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Direct Carbon Fuel Cell (DCFC) Generates Power _@!
from Reaction of Carbon and Oxygen =

AIr in

Carbon

T=650-800 ° C

C+2C0,% => 3CO, +4e"
0,+2C0, +4e" => 2C0O,*
C+0,=CO,E°=1.02V

§>Carbon dioxide out AT O

« High fuel cell efficiency: 80% of HHV based on AH®,4; = 32.8 MJ/kg-C
 Electrolyte is unconsumed and invariant
 Fixed C, CO, activities < full conversion of C
« Actual anode and cathode reactions may involve CO,2 ion



High C/air Efficiency is Derives from a Favorable _@l
Thermodynamics -‘

Fuel | Theoretical limit=| Utilization V(@@)/V(i=0) | Actual efficiency =
AG({T)/AR®,, efficiency, | =g, (AG/AH® ) (L)( €,)
C 1.003 1.0 0.80 0.80
CH, 0.895 0.80 0.80 0.57
H, 0.70 0.80 0.80 0.45

Efficiency of a fuel cell or battery is defined:
= (electrical energy out) / (Heat of combustion (HHV) of fuels input)

= [theoretical efficiency G/H][utilization fraction p][voltage efficiency €]
= [AG(T)/AR°][u][V/V°] = [u][nFV]/ AH®
--where AG(T) =- nFV°® = AH-TAS

Typical C/air efficiency is 80%
Must adjust for Energy Cost of Fuel Production
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Current NAI and DOE/FE Eftorts Evolved
from Prior Research Activities

Area Contribution Sponsor/Year
Nano- Defined approach relating structure to | CEES 1999
structures | rate; first full-cell experiments ever
Particle Particles + melt mimic rigid electrode | CEES 1999
anodes Experimental slurries in full cells LDRD IL-10479
Anode Structure, conductivity effects studied; | LDRD FY00-02
R&D: Carbon anode mechanism proposed; .
=10 "
rates and | Data base of diverse fuels from slurry ‘ 2
structure | cells in full-cell configuration DT
Angled Developed cell enabling scale up, LDRD FY01-02 ] [fr=-=%
cell refueling, controlled wetting of carbon | IL-10848 <
Rigid cell | Allows stacking and refueling of small | FY2002-3 Eh
assemblies; discover of low-T lu
JFC:Aug-03 materials (IL-10847 addendum) 4




Successful Scale-up of Powder-fed Cells*
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We have demonstrated >100 mA/cm? at 80%

efficiency with carbon black fuels
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*Performance sustained until all fuel consumed (> 3 days)
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Coal-Derived Carbons Show Promise E
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Cell Potential (V)

Cell Potential (V)
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Itage Stability and Successful Scale-up

Stable voltage
during 30 h test at
constant load

Scale up 2.8 to 60 cm?®
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We have studied the relationship between

carbon structure and current density =

Furnace Black
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Disorder, Conductivity, Surface Area

All Contribute to Carbon Discharge Rate =

JFC:Aug-03

Sample Surf. Area Primary Crystallinity Peak
(m2/g) Particle Size® Parameter” Power
(nm) (rank) (mW/cm?)

Peach Pit AW activated carbon >1000 30-3000 10 84

Carbon aerogel powder, 1225 fibers, <1000 d. 9 61

pyrolyzed at 1050 °C (glassy sp2 spheres, 20000-

carbon) 100000 d.

Acetylene Black 75 40 8 61

(from acetylene pyrolysis) spheres

Coconut act carbon, AW, milled 1050 20 7 56

spheres

Coal-derived act carbon, AW, 950 60-10000 6 51

milled

Arosperse 15, thermal black 9 290 5 46

(from methane pyrolysis) spheres

Low Q Green Needle @ | ===—--emmmmm- 3000-100000 4 48

Pet. Coke, milled needles

SB 635 Graphite particles 9 5000-100000 3 42
stacked sheets

S0230-6 Pet Coke, 9 3000-10000 2 36

heat treated, 1800 °C, milled stacked sheets

Desulco Graphite particles | ---------—--- 5000-30000 1 46
stacked sheets

? from SEM

® from XRD- after H. Fujimoto, K. Tokumitsu, A. Mabuchi & T. Kasuh, Carbon 32, 1249-1251

(1994).

