TINA Project

Transient Integrated Network Analysis
Summary

TINA project

- Motivations and needs
- Current situation
- Project status
- Dynamic unit interface extension
- Demonstration
- Conclusion
Motivations and needs

- Hydrates
- Paraffin wax
- Asphaltens
- Insulation
- Multi phases flow
- Processing, gas-lift activation
- Damage
- Sand arrival
- Pumping
- Separation
- Paraffin wax
- Asphaltens

CO-LaN Annual Meeting, COMO - TINA Project - 02-17-05

© IFP-2005
Motivations

TINA Project

• Ensure effluent transportation from the reservoir to the topside applications
 – Manage production system in its all
 – Respect production schedule fixed by the reservoir studies

• Knowing elementary information
 – Reservoir production
 – Nature of the fluid
 – Bottom temperature and pressure
 – Surface pressure

• Respecting a number of constraints
 – Economic (CAPEX, OPEX, RISKEX)
 – Environment
 – Security
Current situation

Well Head

Software and limits

OLGA-PVTSIM-OLGAS
TACITE-PVT_IFP-TACITE HDM
PIPESIM
PIPEPHASE

ATHOS
ECLIPSE
MBAL

• Data management (reservoir, fluid, production system,...)
• No model consistency
• No true interoperability between software
• Different resolution modes (dynamic/steady State)
Project Status

• Development and integration
 – IPR (Inflow Performance)
 – Static Pipe
 – Transient Pipe

• Interoperability
 – RSI Units, IFP Units, ...
 – MultiFlash (V3.3 and 3.4), RSI Thermo
 – HYSYS (V3.1), Pro/II (V7.1)

• Deepwater application case
Project Status

Static and dynamic simulations

Topside process

HP Compression

P, T

Export

P, T

DS3100

GLV-1

to water treatment

to DS3400

RV-1

P

%

P, T

Cycle gas-lift

Manifold

P, T

P, P, T

Res,

PI

WT

WHV

PFL

%
Dynamic interfaces

• Three types of unit operations for three interfaces
 - Boundaries
 • A boundary is a network limit, and does not support any specific interfaces but ICapeDynamicUnit.
 - Nodes
 • A Node is a specific unit operation characterised by:
 - Inlet and outlet pressure are identical
 - Hold up.
 • Therefore a node unit operation should implement two interfaces: ICapeDynamicUnit and ICapeNodeDynamicUnit
 - Arcs
 • An Arc is a specific unit operation characterised by:
 - Pressure drop
 • Therefore an arc operation should implement two interfaces: ICapeDynamicUnit and ICapeArcDynamicUnit
Dynamic interfaces

• Need for another type
 – There are unit operations that are neither of the arc, nor of the nodes, and even less of the limits of networks.
 – Typically, these unit operations have the following characteristics:

\[
\begin{align*}
F_{\text{in}} & \quad \text{Pressure drop} \\
F_{\text{out}} & \\
\text{P}_{\text{in}} & \quad \text{Inlet and outlet flows are different} \\
\text{P}_{\text{out}} &
\end{align*}
\]

Where F is flow and P is pressure and

– To deal with this kind of unit operation, it is necessary to define a new type and a news interface.

• BiArcs
 – A BiArc is a specific unit operation characterised by:
 • Pressure drop
 • Inlet and outlet flows are different
 – Therefore a BiArc operation should implement two interfaces: ICapeDynamicUnit and ICapeBiArcDynamicUnit
Conclusion and future work

• The platform and its components form a useful integrated tool
 – Design
 • Steady state simulation under constraints
 – Operating procedures
 • Dynamic simulation
 – Shut down-restart
 – Unit cooling and hydrate appearance
 • Data reconciliation
 • Training

• Commercial version is planned for the end of year 2005

• CAPE-OPEN Standard
 – Proposal for Hydrodynamic
 – Improved Dynamic Unit standard