Chemical Extraction of Carbon Dioxide from Air to Sustain Fossil Energy by Avoiding Climate Change

Manvendra K. Dubey,
(Dubey@lanl.gov, 505-665-3128)
H. J. Ziock, G. H. Rueff, and J. J. Colman
Los Alamos National Laboratory
K. S. Lackner, Columbia University

2nd Annual Conference on Carbon Sequestration
12.10 pm, May 7, 2003, Alexandria, VA
Fossil fuels are plentiful, practical & versatile. Their supplies will not limit their use but their environmental impact will.

Carbon Reservoirs

This Century Mankind will Overwhelm Nature

Carbon Reservoirs:
- Atmosphere 2000:
 - pH < 0.3
 - 39,000 Gt
- Ocean 1800:
- Plants
- Soil & Detritus
- 20th Century:
 - x4
 - x3
 - x2
 - constant
- Coal
- Oil, Gas, Tars & Shales
- Methane Hydrates

This graph shows the distribution of carbon reservoirs, highlighting the overwhelming emission of CO₂ in the 21st century. The graph indicates that the atmosphere, ocean, plants, soil & detritus, and coal reservoirs are significant contributors to carbon emissions, with the ocean and plants showing a constant increase in CO₂ levels.
The 21st Century Grand Challenge: Enabling Energy and Environmental Security

- Sustain fossil energy use by containing or reducing atmospheric CO₂
- CO₂ capture/sequestration focus is on large point sources (power plants)
- Half of CO₂ emissions from small dispersed sources (transportation, home, small industries) are currently being overlooked
The case for direct capture of CO$_2$ from air (370ppm)

• Concept from Scaling Arguments
 – Minimal land needs relative to renewables, m2/capita for today’s emissions.
 – Addresses all sources including transportation and small dispersed ones.
 – Winds provide free CO$_2$ transport to remote sites advantageous for disposal.
 – Preserves existing infrastructure. Offers economies of scale advantages.
 – *Can turn back the clock:* Restore CO$_2$ to pre-industrial level in worst case.
 – Order of magnitude cost estimates justify further R & D.

• Global transport modeling: Effectiveness & Impact
• High resolution modeling: Optimize collection configurations
• Measurements of CO$_2$ uptake from ambient Los Alamos air
• Ongoing and Future Work

References.
(2) S. M. Elliott et al., Geophysical Research Letters, 2001, 28, 1235-1238
Case for extraction of CO$_2$ from air:
Harness the energy richness of fossil fuels by closing the carbon cycle.

1 m3 of Air

40 moles of gas, 1.16 kg
wind speed 10 m/s

\[\frac{mv^2}{2} = 60 \text{ J} \]

0.015 moles of CO$_2$
Same as produced by combustion of gasoline to supply 10,000 J of energy

By removing one unit of CO$_2$ from air we can put one unit of CO$_2$ back in by burning fossil fuels and generating energy.
Effective energy density gained by CO\textsubscript{2} Extraction >> Wind > Solar > Biomass

Extraction from Air
Power Equivalent

\[v = 10\text{m/s} \]
\[75000\text{W/m}^2 \]

Wind Energy
\[v = 10\text{m/s} \]
\[600\text{ W/m}^2 \]

Photovoltaics
\[200\text{ W/m}^2 \]

Biomass
\[3\text{ W/m}^2 \]
Calcium Hydroxide: Proof of concept adsorbent

Air Flow, 370ppm CO₂

Flux = Dr/L CO₂ "turbulent" diffusion

Ca(OH)₂ solution

CaCO₃ precipitate

CaO + CO₂

0.14g-coal/g-

CaCO₃ + 179 kJ/M

Collect CaCO₃

Recycle CaO

Pure CO₂

Permanent Disposal: Mineral carbonation, Ocean/Geo Injection

Energy to recover captured CO₂ ~ 179 kJ/mole-C is less than half of fossil energy (500, 750, and 900 kJ/mole-C for coal, oil, and CH₄ respectively)

