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The Mercury Problem

• Mercury emissions pose the greatest toxic metal risk

• Mercury emissions arise primarily from:
• Coal-fired power plants
• Municipal waste combustors
• Medical waste incinerators

• Vapor-phase mercury exists in elemental and oxidized forms 
(predominantly HgCl2)

• Reduction of mercury emissions requires species specific cleanup
techniques:
• Hg0: removed with activated carbon sorbent (costly)
• Hg2+: water soluble, removed by wet scrubbers

Need a quantitative, real-time detection instrument that can speciate mercury



Fluorescence Detection for Speciating Mercury
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• Employ dual excitation sources and detection elements to quantify Hg0

and HgCl2 emissions
• Hg0: resonance laser-induced fluorescence (LIF) detection
• HgCl2: photofragment fluorescence (PFF) detection

• Use UV wavelengths 
• minimize atmospheric absorption of laser excitation (negligible absorption of λ

> 190 nm at 370 K, Schultz et al., 2002)
• sensitive, uncooled detectors

• Reduce effects from spectroscopic 
interferences by tuning excitation 
and detection wavelengths



Project Plan
Spectroscopy: Develop fluorescence 

detection of Hg0/HgCl2
Laser Advancement: Develop broadly 
tunable, fiber-based, UV laser system

Breadboard Sensor:
Construct and deploy 

Hg0/HgCl2 monitor



Resonance LIF of Hg0: 6 3P1 → 6 1S0 Transition

• Excite and detect fluorescence at same wavelength:

• Simple implementation: single laser required

• Filter needed to reduce Rayleigh and Mie scattering

• Electronic quenching to metastable 3P0 state results in fluorescence 
quantum yield to ~10-2 – 10-3
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Probable HgCl2 PFF Mechanism

• Two photon excitation of HgCl2 to 
Rydberg state:

HgCl2 (x 1Σg) + 2hνlaser→ HgCl2 (Rydberg)

• Dissociation of HgCl2 yields B state 
HgCl products:

HgCl2 (Rydberg) → HgCl (B 2Σ+) + Cl (2P3/2)

• One photon excitation of HgCl
produces excited atomic mercury:

HgCl (B 2Σ+) + hνlaser → Hg* + Cl (2P3/2)

• Hg* fluoresces at several transitions, 
emission monitored at 253.65 nm:

Hg* (6 3P0) → Hg (6 1S0) + hνemission

• Note that HgCl fluorescence 
competes with photoexcitation:

HgCl (B 2Σ+) → HgCl (X 2Σ+) + hνemission

Potential energy curves adapted from 
Whitehurst and King, 1987
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Spectroscopy and Diagnostic Potential of PFF
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Fluorescence from HgCl* B-X at low pressure (6 torr)

209-nm excitation
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Fluorescence from Hg* 63P1 61S0 at 
atmospheric pressure
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Quantifying Technique / Minimizing Interferences

• Evaluate effects of flue gases on PFF: 74% N2, 6% O2, 12% CO2, 8% H2O

• Potential spectroscopic interferences to investigate: SO2, NO, and NO2

• Incorporate narrow filters (5 nm) to reject majority of fluorescence signal 
from species other than Hg*

• Tune excitation wavelength for HgCl2 away from interferences

• Employ multi-wavelength detection scheme:

• Use two filters that transmit different spectral regions: on and off the Hg 
fluorescence peak

• Subtract “off” signal from “on” signal to account for fluorescence from 
interference species

• Determine optimal excitation and detection wavelengths



Fiber Amplifiers

• If a fiber-core is 
doped with a rare-
earth ion, the ion can 
be optically pumped.

• Fiber becomes an 
optical amplifier 
rather than a passive 
“light pipe.”

• Two Sandia/NRL 
developments: 
1) launching diode 

light into fiber with 
embedded mirror

2) coiled fiber for 
power scaling



Fiber Amplifier Characteristics

• Compact and rugged 

• Diffraction-limited beam quality

• High efficiency: 39% electrical-to-
optical

• Insensitive to:
• Temperature
• Mechanical fluctuations
• Optical power level
• Aging of laser system

• Pumped with reliable, low-cost diode 
lasers operating at room temperature

• Sealed, alignment-free optical system

• Broad wavelength coverage
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Fiber Amplifier Output and Harmonics

for HgCl2 PFF
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Fiber Laser Systems Make Optical Sensors Practical

Sandia Fiber AmplifierSpectra-Physics Millennia UV

Output power (266 nm): 200 mW 100 mW
Weight: 250 lb (laser, power supply, chiller) 2 lb
Volume: 16,000 in3 60 in3

Input power: 2000 W 10 W 
Cooling unit: water/air heat exchanger none (air cooled)
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