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Overview of Contribution to ZERT

e Overall performance assessment framework
for simulating geologic carbon dioxide
sequestration

e Coupling systems models and process models

* Focus on possible release pathways of CO,

from a borehole to the accessible environment
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Systems and Process Level Models are being Integrated
with Experimental and Field Observations
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Along The Critical Path (outline of this talk)

 Wellbore Processes
— Faitlure Mechanisms
— Processes
— Approach

e Coupled Fluid Stress
— Stress Environment

— Background, Computational Effort
— LANL Simulation Model

 Validation Is important (another talk)
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Nordbotten, J, M. Celia, S. Bachu, A. Dahle, Env. Science and
Technology, pp. 602-611, 2005.
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Non-darcy multi-phase
fluid behavior

e Coupled with formation
heat and mass transfer

o Coupled with
geochemical reactions

e Coupled with stress
models
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Kv= Kh Injection at 200 m and 400 m
1890 tons in 3 years

500

Elevation

_arbonate, Basa ,
Sandstone, Coal

e Fluids

Kh=4e-12 m2

Excess

1
Kh=1e-17 m2

— Water, Brine, Gas, e
Hydrocarbons(?) e

e Temperature
— 10-100 C

e State of Stress

— Lithostatic + Shear (1-
20 Mpa) T e e o=




Background on Coupled Fluid Stress Codes

e Technology used by
— Oil Industry (North Sea)
— Geothermal
— Hot Dry Rock

e Finite Element Based Codes
— Good for Stress
— Poor for flow (nonlinear)
o EXxplicit (Sequential
Coupling)
— Coupling is very strong
between equations
— Restricted to small time steps

 Joint or aperture behavior

— Barton and Bandis (1983-
1985)

— Olsson and Barton (2001)

« Account for changes In:
— Permeability
— Fluid Storage

o EXxplicit fracture
representation iIs common

e Linear Elasticity



— Conservation of Energy
— Stress Equations (3)

e Coupled reactive transport

o Material type
— Continuum representation
— Fracture networks



Puzzle Pleces

e Generalized Double Porosity
— Sub-grid scale behavior on large grids
— 1-D decomposition algorithms make this fast

— “Generalization” means spatially dependent
resolution

e Combined Control Volume Finite Element and
Finite Element

* Reduced Degree of Freedom Algorithms
(RDOF)



Finite Volume and Finite Elements

e Finite Volume for Flow and
Reactive Transport

— Works well for nonlinear
problems (separation of fluid
and geometric properties,
upwinding)

* Finite Elements for Stress
Equations

— FE shape functions allow for
Xy terms and shear stress

 FEHM grid technology (can
generate both FV and FE
coefficients)




primary nodes |
* Local communication o

and storage thought

matrix material

e Multiple nodes are
necessary in matrix to
model gradients




matrix
material

matrix

e Stress-fracture | ™ mara
aperture-permeability i i

data from the laboratory dode pomesbity

work Is used to modify

the double porosity

parameters

* Block sizes are large
(no explicit fractures)




as heat transfer occur at slower
time scales

— Nonlinear phenomena, such as

phase changes, are often local by

nature, comprising only a small
percentage of the total
gridblocks.

Computations

— Eliminate “passive’ degrees of
freedom

— Reorder linear system based on
convergence of nonlinear
problem
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Note:

eSame eguations are solved as
In the fully implicit method
«Simplification is in the solver



The Approach

Generate all conservation equations (Newton-
Raphson

Generate the GDPM equations (spatially variable)
Pre-solve the GDPM equations
Reduce the degree of freedom (RDOF)

Solve the linear system of equations (Preconditioned
Krylov space methods

Back-solve the RDOF equations
Back-solve the GDPM equations




Advantages

GDPM, RDOF can be space and time
dependent

Same grid for flow, transport, stress
simulations

Easy testing of different pore pressure models

Simple incorporation into the GoldSim
framework



LANL Approach THM

e Tseng, P. H., and G. A. Zyvoloski, A Reduced
Degree of Freedom Method for Simulating Non-
Isothermal Multi-phase Flow in Porous Medium,

Advances in Water Resources, Vol. 23, pp 731-745,
2000.

 Bower, K. M., and G. Zyvoloski, A Numerical
Model for Thermo-Hydro-mechanical Coupling In
Fractured Rock, Int. J. Rock Mech. Min. Sci., Vol. 34,
No. 8., pp. 1201-1211, 1997.



Impermeable rock—

Co,
reservoir

mpermeable rock: m(X,Y, z
Reservoir rock: 100 mx 0.1 mx 50 m (x, y, z)
Well bore porosity : 0.4

Reservoir rock porosity : 0.2

Impermeable rock porosity : 0.0

Well bore permeability : 10° m?

Reservoir rock permeability : 1012 m?

Initial Pressure : 17 MPa

Initial Temperature : 50 °C
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