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The Critical Issues in Diesel Reforming Catalyst & 
Catalytic System Development
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What Constitutes an Ideal Diesel Reforming Catalyst?

• Atomically dispersed active site.
• Stably anchored over the support surface.
• Effectively cleaving C-H, C-C & C=C bonds through 

oxidative process.
• Competitively releasing hydrogen over oxidation 

to H2O.
• Competitively oxidizing surface carbon over C=C 

bond growth.
• Minimum chemical binding energy with sulfur.
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Objective: Developing Perovskite Based ATR Catalyst
• The Perovskite Catalyst…

- Low cost material. 
- Stable under high temperature & redox environment.
- Exchangeable A & B sites lead to ionic dispersion & improve catalytic activity.

A 
B Perovskite ABO3 Structure CxHy CO, CO2
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Redox Cycle

Conductivities of both e- and VO¨ of perovskite enhance catalytic active 
site through electron & oxygen vacancy transfers in a redox process. 



6

Pioneering 
Science and
Technology

Argonne
National

Laboratory

Approach: ANL Perovskite Catalyst Materials

• Perovskites include chromite, aluminite, manganite, 
ferrite, …

• Self-combustion synthesis (Pechini method)
• B-site doped with Ru, Rh, etc…
• A-site exchanged with La, Sr, Ba, Gd, Ce, Pr, …
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Catalyst Activity Study: Test Apparatus & Conditions
• Fuel

- Alkane surrogate - C12H26
- Organic sulfur - Dibenzothiophene

(50 ppm S)
- Other HC surrogates –

Monoaromatics, Polyaromatics, 
Cycloparffins …

• Temperature
- Reactor:  700 °C to 800 °C
- Preheating: 200 °C.

• Input Mixture
- ATR: O2/C = 0.3 ~0.5, H2O/C = 1 ~ 3 

• Space Velocity
- Fuel Flow Rate = 2.8~5.0x10-3

gfuel/gCat•sec
- GHSV = 50 K ~ 100 K hr-1

Diesel Reforming Catalyst Test Plant
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Catalyst Activity Study: Test Plant
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Catalyst Activity Study: Investigation on ATR Catalytic 
Light-Off for Perovskite Material

Ru doped perovskites demonstrate low light-off temperature for 
hydrogen production suitable for SOFC application
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Catalyst Activity Study: Basic Performance 
Parameters in Catalytic ATR Reforming

Chemical Reactions in Diesel ATR Reforming:

CnHm + xO2 + yH2O = nCO2 + (m/2 + 2n –2x)H2 + (y + 2x -2n)H2O

An example:   C12H26 + 6O2 + 12H2O = 12CO2 + 25H2

Definition of Reforming Performance:

H2 yield =  CH2/ Cfuel

Reforming efficiency = {CH2∆HcH2 + CCO∆HcCO}/ Cfuel∆Hcfuel

COx selectivity = {CCO2 + CCO}/ nCfuel

Ci = Molar flow of i,  
∆Hci = Heat of combustion of i,

n =  Number of C in fuel molecule
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Catalyst Activity Study: Benchmarking New 
Perovskite Materials with Rh-Based Catalyst
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Sulfur Tolerance Study: Recoverable Activity over 
Perovskite Materials

Introducing 50 ppm sulfur in the form of DBT 
temporarily suppress reforming efficiency 
and COx selectivity.

Dibenzothiophene (DBT) and its derivatives 
are difficult to be removed from diesel through 
HDS process …
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Sulfur Tolerance Study: Resistance to Poisoning 
Improves at Higher Operating Temperature
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Sulfur Tolerance Study: Stable Reforming Observed 
during 100-Hr Aging Test with 50 ppm S in DBT

Excellent catalytic stability was observed during 100 hour 
aging test with S contaminated fuel 
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Coking Prevention Study: Issues with Heavy 
Hydrocarbon Components in Diesel

C13H14
C9H12

C13H10

C8H8
C12H16

C10H21
C16H32
C22H38

C16H34

Ave. or 
Ref. 

Formula 
(ANL)

Representative Molecular 
Structures

1.6
2.2

1.7

1.8
3.5

0.3

Di-aromatics
Alkylnaphthalenes (a)
Acenaphthenes
(b)/Biphenyls
Acephthalenes
(c)/Fluorenes (d)

3.2
0.9

7.3
3.2

Mono-aromatics
Alkyl benzenes (a)
Naphthenebenzenes
(Indans (b) + Tetralins (c) + 
Indens (d))

23.6
20.6
6.5

29.6
11.5

4

Cycloparaffins
1-ring cycloparaffins
2-ring cycloparaffins
3-ring cycloparaffins

39.738.7Paraffins

Wt% 
Analysis, 

Exxon

Wt% 
Analysis, 

ANL

Compound Type

C13H14
C9H12

C13H10

C8H8
C12H16

C10H21
C16H32
C22H38

C16H34

Ave. or 
Ref. 

