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Concrete masonry units

* 4 Billion blocks/year in the US
= 10 Million tons CO,/year

Environmentally benign products

Courtesy of IPCC, 2005

Improved concrete physical properties

* Higher compressive strength
* Faster curing time

 Reduced permeability
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Concrete Carbonation Literature

« Current areas of research:

« Hazardous waste immobilization (Bertos et al, 2004),
* CO, injection well integrity (Druckenmiller et al, 2005)

« Carbon dioxide accelerated curing (Dewaele et al, 1991)

« Carbonation in pressurized chambers

<
Conditions: P: 75-800 psi, T >25°C CO,

CO, uptake: 6.5 - 12 wt% cement
CO, uptake limit: 50 wt% cement

CaCO;, crust formation limiting CO, penetration (2-10 mm)
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Research Objectives

To understand the mineral carbonation fundamentals as applied to curing
concrete products to thereby:

1. ldentify causes of limited CO, uptake and penetration

2. Examine concrete carbonation in a 1-D flow-through reactor with
constant P, T, RH, Q

3. Examine the effects of select process parameters and optimize CO,
uptake and curing time



Mixing Carbonation
wl/c 0.26 Pressure atm
Cement 160g Flow 1Lpm
Sand 6409 Temp 20°C
No Coarse Gas Conc 20%
Aggregates Hydration

Time 1- 480 hr
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Aquatic Chemistry Fundamentals

C3S i) * 3H* <> 3Ca% + S0, + 30H-
C2S i) + 2H* <> 2Ca?* + Si0,° + 20H
Ca(OH) y¢ <> Ca?* + 20H

CO, g < CO; o

CO, ag t H,0 < H,CO, @)
H,CO, @) < HCO, ag t H*
HCO;. (g <> €O (o) + H*

2 -2
Ca*ag) + CO5%eq <> CaCly
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Microstructure Considerations

* Reaction products

» Hydration product: Portlandite, Ca(OH),
» Carbonation product: Calcite, CaCO,

* Microstructure (Shih et al, 1999; Dewaele et al, 1991)

* Heterogeneous infilling and blockage of meso pores by reaction products
—>CO, starved zones within porous matrix
—> Reduced permeability and porosity by 3 to 5 orders of magnitude
» CaCO, plating of exposed pore surface area

—> Ca?* starved aqueous solution
—> Reaction severly retarded (diffusion kinetics)
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Permeability Effects on Carbonation

Loose Grout Experiment

 Minimal permeability constraint

* No compaction, loose grout

* |dentical carbonating conditions and

grout mixture
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Cement Slurry Experiment
* No permeability constraint

* Increased moisture content w/c = 10

* |dentical carbonating conditions, OPC
only

T 10 CO,
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Permeability Conclusions
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Depth of Carbonation

*Previous limit of penetration

« 2-10 mm (approx)
* High pressure
+ 100% CO,

*1D flow through reactor results

« Near homogeneous
carbonation of sample

« 2.5 cm thickness

« Ambient conditions
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Carbonation Process Guidelines in 1D Flow Through System

Largest sequestration gains:

« Two-step carbonation: 19% higher uptake

« Sample age: <dhrs

Optimum carbonation time: 1 hr (std conditions)

Up to 50% faster curing time (20mins) with higher Pco,, flow and
pressure

Carbonation efficiency unchanged by: flow, pressure, P-q,, RH
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Conclusions

 Governing factor- Permeability ~ Cement slurry: 40 wt%

Aged Compacted grout: 7 wt%
* Favourable features:

* Value-added products

* No steam or heat requirement

* Rapid curing time (20 — 40 min)

» Homogeneous carbonate distribution

 Ambient conditions (25°C, atm P, low flow) with simulated as-captured flue gases

» CO, transport and reaction modelling with constant flow, temperature,
pressure and relative humidity

» Part of a broad portfolio of GHG mitigation tools





