Survey of Catalysts for Oxidation of Mercury in Flue Gas

Albert A. Presto and Evan J. Granite
National Energy Technology Laboratory

DOE/NETL Mercury Control Technology Conference
Pittsburgh, PA
December 2006
Mercury in Flue Gas

- **Elemental mercury (Hg₀)**
 - Emitted from high-temperature coal combustion
 - Insoluble in water
 - Can be removed with activated carbon injection (ACI)

- **Oxidized mercury (Hg²⁺)**
 - Typically assume HgCl₂
 - Water soluble, sorbs to AC

- **Particle-bound mercury (Hg(p))**
 - Both Hg₀ and Hg²⁺
 - Typically a small fraction of total mercury

- **Ratio of Hg₀/Hg²⁺ depends on a number of factors (coal-Cl, LOI, time-temperature history, etc.)**
Mercury Removal Technologies

• Activated carbon injection (ACI)
 – Inefficient mixing/contact: Requires C/Hg mass ratios >1000:1
 – AC is a general sorbent
 – Potentially makes fly ash unusable as cement additive
 – Low cost: AC costs < $1/lb
 – Current ‘best bet’

• Catalytic mercury oxidation
 – Use catalyst to convert Hg0 to Hg$^{2+}$
 – Removal of Hg$^{2+}$ with wet FGD (>90% efficient)
 – Proposed catalysts: SCR catalysts, carbon-based materials, metals and metal oxides

There is no “magic bullet” – mercury control will involve multiple technologies/products
Major Uncertainty: Reaction Mechanism

- Assumption: Chlorine (HCl or Cl₂) is the oxidizer for mercury in flue gas
- Hg⁰(g) + HCl(g)/Cl₂(g) is too slow to explain observed extents of oxidation
 - Hg⁰(g) + Cl(g) is fast, but Cl(g) concentrations are low
 - Cl₂ could be catalytically generated from HCl (Deacon process), but Cl₂ concentrations are generally low
- Likely oxidation mechanism is heterogeneous
Heterogeneous Reaction Mechanisms

- **Langmuir-Hinshelwood**

 \[
 A(g) \leftrightarrow A(ads) \\
 B(g) \leftrightarrow B(ads) \\
 A(ads) + B(ads) \xrightarrow{k_{surf}} AB(ads) \\
 AB(ads) \rightarrow AB(g)
 \]

- **Reaction between adsorbed Hg^0 and HCl**
 - Both Hg^0 and HCl can adsorb to carbon sorbents
Heterogeneous Reaction Mechanisms

- **Eley-Rideal**
 - Reaction between an adsorbed species and a gas-phase species
 - Either Hg0 or HCl can be the adsorbed species

\[
A(g) \leftrightarrow A(ads) \\
A(ads) + B(g) \overset{k}{\longrightarrow} AB(g)
\]
Heterogeneous Reaction Mechanisms

- **Mars-Maessen**
 - Hg⁰ reacts with lattice oxidant (O or Cl)
 - Oxidant is replenished from gas-phase

\[
A(g) \leftrightarrow A(ads) \\
A(ads) + M_x O_y \rightarrow AO(ads) + M_x O_{y-1} \\
M_x O_{y-1} + \frac{1}{2} O_2 \rightarrow M_x O_y \\
AO(ads) \rightarrow AO(g)
\]

- This mechanism may explain effectiveness of halogenated sorbents
 - Lattice halide could serve as the oxidant
Other Major Questions

- Is Hg\(^0\) physically or chemically adsorbed to sorbent surfaces?
- What are the intermediate products, if any?
- Is the final oxidized species HgCl\(_2\)?
- What are the effects of co-reactants such as SO\(_2\) and NO\(_x\)?

Big picture: We lack predictive ability!
SCR Catalysts

- Used for reduction of NO to N\textsubscript{2}
 - V\textsubscript{2}O\textsubscript{5}/WO\textsubscript{3} on TiO\textsubscript{2} support
 - T > 300\textdegree\ C

Flue gas:
- NO, NO\textsubscript{2}
- HCl
- SO\textsubscript{2}
- Hg0, Hg2+
- N\textsubscript{2}
- O\textsubscript{2}

NH\textsubscript{3}

Less NO, more Hg2+

NH\textsubscript{3}-rich zone
- NO reduction
- NH\textsubscript{3} adsorbs to V\textsubscript{2}O\textsubscript{5} sites

NH\textsubscript{3}-poor zone
- Hg0 oxidation
- HCl, Hg0, or both adsorb
SCR Catalysts: Reaction

- **Mechanism could be:**
 - Langmuir-Hinshelwood
 - Eley-Rideal
 - Either HCl or Hg⁰ adsorbed to surface

- **Likely competitive adsorption between NH₃ and HCl and/or Hg⁰**
 - Size of NH₃-rich and NH₃-poor zones determined by NH₃/NO ratio
 - Increasing NH₃/NO reduces the extent of Hg⁰ oxidation, and may force Hg⁰ from the surface
SCR Catalysts: Results