Los Alamos National Laboratory
Order of Magnitude Cost Estimate

~ $25 (< $100) tonne of CO₂

CO₂ Collection Cost by Analogy to Wind Mills: ~ $8/tonne of CO₂

- Windmills cost ~$700/m² of swept area.
- 1 m² sweep area, 3 m/s velocity, 50% efficiency, 3.5 kg of CO₂ per hour.
- Annual capital investment, operation & maintenance ~ 30% of machine cost

CO₂ Calcination Costs by Analogy to Cement: ~ $14/tonne of CO₂

- At 100% efficiency 0.14 tonnes of coal needed per tonne of CO₂. At a price of $20/t, 50% efficiency coal costs would be $5.60 per ton of CO₂
- Annualized cost of the calcination plant ~4 ¥ fuel cost (e.g. Power Plants)
CO₂ Capture from Air with Sequestration

CO₂ Air Capture:
- Chemical, High uptake

Transportation
- Small Dispersed Sources >50% CO₂

370 ppm CO₂

Solid Carbonate Mg

20 ton C/(m² yr)

Pure CO₂

CO₂ Gas: EOR/Saline Aquifer

Coal, Wind, Biomass, or Nuclear Energy

Ocean Systems

CO₂ liq.

Los Alamos National Laboratory
Global CO₂ Sink Model Calculations: Area 400 km x 400 km, Nevada, v(deposition) varied

Can extract ~25 Gt C/yr globally for a typical v_{dep} of ~1 cm s⁻¹. The sink flux of ~Tonnes C m⁻² yr⁻¹ is two orders of magnitude greater than ecosystems.

Refn. NAC Johnston et al Energy Conversion & Management; 2003; 44, 681–689
High resolution CFD modeling of CO$_2$ sink: Size dependence
Does vertical mixing re-supply CO$_2$ to the surface?
Can we engineer surface turbulence to enhance mixing and uptake?

Resolves atmospheric mixing, boundary layer turbulence, and CO$_2$ shadow effects. Flux higher for smaller areas and the coarse global results
CO$_2$ uptake flux as a function of sink size. Due to interference effects flux is higher for smaller sinks and also the coarse global CTM results, numerically validates anticipated $L^{1/2}$ scaling.

Extrapolates to fluxes of $>$ Tonnes C m2 yr$^{-1}$

On small scales relevant to extraction plant design
Measurements of CO$_2$ Uptake from ambient Los Alamos Air

ACTIVE: Air bubbled through adsorbent in impinger at 750 ml/mt, CO$_2$ measured continuously before and after the adsorption using non-dispersive IR absorption (LICOR), and at the end point a pH titration yield net CO$_2$ uptake.

PASSIVE: Room air interacts with alkaline solution and pH titration of small aliquots yield CO$_2$ uptake as a function of time.
CO$_2$ uptake from ambient air by Ca(OH)$_2$: Mixing effects
Collection increases almost linearly with time.

Closure: LICOR CO₂ & pH titration results agree
Collection efficiency = 53±5%, non-fritted impinger
> 70%, fritted impinger
Carbon dioxide taken up from ambient air bubbled through NaOH Solutions pH dependence

Need pH > 10 or a catalyst at low pH.
Gram scale CO₂ collected by Ca(OH)₂ from Los Alamos air and CaCO₃ analyzed by X-Ray Diffraction, Thermal Gravimetric Analysis and Electron Microscopy

CaCO₃ collected is almost pure (>99%) Calcite and as fine particles due to high turbulence
Passive Uptake Experiments with 1 M NaOH solutions

Observed Uptake ~ Tonnes C m2 yr$^{-1}$. Mixing of liquid promotes uptake by maintaining alkalinity at surface. Atmospheric mixing was relatively slow in the fume hood.
Design ideal CO$_2$ adsorbent for air capture

- Fast kinetics but weak thermodynamics
- High selectivity for CO$_2$ over H$_2$O
- Nonvolatile and environmentally benign
- Aqueous, porous solids, coated beads, hollow membranes
- Large supplies, cost effective, and recyclable
- Target candidate scrubbers
 - Ca(OH)$_2$, Mg(OH)$_2$ with promoters
 - Solid amines and Ionic liquids
 - Zeolites, biomimics, membranes, carbon
 - Temperature, electric, pressure swing
High technology CO₂ adsorbents for open air: Recent Breakthroughs

Polyethyleneimine

Used to stabilize CO₂ in space shuttle using pressure swing adsorption-desorption.

