March 2013 LabNotes

Electron Transfer Dynamics in Photocatalytic CO2 Conversion

Coal is the workhorse of our power industry, responsible for approximately half of the electricity consumed by
Americans. Managing carbon dioxide (CO2) emissions from coal utilization is one of the most challenging issues facing the fossil energy industry today. To cost-effectively capture and manage CO2, new and flexible photocatalytic technologies are being developed that can be used at large storage facilities (geological, oil fields, etc. ) to slowly convert stored CO2 into more useful products such as methane and methanol.


NETL Studies High Throughput Membrane Screening

Membranes offer a potential low-maintenance and economical method for gas separations from power plant flue gas streams. Polymer membranes and supported liquid membranes show great promise to solve problems in the area of clean energy production. Carbon dioxide, a greenhouse gas, is a principal by-product of energy production from fossil fuels. Capturing CO2 from power plant flue gas streams is critical to the goal of reducing the nation’s carbon footprint and preserving the environment. Currently, there is no technology that can meet the goals for carbon capture as set forth by the U.S. Department of Energy. These goals are 90% capture of the CO2 with a less than 35% increase in the cost of energy. 


Computational Study of Ionic Liquids Illuminates Detailed CO2 Interactions

Ionic liquids (ILs), which can be thought of as salts that are molten at room temperature, are being studied for use as part of CO2 adsorption and/or separation technologies. These applications depend on having strong interactions between the CO2 and the ions of the IL. In order for significant advances to occur in this area of research, the interaction between the CO2 and each IL must be understood and described with accuracy. Computational methods are used to describe these interactions on a molecular level.


StayConnected Facebook Twitter LinkedIn RssFeed YouTube