- **Laboratory scale**
 - >95% oxidation of Hg\(^0\) in simulated flue gas

- **Slipstream of subbituminous/bituminous flue gas**
 - 60-80% oxidation over 6 days

- **Pilot scale test (bituminous coal)**
 - SCR was placed downstream of ESP (T ~ 150° C)
 - Efficiency fell from 70% to 30% during 10-month test
 - Ash plugging may have been a problem

- **Full scale test**
 - Essentially no oxidation for lignite flue gas
 - Ash plugged/blocked catalyst and limited both NO and Hg\(^0\) conversion
SCR Catalysts: Outlook

- Installing SCR for NO\textsubscript{x} reduction may provide co-benefit Hg0 oxidation
 - Greatest benefit for bituminous coals (high Cl)
 - Long-term conversion is uncertain

- Installing SCR catalyst specifically for Hg0 oxidation may not be economical
 - Other materials are cheaper and give higher conversion to Hg2+
Carbon-based Catalysts

- Carbon catalysts, activated carbons, fly ash, or Thief™ carbon
- Mercury adsorbs to carbon sites on fly ash particles
 - Hg(ads) is oxidized (chemisorbed) on carbon surfaces
 - Correlation between extent of oxidation and UBC in ash
 - Increased oxidation across baghouses
Carbon-based Catalysts: Reaction

- **HCl adsorbs to carbon sorbents**
 - Langmuir-Hinshelwood mechanism
 - Adsorbed Hg\(^0\) and HCl
 - Eley-Rideal mechanism
 - Either HCl or Hg\(^0\) as adsorbed species

- **NO appears to inhibit oxidation**

- **Role of SO\(_2\) is unclear**
 - SO\(_2\) can oxidize to H\(_2\)SO\(_4\) on activated carbon
Carbon-based Catalysts: Results

- **Carbon catalyst** maintained >80% oxidation (pilot-scale) for two months
 - Effectiveness reduced by extended exposure to fly ash

- **Fly ash**
 - Performance depends on source – high (>50%) conversion for bituminous ash, very low (<10%) for unpromoted lignite ash

- **Thief carbon**
 - Achieved >70% oxidation in short-term tests
 - No long-term tests
Carbon-based Catalysts: Outlook

- Fly ash and Thief carbon may be economical
 - Inexpensive
 - Can be promoted with halogens
 - Regenerable
- Commercial carbon catalysts have shown good performance in pilot-scale tests
- These materials may be more cost-effective than metal or metal oxide catalysts
Metal and Metal Oxide Catalysts

- Iron/Iron oxides
- Noble metals – Cu, Pd, Au, Ag
- Ir and Ir/Pt
- MnO₂
Metal catalysts: Iron

- Fe and Fe/Cr catalysts showed poor conversion
 - Studies suggest that stainless steel may catalyze oxidation
- Fe$_2$O$_3$ may enhance Hg0 oxidation on fly ash particles
 - Fe$_2$O$_3$ in model fly ash (fixed bed) catalyzed oxidation
 - α-Fe$_2$O$_3$ injected into flue gas had little catalytic ability
 - γ-Fe$_2$O$_3$ coated onto fabric filters enhanced oxidation
 - Catalytic effect of Fe$_2$O$_3$ in fly ash may result from mix of species
Metal Catalysts: Noble Metals

• Palladium
 – Most exhaustively tested noble metal catalyst
 – Pilot-scale test using Pd deposited onto commercial forms
 – >80% oxidation for ten months
 • Sonic horns required to remove ash particles
 – Preliminary economics
 • 62% savings over ACI for 80% Hg removal
 • 9% savings over ACI for 90% Hg removal
Metal Catalysts: Noble Metals

- Expect similar performance for Cu, Au, Ag as Pd
 - Lack of mechanistic understanding is a hindrance!
 - Example: Au catalyst
 - Meischen and Van Pelt: Hg0 + HCl
 - Zhao et al: Hg0 + Cl$_2$; HCl reduced oxidation relative to Cl$_2$ alone

- Cu is an interesting case
 - CuO in a model fly ash oxidized >90% of Hg0 from simulated flue gas
 - CuCl can catalyze Hg0 even without HCl (Mars-Maessen reaction?)
Metal Catalysts: Outlook

- Noble metals (Pd) have promise
 - Possibly more cost-effective than ACI/COHPAC
 - Catalyst loading as little as 1 wt.%
- More work is required to better understand reaction dynamics
Recommendations for Future Research

• Understanding reaction mechanism and kinetics is paramount!
 – Predictive ability
 – Requires lab-scale tests using simulated flue gas
 • Downside: Differences between simulated and real flue gas

• Novel catalysts and catalyst supports
 – Cost effectiveness, regeneration

Acknowledgments

ORISE, IEP Program