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Large Scale Production of H, from Fossil Fuels
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H., from Coal: Motivation

» Distributed energy use (transportation and heating) responsible for
~2/3 of global CO, emissions

« CO, capture, compression, dehydration, and pipeline transport from
distributed sources is very expensive.

» Low carbon energy carriers are needed: electricity...and hydrogen?

* If CO, sequestration is viable, fossil fuel decarbonization likely to be
the cheapest route to electricity and hydrogen for many decades.

» Coal is of great interest because it is:
* Plentiful. Resource ~ 500 years (vs. gas/oil: ~100 years).
* Inexpensive. 1-1.5 $/GJ HHV (vs. gas at 2.5+ $/GJ).
 Ubiquitous. Wide geographic distribution (vs. middle east).

» Clean?! Gasification, esp. with sequestration, produces little
gaseous emissions and a chemically stable, vitreous ash.

« Example: China: extensive coal resources; little oil and gas. Potential
for huge emissions of both criteria pollutants and greenhouse gases.



Generic Process: Coal to H,, Electricity, and CO,
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« All work presented here is based on O,-blown, entrained flow, coal
gasification, primarily Texaco quench (some E-Gas).



Process Modeling

Heat and mass balances (around each system
component) calculated using:

* Aspen Plus (commercial software), and
* GS (“Gas-Steam”, Politecnico di Milano)

Membrane reactor performance calculated via custom
Fortran codes

Component capital cost estimates taken from the
literature, esp. Holt, et al. and EPRI reports on IGCC

Benchmarking/calibration:

« Economics of IGCC with carbon capture studied by numerous groups
» Used as a point of reference for performance and economics of our system

» Many capital-intensive components are common between IGCC electricity
and H, production systems (both conventional and membrane-based)



Disaggregated Cost of H, Production

Capital Charge Rate=15%
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« 70 bar gasifier, 83.2% HRF, uncooled raffinate turbine, scale: 1 GWy, H, (HHV)



Economic Assumptions

Coal price (2000 average cost

to electric generators) 1.18 $/GJ (HHV)

Capacity factor 80%

Capital charge rate 15% per yr

Interest during construction 16.0% of overnight capital

O&M costs 4% of overnight capital per year
CO, storage cost * 5 %/mt CO, (~0.7 $/GJ H, HHV)
U.S. dollars valued in year 2002

Plant scale 1 GW,, H,

Coal Type lllinois #6

* “Best case” cost estimate for: 16,000 tonne/day CO,, 100 km pipeline, 2 km
deep injection well (layer thickness > 50 m, permeability > 40 mDa)



Benchmark: IGCC Electricity with CO, Capture
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* Cost: 6.4 ¢/kWh, efficiency: 34.9% (HHV). (70 bar gasifier, scale: 362 MW,)



H, Production: Add H, Purification/Separation
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* Replace syngas expander with PSA and purge gas compressor.



Conventional H, Production with CO, Capture
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- H, cost: 7.3 $/GJ (HHV). (85% HRF, scale: 1 GWy, H, HHV, @ 6.4 ¢/kWh)



Change H,-CO, Gas Separation Scheme
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* This work uses a membrane to separate H, from the syngas instead of CO.,.
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H, Separation Membrane Reactor System
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« Employ a H, permeable, thin film (10 um), 60/40% Pd/Cu (sulfur tolerant)
dense metallic membrane, configured as a WGS membrane reactor.



Membrane System with Cooled Raffinate
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* Blade cooling with steam enables higher TIT (1250 C vs. 850 C), and higher
electrical conversion efficiency. Requires much lower HRF (~60%).
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Hydrogen Separation Membrane Reactor (HSMR) Concept

Exiting raffinate

Shell-tube membrane module )

Entering high
pressure syngas

Low pressure
hydrogen permeate

Thin film membrane

Porous substrate

Membrane Structure:

High pressure syngas

_~Thin film membrane

o~ Optional oxide layer (needed for metallic

P ti
SiEEIg membrane with SS substrate)

hydrogen
~LU ~LUV

Low pressure hydrogen permeate

- Porous (optionally asymmetric) ceramic or
stainless steel (SS) supporting substrate