Note, low peak powers here due to old-style cathode

Source: Cherepy, Cooper & Ziagos UCRL-PRES-144849, June 2002
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Initial Research 1in Half-cell Configuration

1\

Const |

» Measures anode polarization against Au/0.28 CO,, 0.14 O,

ooy © Separate reference and voltage probe circuit "



Enhanced Performance at 650-700 °C
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* Properties of composites
d=0.56 g/cm?
p=0.04 Q2-cm
« With separator, cathode at
700 °C:
— 1 kW/m? @ 80% eff.
— 4.5 kW/m? peak power

« Ongoing tests on 50 cm?

* New materials composites (@ 675 °C) yield 2x power of pastes

at 800 °C

* Indicates 80% efficiency at 50-500 mA/cm?

JFC:Aug-03
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Two-Phase Anode Mechanism in Carbonate
Proposed by Modification of Hall Anode Model

MECHANISM PROPOSED FOR HALL ELECTROLYTES AND
MODIFIED FOR CARBONATES

2A1,0,F, > < 20,> + 2A1L,0F, Source of O,> in Hall cryolite

2C0.> ¢ 2CO,+ 20>
C.+0> —C,- O
C.-0> — C.0+2¢

C.0+0> — C,0-O*
C.0-0> — CO,, +2¢
CO,,,— CO,

Source of O,> in carbonate melts

Adsorb O at reactive site (rs)
e

Fast 1e discharges: CO on rs

RDS: second O% adsorption
Two le discharges: CO, on rs

Fast desorption D

C, +2C02 — 3CO, + 4e

(overall anode reaction) -
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* Mechanism gives rise to observed cell voltage dependences on CO,
-- E = E° + RT/4F In [C][O,][CO, .,,]/[CO, ., ] (Vutetakis 1984]
* Mechanism accounts for high C — CO, efficiency measurements
*Our model of carbonate decomposition replaces Hall initiating step:
AL O,F > <> 0, + ALOF, with carbonate dissociation, 2CO> <> 2CO, + 20>

Hall Process mechanism after Haupin & Frank, Alcoa Tech Center [1981]
*Thonstad [1970] measured Tafel slopes, found too great for e- transfer to be RDS

JFC:Aug-03
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Summag of LLNL results E

* Invention of particle/melt slurry anodes integrated into cells
— Tested >20 materials; structure/reactivity theory
* Nano-structural disorder, not purity, controls rate and
efficiency

— Disorder, edge density, conductivity
— Useful disorder with HC pyrolyzed below 1200 °C
— Mechanism proposed for full conversion, C—-CO,

* Development of angled cell
— Controls wetting and flooding
— Provides for scaleup and removal/replacement of salt

« New materials for plate systems
— Higher rates at lower T

« Similar polarization for carbon and cleaned coal
— Trade cost against electrolyte stability
reau0s — Role of H in coal not investigated 14




Needed R&D 1n Anode Electrochemistry E

1. Mechanism for the anodic reaction of coal, coke

--Reactions and mechanisms of H, N,S (bound and pyrite) under
reducing conditions (E =-0.8 V vs Au/CO,,0, )

2. Determine catalytic effects of impurities found in coal and
coal-derived carbon: minerals, water

3. Transport of CO,, CO,*, particulates and carbon in anode
and matrix; gradients of oxide and carbonate; role of water

4. Surface chemistry: functional groups, wetting and site
reactivity

5. Adaptation of cathode structures and catalysts for specific
needs of C/Air cell

JFC:Aug-03 15
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