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Critical questions

» \What are the PEN stresses as a function of
boundary stiffness during steady state or transient
conditions?

» \What are the cell edge displacements as a function
of PEN stresses?

» \What are the effects of stack B.C.s on stresses?

» \What is the state of stress and displacement in the
seal area?

» How does a dead load distributes throughout the
stack, especially sealing areas?
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Stresses during Steady State as a
function of Boundary Compliance
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Stresses during Transient State as a
function of Boundary Compliance
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Pure Shear and Axial Loading

E (GPa) nu
YSZ 175 0.3
Steel 120 0.3
Glass 9 0.3
Nylon 1.7 0.3

Rubber 0.002
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Cell Edge Displacement
During Steady State

Steady State Stress
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Start-up Transient

| Edge Displacement During Transient
Loading
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Mesh Stiffness

Effect of Mesh Stiffness on Cell Stresses
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Stresses

Fold Size (rigid+compliance in fold)

A more compliant
mesh material
generally increased
the stresses in both
the anode and the
plate.

Reduced stiffness for
the glass increased

¢ | plate stresses.

Reduced glass

stiffness also reduced

anode stress in
designs w/ a fold, but
increased anode stress
in designs w/o a fold.

ermal-Structural Stress Analysis:
Influence of Design Variables on Cell

Plate Stress (MPa)
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Addition of fold
reduced the anode
stress significantly
and the plate stresses
slightly.

(Note: Fold reduces
the active area of
PEN)

Anode Stress (MPa)

Separator Plate Thickness

Effect of Separator Plate Thickness on Cell

Stresses
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A thicker separator
plate decreased the
stresses in both the
anode and the plate.

(Note: Thicker plate
gives slower thermal
response for start-up)
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PEN Aspect Ratio

Effect of PEN Aspect Ratio on Cell Stresses
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Stresses

A rectangular PEN
had lower stresses
than a square PEN
during start-up.

The stack stiffness can
be accounted for with
boundary conditions.
The effect of the model
B.C.’s on stresses was
found to be dependent

on the cell design.

CTE

Effect of Stainless Steel CTE on Cell Stresses
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ermal-Structural Stress Analysis:
Influence of Design Variables on Cell

Lower coefficient of
thermal expansion
(CTE) for 446
stainless steel
significantly reduced
anode and plate
stresses.
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Results 3-Stack Simulations

=\Will the stack survive thermal
stresses? (based on stress/strength
failure criteria)

m\What is the effect of out of plane
stiffness?

n\Will softer glass reduce stresses?

mHow do the B.C.’s change stress
profiles?
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1- Cell Stack (Picture Frame)
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eal Temperature Profile and PEN out-
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Seal Deformations
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Displacement Components In Seal
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Seal — Principal Stresses
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Seal- Shear Stresses
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Seal Stress - Maximum Principal
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Max principal much larger on one side than other- bending dominated. 17 Mpa max.
Caveat- This is only a 1 cell model with simple support, much more flexible than stuck to a
manifold.
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Seal Stress - Parallel to PEN Edge
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7.0E+05

Seal Stress - Out of Plane
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Seal Stress, Pa
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Seal Stress, Pa
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Seal Shear Stress - Tangent to PEN Edge
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Seal Stress, Pa
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Seal Shear Stress - Normal to PEN Edge
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oad Paths for Multiple Planar Cell Stack
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oad Paths for Multiple Planar Cell Stack

Top Plate 30 Cells
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Normalized PEN Seal Load (P/P_applied)

oad Paths for Multiple Planar Cell Stack

Average Load for PEN Seals as a Function of Interconnect Stiffness
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oad Paths for Multiple Planar Cell Stack

Average Load for Stack Seals as a Function of Interconnect Stiffness
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oad Paths for Multiple Planar Cell Stack

Stack Loads for Interconnect Stiffness of 1e8
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Normalized Load (P/P_applied)

oad Paths for Multiple Planar Cell Stack

Stack Loads for Interconnect Stiffness of 1e10
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oad Paths for Multiple Planar Cell Stack
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This chart tries to relate the
"stiffness" used in the model
for the cathode and anode
mesh to a modulus. This will
help give a feel for what these
stiffnesses actually mean.

The stiffness K is actually
stiffness per unit area, so K*t
where t is the spring length
(thickness) would give the
effective modulus for the
interconnect material if it was
a solid layer.
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