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The Ohio River Valley CO, Project - A
Unique Public Private Collaboration

Battelle — Jim Dooley, Judith Bradbury, Diana Bacon, Prasad Saripalli, Mark
Kelley, Mark White, Frank Spane, Ken Humphreys, et al.

DOE/NETL - Charlie Byrer and others

AEP — Mike Mudd, Dale Heydlauff, Gary Spitznogle, Charlie Powell, Chris
Long, John Massey-Norton, Jeri Matheney, Tim Mallan, et al.

Ohio Coal Development Office — Jackie Bird, Howard Johnson

BP — Charles Christopher, Gary Kizior, Steve Lamb

Schlumberger — T.S. Ramakrishnan, Nadja Mueller, and John Tombari et al.
Ohio Geological Survey: Larry Wickstrom

Regional Geologists: Tom Wynn, Bill Rike, John Forman, Amy Lang
Stanford’s GCEP Program — Mark Zoback, Amie Lucier

CO, Capture and handling Companies

Regional Oil and Gas Companies

CRIEPI (Japan)

Midwestern Regional Carbon Sequestration Partnership (MRCSP) led by
Battelle



Ohio River Valley CO, Storage Project -
Key Motivations

* Alarge number of CO, sources lie in the Ohio River Valley region and it is
important to determine the CO,, storage opportunities in this region

* Potential geologic storage reservoirs in deep basins are poorly characterized

* Systematic field tests and regional geologic data are essential for
understanding storage potential and building stakeholder confidence

* The objective of this project is to characterize the CO, storage potential and
demonstrate safe and cost effective storage at a coal-fired power plant

* We are now working on site design and permitting feasibility aspects:
— Development of a capture and local transport system design
— Design for injection and monitoring systems
— NEPA and Underground Injection Permitting documents
— Enhancing regional geologic framework development
— Building on the foundation of stakeholder outreach

* Decision about moving to the injection and monitoring phase will be made by
the sponsors during the next year



Site Location

* 1300 MW pulverized coal
plant




Seismic Survey Demonstrated Impact of
Plant Noise and Lack of Faulting
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CO, Injectivity in the Mountaineer Area

* A number of geologic formations have been evaluated for CO, storage
potential in the Ohio River Valley region, as shown for Mountaineer site
below
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Mount Simon Sandstone/Basal
Sand - the most prominent
reservoir in most of the Midwest




Nature of Mt. Simon/Basal Sandstone In
Midwestern USA
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Lower Copper Ridge Dolomite -
A New Storage Candidate Identified

* Rocks under Rose Run
dominated by dense dolomite

(carbonate) layers b0 |
* However, storage potential was
observed in part of Copper 21 £
Ridge Dolomite (B-Zone at = =
8100-8300 ft depth) based on - |Gamma Ray

NMR testing Sk

* This has also been validated
through detailed stress tests in
AEP well, which show that this
zone may even have higher .
injectivity than the Rose Run 2 o

e Similar high permeability zone _ EZ
observed in several wells,
including one near Gavin plant.
This is promising for regional
storage potential




Detailed Reservoir Tests of entire open borehole to
Validate Injectivity in Rose Run and Copper Ridge
have been Conducted

Reservoir Testing
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Reservoir Tests on the B Zone =
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Is the “B” Zone Significant Regionally?
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Rose Run Simulation - Integrating Core,
Wireline, and Reservoir Test Data
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Rose Run Simulation - Injection Rate
Change and Dissolution for Vertical Well
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3-D Simulation of Injection in Rose
Run In Vertical Well

* |nitial modeling suggests several hundred kilo-tons/yr
CO, injection possible in single well (plant emits 7-8
million tones per year).

p=

10E-10 1.0E-08 10E-08 1.0E07 10E06 10E05 1.0504 10503 10502 10501 1.0E+00
Contours: Intrinsic Permeability, Darcy

——

5000 o

6.844627E-03 .y ] 0 “‘r
Isosurfaces: Gas Saturation D'Staﬂ(:e

"B REE FromWwey

0.2030405060.708




NEPA Environmental Assessment and
Injection Permit are being Prepared

USEPA Class V UIC Permit is under development, to be UIC Area of Review
submitted to West Virginia Department of Environmental C R TG i
Protection, when decided by AEP and DOE. S R

Discussions with local, regional, and national regulators
have been positive, and no roadblocks are foreseen at
this time.

Site characterization testing was designed to support
permitting process and should minimize additional
permitting efforts.

AEP#1 Test Well
Oil and Gas Well

Permit will be finalized when final well design and + A of Reiw

SCALE (MILES)

Injectate composition are determined.

Remaining risk assessment and reservoir simulation
tasks are being conducted to support permit.

A draft EA has been prepared and is under review

currently at Battelle Geologic cross section showing
well depths near AEP#1 (in blue).



