Sorbent Injection Sox Control
Combustion Optimization
Generation Optimization

U.S.-China NOx and SO2 Control Workshops
Shenyang, Liaoning Province, P.R. China
3-7 November 2003

GE Environmental Energy
& Optimization Services
Coal-Fired Boiler Issues/Problems

- Reduced steam generation
- Off design steam temperatures
- Reduced boiler efficiency
- Slagging and fouling/deposits
- High emissions (SO$_2$, NO$_X$, CO) and carbon loss
- Tube overheating and leakage
- Poor combustion

Combustion Plays a Significant Role in Many Issues
Coal Combustion

Many Issues Relate Back to Fuel-Air Control

• Limited capability to control coal & air flow distribution to each burner
 • Historical boiler capability
 • Coal flow bias up to +/- 30%
 • Combustion air flow bias up to +/- 20%
 • Large burner-to-burner fuel-air ratio imbalance of up to +/- 36%

Poor Individual Burner Control Can Result in Higher Overall Excess Air and Performance Loss
Coal Combustion

Fuel-Air Control Can Impact FEGT (Furnace Exit Gas Temp)

- Burner-to-burner air-fuel imbalances can produce local hot wall or gas temperatures
- Non-uniform temperatures can lead to local slagging and fouling
- Increased slagging and fouling can result in boiler derate or outage

Original Furnace Gas Temperature Distribution

Improved Fuel and Air Distribution

Improved Zonal Control Can Improve FEGT Uniformity and Help to Minimize Slagging
Combustion Optimization

Unit Characteristics
- Nominal Full Load: 380 MWg
- Design: Opposed-Wall Fired
- Coal: Powder River Basin

GE Optimization Solution
- Combustion Sensors
- Automated Coal Flow Balancing System
- Overfire Air (Spring 2004)
- Advanced Controls System (Spring 2004)
Combustion Optimization

Baseline Unit Characteristics

Velocity Field
Combustion Optimization

Baseline Unit Characteristics

Temperature & Oxygen Profiles
Combustion Optimization

Baseline Unit Characteristics

NOx & CO Emissions

- **NOx**
 - 0.00
 - 0.25
 - 0.50
 - 0.75
 - 1.00
 - 1.25
 - 1.50
 - 1.75

- **CO**
 - 0.00
 - 0.15
 - 0.30
 - 0.45
 - 0.60
 - 0.75
 - 0.90
 - 1.05

Excess Oxygen, % wet

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

FEGT

- **Right**
- **Avg.**
- **Left**

2,460 2,480 2,500 2,520 2,540 2,560 2,580 2,600 2,620

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
Combustion Sensors

- Sensors Installed:
 - CO Grid = 15
 - LOI / FEGT = 5
 - Burner Profiler = 25

- Planned Upgrade
 - CO / O₂ Sensors
 - Optimization Software

Single Sensor Monitors CO and O₂
Combustion Optimization

Sensor Results (Before Optimization)

Combustion Sensors

CO Sensor Data

Relative LOI

Sensor
Combustion Optimization

Coal Flow Monitoring & Coal Flow Control

Automated Coal Flow Dampers

Coal Flow Sensors
Combustion Optimization

Coal Flow Monitoring & Control

Mill Coal Flow Balance

![Bar chart showing coal flow balance for baseline and balanced conditions across different coal pipes.]

PDF
(Probability Distribution Function)

![Graph showing probability distribution functions for baseline and balanced conditions with Z-Values of 3.0 and 1.0.]
Combustion Optimization

CO Tuning Process – Sensor Data

Final Result (Next Day)

CO Sensor Levels (relative ppm)

CO Imbalance Has Been Corrected
Combustion Optimization

Furnace Sensors

- LOI / FEGT sensors indicate combustion “quality”
- Provide side-to-side profile that can track furnace carbon burnout
- Allows for continuous response to changing combustion conditions
GE Integrated SO$_2$ Control Technologies

Sorbent Injection Schemes

- **Lime and Limestone Injection**
 - Integrated with Reburn and Low NOx Burners
 - Clean Coal Demonstration Projects

- **Promisorb™**
 - High reactivity hydrated lime sorbent for SO$_2$
Furnace Sorbent Injection

Sorbent Injection Process

- FSI process is well known and has been extensively demonstrated
- Economics and process impacts well developed
- Low capital costs, Simple to operate, Uses inexpensive readily available sorbents
- Sorbent utilization up to 25 - 30%
- Provides moderate levels of SO2 control up to 55~60%
- A highly cost effective SOx removal process for use as as stand alone or combined unit/plant solution
Furnace Sorbent Injection

Typical Performance - Various Sorbent Types

![Graph showing SO2 capture vs Ca/S ratio for different sorbents: Dolomite, Ca(OH)2, and CaCO3.](image-url)
Furnace Sorbent Injection