Formula 
(ANL)

Representative Molecular 
Structures

1.6
2.2

1.7

1.8
3.5

0.3

Di-aromatics
Alkylnaphthalenes (a)
Acenaphthenes
(b)/Biphenyls
Acephthalenes
(c)/Fluorenes (d)

3.2
0.9

7.3
3.2

Mono-aromatics
Alkyl benzenes (a)
Naphthenebenzenes
(Indans (b) + Tetralins (c) + 
Indens (d))

23.6
20.6
6.5

29.6
11.5

4

Cycloparaffins
1-ring cycloparaffins
2-ring cycloparaffins
3-ring cycloparaffins

39.738.7Paraffins

Wt% 
Analysis, 

Exxon

Wt% 
Analysis, 

ANL

Compound Type

(a)

(b)

(c)

(d)

(a) (b)

(c) (d)



16

Pioneering 
Science and
Technology

Argonne
National

Laboratory

Coking Prevention Study: Correlation b/w Efficiency & 
Residual HC’s Formation from Diesel Components
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Coking Prevention Study: Deactivation Mechanism & 
Coke Formation by Polyaromatics
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• Proposed Model of PAH impact on 
Reforming and C-formation

- Low cetane# / high Tig make them 
hard to oxidize.  

- Competition b/w oxidation vs. C 
growth 

Long resident time and slow decomposition 
of PAH over active site reduce reforming rate 
& increase residual HC’s & coke formation!
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Coking Prevention Study: Fishbone Analysis on Root 
Cause of Coking
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Catalyst Characterization: Identifying Perovskite 
Structure & Ru Active Site

Conventional (XRD, SEM, ICP, TPR, BET…) and Advanced (EXAFS, XANES) 
characterization methods were used to study structure-activity relationship

EXAFS reveals Ru embedded in perovskiteXRD confirms perovskite structure
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Summary: Knowledge Gained on Perovskite Catalyst 
& Its Applicability to SECA

• Ru doped perovskites demonstrated excellent catalytic 
reforming activities comparing with Rh based catalysts. 

• Active catalysts are the perovskites containing Ru at B site 
with oxygen vacancy and high surface area.

• Improved sulfur tolerance and perovskite stability were 
demonstrated through 100-hr aging at higher operating 
temperature.

• Root cause of catalyst deactivation through coking by 
aromatics was identified. Improvement through catalyst 
material refinement and new reactor engineering approach 
is underway. 

Perovskite ATR catalysts provide new low-cost 
alternatives in fuel reforming for SECA.
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Diesel Fuel Mixing & Cool Flame 
Study
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Critical Issues in Fuel Mixing
Diesel

Recyc.
Exhaust

reformate

Air

• Completed vaporized fuel is 
essential for catalytic reforming.

• Diesel fuel cannot be evaporated 
without fractioning.

• Incomplete mixing creates “hot 
spots” on the catalyst and leads 
to sintering & coke formation.
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ANL Approach: Diesel Injection Technology 
Improvement & Pre-reforming through Cool Flame

• Diesel Injection – A joint effort between ANL and International 
Truck and Engine Corporation (ITEC)
- ANL is currently building a test facility for air-steam-fuel-exhaust gas 

mixing study with catalyst testing capability for ANL autothermal
reforming process.

- ITEC provides diesel-fuel injectors and fuel-injection control system

L. Hartmann, K. Lucka, and H. Kohne, 2003

• Cool Flame – An alternative 
method to further improve fuel 
mixing and pre-reforming. 
- What is cool flame?
- How it may benefit SECA fuel 

reforming effort?
- Our approach – Investigating 

operating condition and gas 
composition in cool flame.
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Diesel Mixing Study: Fuel-Air-Steam Mixing Facility 
Under Construction
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Diesel Mixing Study: ITEC Diesel Fuel Injector

• Pulsed injection with pulse rate of
10 ~ 70 Hz (500 ~ 4000 rpm for 4-cylinder engine)

• Injection duration
Below 1 ms at idle to 20 ms at high load

• Injection nozzles
6 holes around

• Fuel injection rate
Peak : 105 mm3/stroke at 240 bar and 600 rpm
Idle : 9.2 mm3/stroke at 45 bar and 600 rpm
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Diesel Mixing Study: Demonstration of Fuel Injection 
Test Chamber
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