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Issue: Are There Rapid Mercury Oxidation and/or 
Reduction Reactions Occurring in Plumes 
Associated with Coal-Fired Power Plants?

• Evidence
– Rapid Hg(II) Hg(0) in 0.5-1 m3 static dilution chamber 

experiments
• Measurements using pilot, full-scale PP flue gases
• No reduction with waste combustor flue gases

– Divalent fraction of measured total mercury = 1/10 
expected, 25 km from coal-fired plant

– Large-scale match of measured vs. modeled Hg(II) 
downwind of Ohio R. valley improved by reduction rxns

• Objections
– No fundamental chemical mechanism to date
– ??Wall-effect reaction rate changes in chambers
– Deposition, other sources, unmeasured stack ratios in 

field measurements
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Implications of Possible Mercury Redox 
Reactions (If It’s the “Re...” Part)

• Deposition
– Marginally lower (but 

observable) deposition 
downwind of such sources

– Less overlap between 
sources=critical source 
targeting for management

– More long-range transport
• Global balance

– An additional “source” term 
with too few sinks

– Need for more and more 
rapid removal
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CURRENT MODELING OF 
MERCURY IN PLUMES
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Plume behavior in model atmosphere
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Plume behavior in “real” atmosphere
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EPRI Plume Mercury Chemistry 
Program
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Plume Mercury Chemistry Research Program
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Comparison of Plants I and II

Power Plant Site HgT, g/s HgII, g/s Fraction 
Divalent

Coal Cl 
(ppm)

Coal S 
(ppm)

Plant Bowen, 
Georgia

1.2x10-3 2.1x10-3 0.61 1,094 0.96

Pleasant Prairie 
Power Plant, 
Wisconsin

1.1x10-2 1.7x10-3 0.14 14 0.44

From ICR database
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Pleasant Prairie Power Plant, Pleasant 
Prairie, Wisconsin
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Schematic of Pleasant Prairie Power Plant 
Operating Configuration at Time of Campaign

*

*indicates mercury measurement location
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Plume mercury chemistry: Pleasant 
Prairie Experiment

Ontario Hydro/CEMsOntario Hydro/CEMs

Static/Dynamic Plume Dilution 
Chambers

Static/Dynamic Plume Dilution 
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Twin Otter w/TekransTwin Otter w/Tekrans
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P4 Plume from Air and Ground
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Diagram of the Tekran Automated Hg 
Analyzer
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Tekran Sample Flow Diagram
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Sample Train, Ontario Hydro Method
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Dynamic Plume Dilution Stream

Instrumentation Courtesy Matt Landis, Bob Stevens; US EPA
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PLEASANT PRAIRIE POWER 
PLANT FIELD CAMPAIGN
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Stack Sampling

• Mercury SCEM at the stack inlet, measuring mercury 
continuously during each flight.

• Three Ontario Hydro samples were taken at the stack 
when the Hg SCEM was set up.

• One additional Ontario Hydro sample was taken each 
flight day.
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Pleasant Prairie Hg Emissions
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Plume Sampling Aloft

• Background racetrack ~5 miles upwind
• Sample at plume tipover (effective stack height), ~5 miles 

downwind, ~10 miles downwind 25 minutes each
• Background concentrations (27 August 2003)

– Hg0=2.0 ng/Nm3 (N= 1 atm and 0°C)
– Hg(p)=7.5 pg/Nm3

– RGM=9.8 pg/Nm3

• Plume demarcation is NOx excursion, background flight 
used to set trigger point for sampling

• Short plume eddy transects suppressed
• Lag time about 0.1 sec



23© 2005 Electric Power Research Institute, Inc. All rights reserved.

