO2 2MgCO3 + SiO2

Mineral size < 125 mm

(1) PCO2 = 1 atm;   T = 350 oC; Time = 24 hr

(2) PCO2 = 25 atm; T = 350 oC; Time = 8 hr

Results:

– no conversion of silicate minerals

– slow kinetics



Structure of Serpentine

Mg OHSi O

Side view

Top view (Brucite surface)

5.33 Å



Distribution of surface species on chrysotile (Bales and Morgan, 1985)

Our Proposed Mechanism of 

Congruent Dissolution of Serpentine (edge)



Our Proposed Mechanism of 

Congruent Dissolution of Serpentine (edge)

Mg3Si2O5(OH)4 + 6H+
 3Mg2+ + 2Si(OH)4 + H2O
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Effect of pH on chrysotile (serpentine) dissolution (PCO2 = 0, T = 25 ºC)

-16

-12

-8

-4

0

7.5 8 8.5 9 9.5

pH

lo
g

 C
o

n
c

e
n

tr
a

ti
o

n
s

 (
M

)

H2SiO4-2 H3SiO4- H4SiO4 Mg+2 MgOH+ SiO2 ppt

Visual MINTEQ Simulation
Effect of pH on Dissolution of Serpentine



1. Dissolution of CO2

2. Dissolution of mineral*

3. Carbonation/Precipitation

4. Termination of reaction

5. Precipitation of silica phases

6. Precipitation of phases of iron

and other minor/trace elements

Mineral particle

CO2 Gas bubbles

Gas in

Gas out
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6

CO2-rich

H2O-rich

Geochemical Model  



Enhancement of Mineral Dissolution 

• Pretreatment options

- Heat treatment of serpentine (630 ºC)

- Dry or wet attrition grinding (< 2 mm)

• Chemical additives: Strong acids, NaHCO3/NaCl

• Weak acids

 



Chemically Enhanced Dissolution of Serpentine

Various Chelating Agents
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Potassium acid phthalate KH2PO4



Solid Product - XRD
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solvent#1: 0.1M HCl

solvent#2: 0.1 M Acetic Acid

solvent#3: 0.1 M Acetic Acid + 0.1M Sodium Acetate

solvent#4: 0.1M Acetic Acid + 0.1M Ascorbic Acid

solvent#5: 0.1M Acetic Acid + 0.1M KHP

solvent#6: 0.1M KH2PO4 + 0.1M CaCl2

solvent#7: 1vol% Orthophosphoric Acid + 0.9wt% Oxalic Acid + 0.1wt% EDTA

solvent#8: 0.1M Acetic Acid + 0.1wt% EDTA

solvent#9: 0.1wt% EDTA

Dissolution of 

mineral

Precipitation of 

phases of iron 

and other 

minor/trace 

elements

(i.e. Fe –

FeO(OH) or 

Fe2O3)
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(a) Overall view 

of cross-sectional area

(dissolved and 

carbonated in solvent#7)

(b) Inner surface

(c) Dissolved 

outer surface

(d) MgCO3 crystal

SEM of cross-sectional view of 

serpentine aggregate 



Gas in

Gas out

Gas in

Gas out
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0.1M HCl w/o internal grinding

1vol%Orthophosphoric Acid+0.9wt%Oxalic Acid+0.1wt%EDTA w/o internal grinding

1vol%Orthophosphoric Acid+0.9wt%Oxalic Acid+0.1wt%EDTA with internal grinding

Effect of Internal Grinding



Removal of SiO2 layer
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• 5 ~ 35 wt% solid

• TGA analysis

• Tmax = 250 oC

• Pmax = 210 atm

Aqueous Carbonation Studies: G-S-L

High Pressure, High Temperature 

Three-Phase Fluidized Bed Reactor



• Reaction Chemistry 

Mg3Si2O5(OH)4 + 3CO2 + 2H2O  3MgCO3 + 2H4SiO4

• P = 1000 psig, T = 80°C, dp ≤ 75 mm, 5 wt% solid

and solvent#7 

- over 25% MgCO3 in 30 min, 

- 22wt% total Mg in filtrate MgCO3·3H2O

• Most of Fe remained as Fe(II) ion

Aqueous Carbonation Studies



Aqueous Carbonation Studies

CO2(aq) HCO3
- CO3

-2

• Solvent#7: 700 mg/mL  0.029 M Mg2+

• 3g CO2 in 100g H2O  0.68 M

• At pH = 2, [CO3
2-] = 2.53x10-6 M 

• [Mg2+]  >> [CO3
2-] 

(Pierantozzi, 1991)



pH swing

Serpentine + Acid + chelating agent

Grind Serpentine

Mg- and Fe-rich solution

Mg-rich solution

Precipitated iron oxide

Precipitated MgCO3

at higher T

at room T

SiO2pH 2

pH 8.6

pH 9.5

at room T
High P 

CO2 (SO2)

(Park and Fan, Patent publication # 20050180910)



Life Cycle Assessment

Post-processing 

(distribution over a region or landfill)

System boundary

EDTAOrthophosphoric acid

MgCO3Iron OxideSiO2

Coal

Mining of serpentine

Transportation ProcessingGrinding

NH4OH

Energy required 

for processing



Potential Usages of PMC & PCC

Industry Consumption [%]

Paper 72

Paints 8

Plastics/Rubber 9.5

Other 10.5

Market for CaCO3

PCC  

• PCC (precipitated CaCO3)

(Overall demand for PCC in USA was 7.75 MT in 2004)

– Crude CaCO3 can be found in nature (limestone, seashells)

– Increased demand from the paper industry since the mid-

1980s: acid  neutral papermaking, replace kaolin



Potential Usages of PMC

PMC w/o chelating agents

PMC w/ chelating agents
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• Fast dissolution of serpentine is achieved in a solvent made of 

weak acids and chelating agents, with in-situ physical activation.

• pH swing process allows carbon sequestration while generating 

value-added solid products – improves the overall economic 

feasibility of the carbon mineral sequestration technology.

• LCA provides a new parameter for the process optimization and 

estimates the actual amount of carbon sequestered.

Conclusions



Thank you


