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Mercury in Coal Plants

 About 75 tons Hg mined per year
e 50 tons emitted, rest captured

« Oxidized Hg key

* Role of SCR

Hy", Hg*, Hy, - form important for capture
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Regulatory Forcing

EPARegs.. Phase I: 50 --> 38 tons

Phase | focuses on using existing SOx/NOx
control equipment

Niche for low-cost means of promoting
oxidation?

Phase Il: 38-18 tons (2018)



Objectives/Overview

o |dentify the mechanism(s) responsible for
oxidation

» Make use of this to promote oxidation in
low cost/low impact way
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Data Comparison
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Mechanism

Hg + HCI --> HgCl +H
Hg + Cl, --> HgCl +Cl
Hg+Cl+M --> HgCl + M

HgCl + HCI --> HgCl, +H
HgCl + Cl,, --> HgCl, +Cl
HgCl+Cl + M --> HgCl, + M
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Mechanism

Hg + HCI --> HgCl + H Energy Barrier too High
Hg + Cl, --> HgCl +Cl No Cl, at High Temperatures
Hg+Cl+M --> HgCl + M At collision limitat room T

HgCl + HCI --> HgCl, +H Detailed analysis, too slow
HgCl + Cl,, --> HgCl, +Cl No Cl,
HgCl+Cl+M --> HgCl,+ M Unknown rate, but must be fast



Back Reactions Fast

HgCl + H --> Hg + HCI
HgCl + OH --> Hg + HOCI

Reactions too fast to allow any HgCl, to
survive at 900°C

Consistent with equilibrium
Not consistent with data




Add the Cool-Down Region

Sample
Reactor iuench
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Two Zones Needed

Hot: HCI+OH --> ClI +H,0
Reach equilibrium Cl
Hg + Cl + M -->HgCl + M fast, but
HgCl + H -->Hg + HCI much faster



Two Zones Needed

Cold: CI+CI+M --> Cl, + M

This is slow, and leaves a large Cl population in
cold zone

Hg+Cl+M --> HgCl + M

Hg + Cl, --> HgCl +Cl
HgCl +Cl+M --> HgCl, + M

Reverse reactions are now stopped due to
cold temperatures



Implications

No HgCl, exists in any of the hot
experiments

It I1s all made during quench

But, high temperature is heeded to prepare
the oxidizing agent

How can this be used to promote oxidation?
Need for more flexible experiment



Quartz Flow Reactor




Oxidation by HCI
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Water Vapor
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Kinetics

 Indrygas, equilibrium Cl is 20x higher than
Inwet gas at 922°C

 This rationalizes why the Hall ef a/ data are
SO reactive

e HCl+OH = Cl +H,0 goes to left
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Kinetics

 Indrygas, equilibrium Cl is 20x higher than
Inwet gas at 922°C

 This rationalizes why the Hall ef a/ data are
SO reactive

e HCl+OH = Cl +H,0 goes to left



How to Promote Oxidation?
 Increase amount of Cl entering the quench
Zone
e Promote decomposition of HCI:
HCI + OH --> Cl +H,0
HClI+H --> Cl +H,
HCl +0 --> Cl +OH

e Provide free radicals via addition of chain-
branching species



Hydrogen Promotion

H, + OH --> H+H,0
H+0, --> OH+0
0+H,0 --> OH +OH

--> Net 2 OH generated per H, consumed, but:

H, + Cl --> HCI + H competes with
HCI+OH --> Cl + H,0



Hydrogen Promotion
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Temperature Dependence
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Observations and Kinetics

* Increase conversion at lower temperatures

» Possible deactivation at higher
temperatures

 Very low temperature oxidation an open
Issue



Carbon Monoxide

. CO+0H --> CO,+H
e H+0, --> OH+0
e 0+H,0 --> OH+OH

—> Achieve excess OH concentrations

—>Higher temperature needed?



CO and Hydrogen
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Conclusions

* Promotion of homogeneous oxidation can
be done with very small amounts of
additive

* Mechanism appears consistent with our
present understanding

e Ongoing work focuses on key issues



Extend Chemical Kinetics

e NO+OH+M > HONO+ M
« Hg+CIO - HgO +Cl
e Sulfur reactions



Behavior in Realistic Quench

OH




In Practice

» Generate CO/H, mix via natural gas
reformer (no water gas shift needed)

* Fuel costs low: ~$75,000/yr for 600 MWe
plant @ 50 ppm H, and $5/MMBtu gas
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