Ionic Liquid Imidazolium Salt

Rapid uptake & weak binding (~80 C)
Viscous with low vapor pressure.
Competitive adsorbents to save energy for CO$_2$ recovery after capture

<table>
<thead>
<tr>
<th>CO$_2$ Adsorbents</th>
<th>ΔH (CO$_2$) kJ/mole</th>
<th>ΔH(H$_2$O) kJ/mole</th>
<th>T(CO$_2$) Recovery C</th>
<th>En. Penalty (Coal) Dry!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(OH)$_2$</td>
<td>179</td>
<td>-</td>
<td>~900</td>
<td>36%</td>
</tr>
<tr>
<td>Prim. Amine</td>
<td>84</td>
<td>47</td>
<td>~300</td>
<td>17%</td>
</tr>
<tr>
<td>Sec. Amine</td>
<td>72</td>
<td>47</td>
<td>~250</td>
<td>14%</td>
</tr>
<tr>
<td>Ter. Amine</td>
<td>48</td>
<td>47</td>
<td>~200</td>
<td>10%</td>
</tr>
<tr>
<td>Polyamine</td>
<td>94</td>
<td>47</td>
<td>350</td>
<td>19%</td>
</tr>
<tr>
<td>Ionic Liquids</td>
<td>Low</td>
<td>?</td>
<td>80-100</td>
<td><10%</td>
</tr>
</tbody>
</table>

Entropic limit to deliver CO$_2$ from 370ppm to 1 bar is 20 kJ/mole-C
Polyethyeneimine has good uptake kinetics and thermodynamics for CO₂ recovery, low vapor pressure and can be coated on high surface area solids. But solid polyamines will take up water as well!
Natural Analogues: Alkaline lakes in Oregon
CO₂ Uptake Observations with Eddy Flux Tower

pH 8 to 10⁺
LANL’s Portable Eddy Flux Tower

Diurnal Variation in CO₂ in ppm due to Photosynthesis and Respiration at Los Alamos (TA-49)

CO₂ in ppm vs Time

Day
Night

Conclusions

- Air capture of CO$_2$ has the potential to sustain fossil energy use, preserve our infrastructure, and avoid climate change.
- CO$_2$ uptake $> \text{Tonnes C m}^2 \text{ yr}^{-1}$ achievable in passive configurations. Can be increased by engineering mixing.
- Gram amounts CO$_2$ were collected by limewater from Los Alamos air and the product determined to be pure Calcite.
- Atmospheric mixing that re-supplies CO$_2$ to the surface layer and slow-overturning of the solution to maintain alkalinity at the liquid-surface essential for high uptake.
- Polyethyleneimine is an effective CO$_2$ adsorbent which may allow us to reduce the energy penalty significantly.
Ongoing and Future Work

- Investigate **solid amines** for CO$_2$ capture in dry air.
- Outdoor eddy flux CO$_2$ uptake measurements by a *synthetic alkaline pond* and *natural alkaline lake* analogues
- High resolution dispersion modeling to optimize the geometry, configuration, and nature of collection units
- Global & regional modeling to identify location for maximum collection and minimum environmental impact
- Active CO$_2$ extraction design: cooling towers
- Propose pilot project to DOE!
Acknowledgements

Thomas Rahn and Tom Robison
Los Alamos National Laboratory, Los Alamos NM

Tom Filburn
University of Connecticut, Hartford, CT

LANL’s LDRD Program for Funding