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Presentation Outline

• SO3 Mitigation & Impacts

• SO3 Behavior in Power Plants

• SO3 Control Technologies

• Example 1 – Mg(OH)2 Furnace Injection

• Example 2 – Post-APH Sorbent Injection

• Conclusions
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Key Elements of SO3 Mitigation

• Assessment (where you are)
– Understand SO3 behavior in plants
– Identify key plant components (current & future)
– Assess plant SO3 behavior

• Define emissions target (where you’re going)
• Select control options (how to get there)

– Assess design and performance
– Assess balance-of-plant impacts
– Consider mitigation costs
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SO3 Impacts

• Visible plumes aren’t the                                   
only concerns

• Process impacts:
– Cold-end corrosion in air                              

heaters, ductwork and APCDs

– Air heater plugging (in combination with 
SNCR/SCR systems)

– Negative impact on mercury sorbents
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SO3 Behavior Overview
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SO3 Behavior - SCR
• SO3 is formed in SCR by 

conversion from SO2

• Extent of conversion 
depends on:
– SO2 levels
– Catalyst type
– Flue gas temperature (higher 

temp = more conversion)

• Conversion is typically 
0.5-1.5%
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• Active catalyst in SCR is V2O5

• Catalysts operate at 650°F - 750°F
• Potential for conversion of ≤ 2%
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SO3 Plant Behavior
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SO3 Control Technology Overview

- Sodium Injection

Source: Blythe, et. al, 2004 
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Example 1: Mg(OH)2
Furnace Injection

• Use CFD Modeling to
– Determine furnace temperature, flow, and species profiles 

including sulfur speciation
– Determine design constraints
– Quantify and optimize slurry injection efficiency

• Nozzle quantity and locations
• Droplet size distribution and slurry flow rate

• Assume that extent of MgO distribution is indicative 
of effectiveness of SO3 capture through plant
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Modeling Approach
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Injection Design Constraints

• Furnace Wall Accessibility
– Rear wall not accessible above 

elevation 106’-0” (enclosure)
– Front wall and sidewalls not accessible 

from El. 102’-0” to El. 115’-0” (headers); 
platforms at El. 116’-0” and 125’-0”

• High flue gas temperatures below 
El. 106’ may inhibit MgO reactivity 
through sintering (> 2500° F)

• Slurry flow rate is load dependent
• Use commercially available nozzles

EL 174’ -6”

EL 131’-1”

Burner El. 3

Burner El. 2

Burner El. 1

EL 18’-11”

EL 106’-0”

Front & Side
Injectors
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Conceptual Design Performance

Average temperature of 2400 ºF at injection plane; MgO released 
higher in furnace at lower temperatures so low chance of sintering
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Injection Sensitivities
(injection design, load range)
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Summary of CFD Results

• CFD modeling helps guide injection design and 
provides evaluations of injection performance
– Sidewall injectors greatly improved reagent coverage 

– Lower elevation injection improved mixing

– Marginal mixing improvement with increased nozzles

– 300-400 µm SMD droplet distributions yielded best results

• Successful SO3 reduction at unit test correlated well 
with predicted results
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Example 2: Post-APH Sorbent 
Injection

Use CFD to guide APH-ESP ductwork and sorbent 
injector design

• Improve uniformity of temperature field
• Turning vanes
• Quench air lances

• Assess sorbent injection distribution
• Optimize lance design and location for fixed conditions 

(# of lances, flue gas flow rate, sorbent injection rate, 
particle sizes)
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Turning Vane Design
Flue Gas From
Air Heater #3

Flue Gas 
to Chevron

• Design mixing device to 
minimize temperature 
variation at sorbent 
injection plane (~350°F)

Sorbent 
Injection
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Velocity
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(ft/s)

0

100



Reaction Engineering International

Quench Air Design

Lance 10

• Design quench air system such 
that the maximum temperature 
<350°F at sorbent injection plane
– Lance design & location

Temperature
(°F)

335

350

Lances
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Sorbent Injection Summary

SO3 Mole Flux (mol/m2-s)

Na/SO3 Flux Mole Ratio

Na Mole Flux (mol/m2-s)Sorbent Residence Time

• Turning vanes help temperature uniformity, 
but still not completely uniform 

• Quench air lances do not reduce all 
temperatures below 350 °F

• Sorbent injection constraints cause “spotty”
distribution, suggesting non-optimal 
coverage/mixing (but maybe enough)
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Summary

• SO3 impacts plant operation as well as plume
• SO3 behavior highly plant specific
• Control options should be tailored to plant needs

– Assess status, emission goals, appropriate technologies

• CFD tools useful in designing SO3 mitigation systems
– Capture unique plant geometry and operating conditions
– Describe and assess changes to flue gas environment
– Design sorbent injection system and evaluate performance
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Thank You

adams@reaction-eng.com