Typical Boiler Sox Removal Performance Data

- **22 MWt Coal**
 - CaCO3: 2.4% S, 1.1% S
 - Ca/S vs SO2 REMOVAL (%)

- **143 MWe Coal**
 - Ca(OH)2: 1.5% S, 0.6% S
 - Ca/S vs SO2 REMOVAL (%)

- **235 MWe Coal**
 - Ca(OH)2: 1.7% S
 - CaCO3: Ca(OH)2
 - Ca/S vs SO2 REMOVAL (%)

- **104 MWe Coal**
 - Ca(OH)2: 2.7% S
 - Ca/S vs SO2 REMOVAL (%)
SO$_2$ Control

Capture by Hydrated Lime

(Rhudy, et al., November 1986)
Capture by Hydrated Lime

CaO = SO₂ + 1/2 O₂ → CaSO₄

Ca(OH)₂ + SO₂ → CaSO₃ + H₂O

Temperature °F

CaSO₄ Window

CaSO₃ Window

CaSO₄
MgSO₄
CaCO₃
CaSO₃
Ca(OH)₂
MgCO₃
MgSO₃
Mg(OH)₂

2400 2200 2000 1800 1600 1400 1200 1000 800 600 400
SO₂ Control

Furnace Sorbent Injection

- Very low capital costs relative to SCR
- Uses inexpensive sorbent operating materials

CaCO₃ or Ca(OH)₂

CaSO₄

CaO + SO₂

CaO

Solid CaSO₄ + CaO

235 MWe Coal

SO₂ Removal (%)

1.7% S

Ca(OH)₂

CaCO₃
Coalogic

. . . Gets the right coal to the burners at the right time

GE Optimization Services
Overview

A Coal Management Tool

- Gets the right coals to the boiler at the right time
- Tracks accurately all coals to the burners
- Recommends optimal coal loadings & blends based on emissions, heat rate & power demands
- Manages coal usage to maintain emissions
- Displays detailed data for all coals in the yard
- Calculates real-time fuel costs

Uses the Most Economic Coals at All Times
Proven Ability to Reduce Emissions

Successful Installations

• Blend high- and low-sulfur coals to maintain and not exceed SO2 and particulate dust limits

• Blend coals to avoid opacity and slagging derates using online data as feedback

• Potential to help with mercury and NOx emissions

Annual Savings: $1 to $3 million per 1,000 MW

Over 30 Installations in North America
Coal Tracking Technology

Accurate, Real-time Tracking from Receipt to the Boiler

- Uses detailed models for both yard equipment (conveyers, feeders, etc.) and coal storage devices (piles and silos), customized for each yard
- Uses online data from typical yard sensors as inputs
Silo Model

Three-Dimensional Model Calibrated for Silos

Works for various silo and pile geometries

Most silos exhibit “funnel flow,” not First In, First Out

Coal flow is very fast in center, slower towards sides

Dead zone moves only after center level drops

Tracks Coal Through Silos, Bunkers, and Piles
Case Study: Centralia

Plant
- Centralia plant located in Washington State, US is a 2 unit, 800-MW total plant fed by local coal from a captive mine

Problem
- Plant suffers from SO2-related derates and high mining costs
- Purchased low sulfur coal to help minimize SO2 problems but this is expensive.....how to manage optimal operation?

Solution
- Dynamically blend coals to maximize scrubber capacity at all times while meeting emission and Heating Value requirements
- Use higher sulfur but cheaper local coal and minimize the use of higher priced low sulfur coal (optimize the coal mix)
- Actual cost savings of $2 million annually in reduced fuel costs and improved derate performance, while meeting SOx emissions
Blending Sulfur the Hard Way at Centralia
Centralia Bunker Overview

Unit 1 Mill Silo Overview

- 200 tons
- 380 tons
- 380 tons
- 350 tons
- 380 tons
- 380 tons
- 380 tons
- 380 tons

Heating Value Btu/lb
- 11 0 tph
- 12 0 tph
- 13 0 tph
- 14 0 tph
- 15 0 tph
- 16 0 tph
- 17 0 tph
- 18 0 tph

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Value</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur, %</td>
<td>0.00</td>
</tr>
<tr>
<td>Ash, %</td>
<td>0.0</td>
</tr>
<tr>
<td>Moisture, %</td>
<td>0.0</td>
</tr>
<tr>
<td>Sodium, %</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Mill Status
Centralia Blending Logic

• Determine target coal quality based on:
 – Desired stack gas SO2 ppm
 – Heating Value vs. MW load
 – Silo coal inventory
 – Recent stack gas SO2 trend

• Use coal tracking and blend search algorithm to find coal source combinations which will produce the target output coal quality (given the source coal quality, availability & yard constraints)