Mountaineer— Potential Future work

* Subject to funding and permitting
* Select injection well design
* |Install injection well

* Install monitoring well

* Install surface capture/
Injection system
* Perform injection test

* Pre- and post-injection monitoring



CO5 Pipeline
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Select Injection Well Design, Install

* Options to utilize both zones

* Installation and operation phase subject to DOE and
AEP approval

Vertical Stepped Simultaneous
Vertical/Horizontal Vertical/Horizontal
NOT TO SCALE S €O, Inflow PHASE 1|| ©O:/nflow PHASE 2 || ©O: Inflow

Ground Surface

Fresh Water Aquifer

Containing Layers

Rose Run Injection Zone

Containing Layers

Copper Ridge Injection Zone

Containing Layer




“Layered Monitoring Objectives”

‘Injection/Capture System

Operational Safety

*Injected CO2
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Injection Well Surface

Parameter Monitoring )
Shallow Aquifer Groundwater

Deep Monitoring Well Monitoring Well
USDW Groundwater
Monitoring Well

Seismic Monitoring
Station




Ideal Monitoring Well
Location

* Predominant stress
orientation N47E +/-13
and lateral well, if
drilled is likely to
follow this trend

* Options limited to the
northeast due to plant
building, so a well
southwest of the
injection well is ideal

* A monitoring well is
essential for a detailed
monitoring program

;
2

, jection Radius (Preliminary
O capacity estimates suggest 2000 ft radius
for CO2 injectate)
Maximum horizontal stress (N47°E +/- 13°)
(Lateral well and hydraulic fracturing will
likely follow this orientation)

' Abandoned underground coal mine

* AEP#1 injection well
.A.'_A. Mountaineer Plant property boundary
0 2000 4000
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ft

Depth

Rose Run Injection at 30 and 100 t/day

* Pilot scale
simulations show a
spreading radius of

1000-2000 ft, within
the plant property
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Preliminary Monitoring Schedule Example

o i—

Time (Months)|-12 [-10 |[-8 |6 [4 [2 o 32 [34 [36

Post-Injection |

Phase| Preinjection Baseline Monitoring

Capture System
Compression
Transport

Injection System

SCADA

Health and Safety

i Mechanical Integrity Test
| Well Workover

Passive Seismic
Groundwater Monitoring
Soil-gas

Atmospheric Flux

Wireline

VSP/X-well Sesimic
Tracer Testing
Reservoir Sampling
Well Indicator sensors

X = sampling event
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CO, Source and Surface Completion

*Create capture
system for
slipstream from
existing plant
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Status Update on CO, Capture &
Transport Demonstration Plan

* The next phase of the project envisions integration
of CO, capture, compression, pipeline transport, and
deep well injection at the power plant

* Despite limitations, amine-based solvent systems
are the most cost effective and reliable technologies
at this time for post-combustion capture of CO,

* With help from AEP plant engineers, Battelle
developed an approximate configuration for
ductwork to obtain a flue gas slipstream from the
FGD unit, placement of the pilot capture unit, and
routing a high-pressure CO, line to the injection well.



Status Update on CO, Capture &
Transport Demonstration Plan

* Worked with Trimeric to develop a screening level
(£40%) cost estimate for a generic pilot-scale CO,
capture and compression plant; various MPS
configurations were considered.

* Worked with MHI to evaluate material and energy
balance information for a capture system based on
KS-1 and testing of Appalachian Basin coal samples.

* Worked with Fluor to develop basic design for
Economine FG*sm

* Next step is to develop more detailed (£15%) design
and estimates and select the approach that provides
the needed reliability and innovation



Plan View of AEP’s Mountaineer Power Plant
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Slipstream Access from New FGD Unit

Location of duct for
flue gas slip stream

Similar overhead raceway to
support slipstream duct
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Possible Location for a Small CO,
Capture Unit at Mountaineer Plant

Main flue gas duct

ST e
s oo (A

> Foot Print of
- Capture Unit



Location of Injection Well




CO, Capture - Process Flow of CO,
Recovery Pilot Plant at MHI Facility

* 4 tons of high-sulfur coal have been tested for site-
specific capture optimization during 2005

* Preliminary basic design has been prepared

* The test result show that the captured CO2 is
essentially food-grade.

. De-NOx:
I

Sampling Point Sampling Point Sampling Point Sampling Point
(De-NOx Inlet) (De-SOx Inlet) (CO, Absober Inlet) (Recoyered CO,)
Source: MHI

Sampling Point Exhaust
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Econamine FG Plus>M
(Source: Satish Reddy, Fluor)

* Recent Enhancements:
— Improved solvent formulation
— Flashed vapor thermo-compressor
— Absorber intercooling
— Low temperature reclaiming
— Improved blower design
— Cooling water minimization

* Results:
— Steam consumption reduced by ~20 to 30%
— Power consumption reduced by ~10%
— Cooling water requirement reduced by ~20%
— MEA consumption reduced by 70 — 90% depending on the flue gas



Summary - Progress in a Phased Manner

* Detailed site-characterization has been completed

* Substantial improvement in understanding features of
relevant geologic formations in Midwestern USA with
applicability to other mature basins

* Available evidence indicates sufficient injection potential for
pilot and larger-scale storage in the region

* New storage reservoirs have been identified and their
injection potential quantified

 Significant technical progress has been made to design an
integrated demonstration of capture, local transport, storage,
and monitoring test at a major power plant.

* Capture assessment and injection system design are nearing
completion

* Will initiate outreach and regulatory planning for next phase
pending sponsor approval



Thank youl!






