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Motivation

e Computer models used to analyze climate policy
scenarios typically treat technological change as an
exogenous factor, or ignore it altogether

e Assumptions about technology cost and performance
can have a strong influence on model results

e This study examines the importance of technological
“learning” on the role of carbon capture and storage
(CCS) systems as a mitigation strategy, under
alternative climate-related policy scenarios




Approach

e Use historical studies to estimate rates of
technological innovation for environmental

technologies

e Incorporate these findings in a large-scale
climate policy model to represent future cost
trends for CCS systems

o Assess the policy implications of including
technological “learning” for carbon
sequestration technologies




Technological Innovation

e Future characteristics of a technology
(e.g., costs) are not “autonomous;”
they depend on intervening actions

e Improvements in technology are realized
through investments in R&D, production,
and deployment (resulting in learning-by-
doing, and learning-by-using)

e For power generation technologies,

cumulative installed capacity is the
common proxy for accumulated knowledge




Learning Curves for Electricity
Generation Technologies
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Learning Curve Formulation

General equation:

— -b
Y, = ax;

where,
y; = cost to produce /7t unit

x; = cumulative production thru period /
b = learning rate exponent
a = coefficient (constant)

Percent cost reduction for a doubling of cumulative output is
called the "learning rate” = (1 —27?)
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Normalized Learning Curve
for SCR Capital Cost
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The ITASA Modeling Framework
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Carbon Capture Technologies

in MESSAGE
o Electricity Sector
— Natural gas (NGCC, GT) Chemical
separation
— Coal (PC, PFBC, etc.) processes
— Coal IGCC )
e Synthetic fuels production Physical
i > separation
— Fossil-based methanol processes

— Fossil-based hydrogen )




Endogenous Learning Curves
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Climate Policy Scenarios

e Model the IPCC-SRES “"A2" baseline scenario

— with and without carbon constraints
— with and without endogenous “learning” for CCS
(assuming a 12% learning rate)
e Model two hypothetical policy scenarios:*
— 550 ppmv CO, by 2100 (global optimization)

— CCS required for power generation sector only
(according to a scheduled phase-in)

*Scenario results are not directly comparable because of some differences in assumptions




The A2 Baseline Scenario

Scenario Parameter 1990 2100
World Population (billion) 5.3 15.1
World GDP (trillion $1990) 20.9 243
Income Ratio (DEV/IND) 0.062 0.24
World Primary Energy (EJ) 352 1983
Cumulative CO, (GtC) 6.2 1761
Atmos. CO, Conc. (ppmv) 354 /783
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Energy-Related CO, Emissions
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Results for the
550 ppm stabifization

scenario
(global optimization)




Main Mitigation Measures

(stabilize atmospheric CO, at 550 ppmv by 2100)
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Main Mitigation Measures
(stabilize atmospheric CO, at 550 ppmv by 2100)

Carbon Dioxide Emissions [GtC]
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Share of CO z capture plants in total generation
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Cumulative Carbon Sequestration
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Average Carbon Tax (1990 US$/t)

Scenario 2020 | 2050 | 2100

A2-550 - No Learning 25 82 496

A2-550 - Learning 19 27 490




Results for the
Technology-Based
Policy Scenario




Technology-Based Policy Scenario

o An illustrative “technology forcing” policy is
imposed on fossil-fueled power plants (only)

e A minimum time-increasing share of the total
fossil-fuel capacity is required to capture and
store 90% of potential CO, emissions

e Different schedules for industrialized and
developing countries

e Cases are examined with and without
endogenized learning for CCS technologies
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Captured CO, in Electricity Sector
A2-CCT Scenario (no learning)

8000

B CCT_IGCC
O CCT gas
6000 H CCT_Coal

4000

Captured CO, (Mt C/year)

2000

O‘ T T T
2000 2020 2040 2060 2080 2100




CO, Mitigation in 2050
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CO, Mitigation in 2100

CO2 Mitigation (Mt C)
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Electricity Prices

Shadow price of electricity (mills/kWh)
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Average Cost of Carbon Abatement
(1990 USS$/t)

Scenario 2020 | 2050 2100

A2-CCT - No Learning 103 98 84
A2-CCT - Learning 100 87 56




Energy-related Global CO, Emissions (Mt C)
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Conclusions

e Consideration of technological learning can
have a significant influence on the expected
role of CCS technologies, and the cost of
alternative climate mitigation policies

e The magnitude and timing of impacts
depends strongly on the policy scenario, and
the reference case assumptions

e More work is needed to better understand
and model the key factors that influence
technology innovation, especially for
environmental technologies like carbon
capture and storage
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