• Use measured stack SO2 as feedback to adjust coal blending to ensure operating constraints are met
GenGauge™
Real-Time Generation Costs for Economic Dispatch

GE Optimization Services
Overview

Portfolio Software Tool

• Calculates accurate real-time cost curves for fossil-fired units—automatically sent to the current dispatch control software for optimal dispatch decisions

• Works for both ultra short-term (AGC), short-term (dispatch), and long-term (unit commitment)

• Accounts for real-time variations in emissions costs – both SOx and NOx, which can have a major impact on dispatch, and allows extended operation of units & plants producing lower emissions

Accurate, Real-Time Cost Data for Optimal Dispatch
Current Dispatch Technology

Manual Process Using Static Data

• Fuel and emission costs and heat rates at different units are not known in real time

• Dispatch is based on long-term averaged cost data which are inherently inaccurate

• Incorrect cost basis for dispatch leads to significant reduction in profits

Inaccurate Data Leads to Non-Optimal Decisions
Dispatch Based on GenGauge

Automated Process Using Dynamic Data

• All fuels are tracked in real time
 – Oil and gas prices are kept up-to-date for each unit
 – Coal quality and cost are tracked from stockpiles, through bunkers, all the way to the burners

• Heat rates for each unit—at any load—are accurately calculated in real time

• Emission costs (SOx and NOx) are calculated in real time based on fuel quality and performance modeling

• Using fuel costs, heat rate, and emission costs, cost curves for each unit are automatically updated

• Dispatch decisions based on real data improve profits
SOx and NOx Tracking Technology

Accurate, Real-Time Emissions at Any Load

- Fuel sulfur is tracked all the way through to the boiler in real time and is converted directly into SO2 at the stack
- NOx calculated for all loads using adaptive models and on-line measured data
- Uses data validation algorithms to replace bad data (heat balance equations)

Real-Time Emissions Curve ➔ Real-Time Emissions Cost
Incremental Cost Curve Impacts

Original Incremental Cost Curves - Static

<table>
<thead>
<tr>
<th>MW</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dispatch Cost ($/MW-hr)

- Unit 1
- Unit 2
- Unit 3
- Unit 4

Potential Incremental Cost Curves - Simulated Variance

<table>
<thead>
<tr>
<th>MW</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dispatch Cost ($/MW-hr)

- Unit 1 Higher HR, Lower Fuel Cost
- Unit 2 Higher HR
- Unit 3 Lower HR, Lower Fuel Cost
- Unit 4 Higher HR

Current Static Curves Used For Dispatch

Real-time Curves Very Different Scenario

Unit 1 and Unit 4 would have been incorrectly dispatched at a higher rate due to inaccurate aggregate information
GenGauge Case Study

Installation at a US Utility

- Customer competitive Non-Disclosure Agreement in place
- GenGauge currently installed on 5,000 MW consisting of 3 plants and 12 units
- Total installation from start to finish took 9 months
- SOx and NOx related costs are 25% of the total cost and are updated in real time
- Product has been accepted and is being used daily
- Based on data from operation, savings are estimated at $2,000/hr for each hour the system is dispatched
- Payback: ~ 12 months (depends on customer conditions)
- Takeaway: Huge potential for all generators to save costs

Customer Installing at 2 Additional Plants Based on Results
GE Integrated Solutions Approach

Phase 1
Plant Performance Evaluation
- Independent Failure Mode Analysis
- 1 - 2 Day Onsite Service with Exit Interview
- Plant and Data Analysis and Observations; Operator Discussions; Mass & Energy Balance; Efficiency Calculation
- Recommendations

Phase 2
Boiler and Turbine Engineering Analysis
- Detailed Root Cause Analysis
- Boiler and Turbine Modifications Performance and Economic Assessments
- Solution Recommendations
- 8-12 Weeks Engineering / Progress Meetings
- Thermal, Fluid-Dynamic, Combustion Models; Emissions Correlations; System Engineering
- Technology Trials / Demonstrations (Additives/Sensors)

Phase 3
Design Engineering, Installation and Optimization
- Turn-Key Project Management
- Boiler Systems Engineering Design
- Construction and Installation
- Commissioning, Optimization and Controls System Integration
Conclusions

• GE’s Integrated Solution Improves:
 – Performance
 – Operator Productivity
 – Cost Savings
 – Overall Plant Profitability

• Cost-Effectively Reduces Emissions (NOx, SOx, CO, Hg)

• Features Commercially-Available, Proven Products

• Can Enhance Operations and Decision Making

• GE develops Project from Concept to Site-Specific Evaluation to Full Commissioning
GE Environmental Energy
& Optimization Services

depower.com

GE Environmental Energy
& Optimization Services