Membrane Reactor 5 5-3-03

* Alternative HSMR design: high pressure, WGS reaction, and membrane
outside supporting tube, with H, permeating to the interior of the tube
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Typical Membrane Reactor Performance
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» H, Recovery Factor (HRF) = H, recovered / (H,+CO) in syngas

* HRF increases with membrane area = diminishing returns

* Membrane costs rise sharply above HRF~80-90% (no sweep gas)
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Cost of H, Compression and HSMR

vs. H, Backpressure
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System Parameter Variations

System Performance:
- membrane reactor configuration
- membrane reactor operating temperature
- gasifier/system pressure
- hydrogen backpressure
- hydrogen recovery factor (HRF)
- raffinate turbine technology (blade cooling vs. uncooled)

System Economics:
- membrane reactor cost (and type)
- co-product electricity value
- sulfur capture vs. sulfur + CO, co-sequestration
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*In this system, with an upstream WGS reactor, a membrane reactor

not obviously necessary for good system performance.
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Modeling Results: Parametric Variations

Description of system and/or Hydrogen | “Effective” | CO2-free H; Cost
change from one system to the | Recovery | system ($/GJ HHV)
next (in sequence). Factor efficiency @ 6.4 @ 3
(Scale=1 GW,, HHV coal input) (%) (%, HHV)™ | gpewn | ¢/kWh
Conventional technology 85.0 67.0 7.31 7.60
A | Uncooled turbine, 70 bar, FGD 89.0 67.5 7.24 7.20
B | “A” without FGD (co-storage) 87.0 69.1 6.71 6.87
C| “B” with 120 bar gasifier 83.2 70.7 6.11 6.63
D C” with _sub-atmosphenc (0.2 86.5 715 6.36 6.73
bar) turbine exhaust pressure
“C” with led raffinate turbi
c C” with cooled raffinate turbine 69 1 696 5 40 5.90
(TIT=1050 C)
F | “E” with TIT=1250 C 55.3 66.9 4.42 7.28

* Effective system efficiency = HHV H, output / HHV (coal input — coal saved**)

** Coal saved based on IGCC with CO2 capture, 34.9% HHV efficiency
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Modeling Results: Parametric Variations
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*H, costs via membranes comparable to costs via “conventional technology”

* Power / H, ratio and electricity price are key to H, costs



Oak Ridge Molecular Sieving Membrane
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* Permeance increase up to factor of ~50 possible. Reduced purity.
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Metallic vs. Ceramic Membrane reactors
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* The increased permeance of ceramic membranes allows for potentially

lower H, costs. (Same membrane unit price assumed, $3,021/m?.)
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Optimistic* Results Summary
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* Assumes electricity = 6.4 c/kWh



Observations

* In quench gasifiers, equilibrium shifting does not appear to be very
important (membrane reactor vs. membrane permeator).

« With efficient raffinate turbine and costly membrane reactor, high
CO—H, conversion efficiency may not be a design goal.

» High HRF yields high system efficiency and low H, costs that are
relatively insensitive to the electricity prices; very high HRF
typically is not required.

 Raising the gasifier pressure from 70 to 120 bar raises system
efficiency and has the potential to lower the cost of H..

» Sub-atmospheric raffinate turbine exhaust pressure might improve
efficiency; effect on costs is uncertain.

 Raffinate turbine blade cooling yields low HRF, i.e. increased
power production, and more complex economic analyses.
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Further Observations, Future Plans

» SO,-CO, co-sequestration raises the system efficiency, may lower
the cost of H,, and may provide environmental benefits (Hg, etc.).

» Good system design can yield H, costs that are relatively
insensitive to HSMR cost and H, recovery.

 Relative to “conventional technology” membrane reactors might
lower the cost of H, by ~10% (Pd-Cu) to ~20% (ceramic). Gas
separation is not a large fraction of capital cost.

» Co-product electricity cost is very important to system design;
entwined with H, recovery; co-product analysis is complex

* We plan to examine:
1) low steam-to-carbon ratio + syngas cooling,
2) alternative membrane types, configurations, and temperatures.
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