Sample flight track, August 27, 2003
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Calculation of Dilution Ratios

DR =  
(stack NO  -  background NO )
(plume NO  -  background NO )

x x

x x
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Hg0 vs. Distance, Average of 4 Runs

Hgp,
µg/Nm3

Hg0, 
µg/Nm3 RGM, µg/Nm3 Total Hg, 

µg/Nm3 % Hg0

Stack
Average 0.00 3.2 6.2 9.4 66
Std. Dev. 0.00 0.5 0.7 0.7 5.1
0 Miles
Average 0.06 10.4 2.0 12.4 84
Std. Dev. 0.04 3.1 0.5 3.2 5.0
5 Miles
Average 0.10 15.7 1.7 17.5 89
Std. Dev. 0.06 8.7 0.8 9.3 4.0
10 Miles
Average 0.09 12.4 1.6 14.1 88
Std. Dev. 0.08 4.8 0.7 5.4 2.6
* All concentrations are based on normal (N) conditions defined as 1 atmosphere pressure, 20°C, 

and 3% O2. – background concentrations removed



26© 2005 Electric Power Research Institute, Inc. All rights reserved.

Results

• The fraction of RGM in the plume is lower than that in the 
stack at each of the in-plume measurement locations 
aloft

• RGM dropped by 38% on average from in-stack 
measurement to effective stack height

• RGM dropped by a total of 47% on average from in-stack 
measurement to the 5-mile sampling location

• No further drop in RGM was observed between 5 and 10 
mile locations
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IS THERE A SUPPORTABLE 
MECHANISM?
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Hints Of A Mechanism

• “Homogeneous and heterogeneous reactions of atmospheric 
mercury(II) with sulfur(IV),” Yusuf, Lahoutifard, Maunder, Scott 
(presented at: XII ICHMET, Grenoble, France, May 26-30, 
2003) 
– Atmospheric models suggest reduction of Hg(II) to Hg(0) 

by S(IV) 
– Reaction investigated in aqueous phase (reductant = 

sulfite) and on particulate surfaces (reductant = SO2(g))
• Both HgS for SO2 ≈ Hg
• Propose HgO(s) + SO2(g) Hg(0)(g) + SO3(g) for SO2 >> Hg
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Reaction Mechanism Studies
Speciation due to redox 
is dynamic in power 
plant stacks and 
plumes.

A fraction of the oxidized 
mercury may be 
spontaneously reduced
to the elemental form, 
which is not readily 
trapped or deposited.

One  reduction reaction 
for Hg(II) is known:
HgSO3 + H2O Hg0 + H2SO4

Several new candidate reactions are being studied:
simple reduction

HgCl2 + H2 Hg0 + 2 HCl
HgCl2 + 2 HO• Hg0 + 2 HOCl

coupled reduction
Hg(NO3)2 + SO2 Hg0 + SO3 + N2O5

Some elemental mercury 
formed during 
combustion may be 
oxidized in the stack to 
Hg(II):
Hg0 + ½ O2 HgO

Hg0 + Cl2 HgCl2
2 Hg0 + HOCl HgCl2+ H2O
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Kinetic Studies of Mercury 
Reduction Rates

More precise plume modeling requires accurate rate constants,
measured under controlled laboratory conditions

Photochemistry
• photolysis of CH3NO2 generates HO• 

HgCl2 + 2 HO• Hg0 + 2 HOCl

• rate of reaction of reference 
hydrocarbon reports on the reaction 
with HgCl2

Gas-phase chemistry
• H2 produced by water-gas shift 

reaction over fly ash:

HgCl2 + H2 Hg0 + 2 HCl

• rate of HCl formation monitored by in 
situ gas phase IR spectroscopy

Coupled redox reactions

• the overall thermodynamics is affected by incorporating ligand
chemistry:

Hg(NO3)2 + SO2 Hg0 + SO3 + N2O5

HgSO3 + HO• Hg0 + HSO4
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Conclusions

• Aircraft measurements at Pleasant Prairie support close-
in, rapid chemical reduction of HgII to Hg0 in the plume

• Simultaneous measurements of P4 flue gas reactions in 
static test chamber do not support this conclusion

• Changes in HgII proportionation have now been 
observed at two power plants with aircraft measurements

• Range in coal and plume contents of Cl (7:1) and S (2:1) 
may encompass range of reaction inputs allowed

• Further proof-of-method for chamber surrogate method 
is required

• Establishing feasible mechanism is required
• More full-scale tests are required
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