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CO2 Accelerated Concrete Curing
• Mineral carbonation

• Alternative concrete curing process

• Concrete masonry units 
• 4 Billion blocks/year in the US 
≈ 10 Million tons CO2/year

• Environmentally benign products

• Improved concrete physical properties
• Higher compressive strength
• Faster curing time
• Reduced permeability

Courtesy of IPCC, 2005
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Conventional CMU Production Process

CO2 Emissions from Steam Curing
12-24 hrs, 55-75ºC, 100% Humidity, atmospheric 
pressure

Steam Curing
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Concrete 
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(CMU)

CO2 Accelerated Concrete Curing Process

CO2 Sequestered from the
Accelerated Curing Process

500kg CO2/ ton cement
1 hr, 20ºC, atmospheric pressure

Concrete
cement, sand,
aggregate, water

CO2 Curing
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Concrete Carbonation Literature 
• Current areas of research:  

• Hazardous waste immobilization (Bertos et al, 2004), 

• CO2 injection well integrity (Druckenmiller et al, 2005)

• Carbon dioxide accelerated curing (Dewaele et al, 1991)

• Carbonation in pressurized chambers

Conditions: P: 75-800 psi, T >25ºC 
CO2 uptake: 6.5 – 12  wt% cement

CO2 uptake limit: 50 wt% cement
CaCO3 crust formation limiting CO2 penetration (2-10 mm)

CO2
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Research Objectives  
To understand the mineral carbonation fundamentals as applied to curing 

concrete products to thereby:

1. Identify causes of limited CO2 uptake and penetration

2. Examine concrete carbonation in a 1-D flow-through reactor with 
constant P, T, RH, Q

3. Examine the effects of select process parameters and optimize CO2
uptake and curing time
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Standard Experimental Sequence

Mixing
w/c 0.26
Cement 160g
Sand 640g
No Coarse 
Aggregates

Compaction
Pressure 8 MPa
Diameter 127 mm
Height 25 mm

Casing
PVC Shell
Compacted grout 
mounted with
5 minute Epoxy

Carbonation
Pressure atm
Flow 1 Lpm
Temp 20ºC
Gas Conc 20%
Hydration
Time 1- 480 hr
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Apparatus Schematic

Flow
meter

P

Gas Supply

P

IR CO2
Analyzer

Datalogger

CPU

Thermocouple
RH/ Temp
Sensor

Sensor signal
Gas flow

Filter

H20 
Trap

vent



0

5

10

15

20

25

30

0 10 20 30 40 50 60
Carbonation Duration /min

mCO2 = mass of CO2 uptake [g]
ρCO2 = density of CO2 [g/L]

CCO2 = Concentration of CO2 [%]   
Q = Flow [L/s]
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Aquatic Chemistry Fundamentals

Dissolution
(Ca Supply)

Carbonate 
Dissociation
(CO3 Supply)

Precipitation
(CO2 Storage)Ca+2

(aq) + CO3
-2

(aq) ↔ CaCO3 (s)

CO2 (g) ↔ CO2 (aq)

CO2 (aq) + H2O ↔ H2CO3 (aq)

H2CO3 (aq) ↔ HCO3
-

(aq) + H+

HCO3- (aq) ↔ CO3
-2

(aq) + H+

C3S(alite) + 3H+ ↔ 3Ca2+ + SiO2
0 + 3OH-

C2S(belite) + 2H+ ↔ 2Ca2+ + SiO2
0 + 2OH-

Ca(OH)(2)(s) ↔ Ca2+ +  2OH-

+

=
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Microstructure Considerations
• Reaction products 

• Hydration product: Portlandite, Ca(OH)2

• Carbonation product: Calcite, CaCO3

• Microstructure (Shih et al, 1999; Dewaele et al, 1991)

• Heterogeneous infilling and blockage of meso pores by reaction products

CO2 starved zones within porous matrix
Reduced permeability and porosity by 3 to 5 orders of magnitude

• CaCO3 plating of exposed pore surface area

Ca2+ starved aqueous solution
Reaction severly retarded (diffusion kinetics)
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Age Effects on Carbonation 
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Aged Uptake:      6.8%

Carbonate Dist: 2.5%

Unaged Uptake:     10.3%

Carbonate Dist : 0.7%
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Permeability Effects on Carbonation
Loose Grout Experiment 

• Minimal permeability constraint

• No compaction, loose grout 

• Identical carbonating conditions and 
grout mixture

Cement Slurry Experiment
• No permeability constraint
• Increased moisture content w/c = 10
• Identical carbonating conditions, OPC 
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Permeability Conclusions

Increasing  Permeability
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Depth of Carbonation
•Previous limit of penetration

• 2 - 10 mm (approx)
• High pressure

• 100% CO2

•1D flow through reactor results

• Near homogeneous         
carbonation of sample

• 2.5 cm thickness

• Ambient conditions Flow Inlet OutletCore
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Carbonation Process Guidelines in 1D Flow Through System
• Largest sequestration gains: 

• Two-step carbonation: 19% higher uptake
• Sample age: <5hrs

• Optimum carbonation time: 1_hr (std conditions)

• Up to 50% faster curing time (20mins) with higher Pco2, flow and 
pressure

• Carbonation efficiency unchanged by: flow, pressure, PCO2, RH



COCOCO222 Accelerated Concrete CuringAccelerated Concrete CuringAccelerated Concrete Curing
A Greenhouse Gas Mitigation TechnologyA Greenhouse Gas Mitigation TechnologyA Greenhouse Gas Mitigation Technology

Conclusions
• Governing factor- Permeability Cement slurry: 40 wt% 

Aged Compacted grout: 7 wt%
• Favourable features:

• Value-added products
• No steam or heat requirement
• Rapid curing time (20 – 40 min)
• Homogeneous carbonate distribution 
• Ambient conditions (25ºC, atm P, low flow) with simulated as-captured flue gases

• CO2 transport and reaction modelling with constant flow, temperature, 
pressure and relative humidity

• Part of a broad portfolio of GHG mitigation tools




