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PREFACE

Although U.S. gas resources remain large, proven reserves have declined to 230 trillion feet, and the
current reserves/production ratio is 10 to 1.

It is estimated that tight (i.e., low-permeability) western gas reservoirs and eastern Devonian gas
shales contain large quantities of natural gas, but because of the low permeability, these resources have been
difficult to recover. Some gas has been produced, but industry needs more economical recovery techniques.
The region around the production wells must be stimulated in some manner to induce a more rapid flow into
the well bore. The stimulation process involves creating channels or cracks out into the reservoir from the well
bore. This can be done by detonating high explosives or nuclear explosives in the well bore or by hydraulically
fracturing the formation.

Currently, the most promising techniques for stimulating low-permeability gas reservoirs are
hydraulic fracturing and massive hydraulic fracturing (MHF). Hydraulic fracturing involves pumping fluids
under high pressure down the well bore and out into the reservoir. The hydraulic action fractures the rock
around the well bore, and proppants in the fracturing fluids hold the cracks open. The fractures provide large
drainage faces for the gas and channel it into the well bore. Hydraulic fracturing has been routinely used in
oilwell completion and cleanup for many years. MHF differs from hydraulic fracturing in that larger amounts
of fluid and proppant are pumped down the well to create and prop fractures at much greater distances.

The application of MHF techniques to tight western gas formations has given variable and
sometimes disappointing results. The best efforts of a CER-led industry /government consortium to stimulate
the Piceance Basin near Rio Blanco, Colorado, were not successful. On the other hand, Amoco has used MHF
techniques in the Wattenburg field near Denver with a high degree of success. Significant differences in the
reservoirs themselves apparently account for the differences in success.

The Devonian shales present similar problems. It is believed that production from these gas shales
results from the connection of the wells to the existing fracture patterns. Hence, to recover this gas, we must
locate the producing zones, locate the natural fractures near the well bore, and fracture from the well bore to
the existing fractures.

The Lawrence Livermore Laboratory (LLL) has embarked on a research program to help develop
tight gas reservoirs in the United States. We are trying to obtain a more detailed understanding of the stimula-
tion processes, including how the formation properties interact with and affect these processes. The problem is
to determine how to connect the maximum amount of productive reservoir rock to the well bore through a
highly permeable fracture system.

There are several questions that we would like to be able to answer in advance about the tight Rocky
Mountain formations. Can we identify particular sections where the fractures may be expected to be preferen-
tially confined to the productive sands, so that a maximum volume of reservoir can be stimulated? What is the
geometry (length, width, and number) of the fractures? What is the nature of the treatment (fluid composition,
volumes, pumping rates, perforation intervals) which, when applied to a formation with certain properties,
will result in optimum and economical recovery? What are some of the important geophysical measurements
and experiments that can aid in this endeavor? What data and experiences exist that are relevant? Most of the
western reservoirs contain a high degree of water saturation, which can significantly reduce the already low
permeability of these reservoirs; it is possible to use existing logging techniques supplemented by new
geophysical measurements to ascertain the in situ water saturation? ‘

Devonian shales present many of the same challenges as the tight Rocky Mountain formations.
There are, however, some special problems. Logging techniques for these shales are just being developed, and
we have not yet acquired the ability to locate the fractures that do not intersect the well bore. The effect of
hydraulic fracturing on Devonian shales is also not well understood. Water, one of the standard hydraulic
fracturing fluids, can cause significant formation damage; organic and cryogenic fluids are expensive; high-
explosive fracturing makes well clean-out and completion costly and uncertain; and, as we have shown
previously,! the diameter of permeability enhancement is small.

Our program is primarily investigative. We are not currently proposing any field programs. We are,
however, constructing and applying theoretical models and performing laboratory experiments to develop an
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understanding of the gas stimulation process. These tasks are complementary, and parallel development is
necessary. Another facet of the program is geophysical measurement (logging) in the environments where
these stimulation processes are applied. Close association with the DOE-supported field programs provides
the interaction and direction necessary to the program.

The LLL program can be broken into eight task areas: (1) theoretical modeling of the hydraulic frac-
turing process; (2) laboratory hydraulic fracturing experiments; (3) log tool development and analysis of log
data; (4) cataloging and evaluation of pertinent geological and geophysical reservoir data; (5) measurement of
pertinent reservoir properties; (6) reservoir analysis; (7) evaluation of other stimulation techniques; and
(8) environmental reports in support of DOE field programs.
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LLL GAS STIMULATION PROGRAM
Quarterly Progress Report
July through September 1979

ABSTRACT

This report summarizes the research and accomplishments of the LLL Gas
Stimulation Program during the third quarter of FY 1979. We have continued to analyze
dynamic fracture propagation near interfaces and have begun some analyses to determine
the effects of frictional slip along interfaces. Some experiments have been performed to
analyze the effects of existing cracks near an interface. These experimental results compare
with theoretical predictions. Analyses for the formulation of three-dimensional models have
indicated some discretization schemes for development of the numerical models. We have
continued the measurement of mechanical properties and failure characteristics of core
material from the western tight gas reservoirs. Additionally, we have been applying various

schemes, including the use of color plots, to evaluate the data obtained with continuous
three-dimensional sonic logs.

THEORETICAL ANALYSES

RESULTS FROM TWO-DIMENSIONAL
NUMERICAL MODELS

We have applied our two-dimensional, time-dependent, finite-element model?3 to determine the
material overshoot characteristics caused by a crack that initiates, propagates bilaterally at half the
dilatational wave speed, and stops when one tip reaches a well-bonded interface. The problem geometry is
shown in Fig. 1. Note that c is the final half crack length, and we denote the time interval from crack starting
to stopping as tq. The problem is solved in plane strain, and the coordinate system is referenced to the center
of the crack. For our current studies the densities of the two materials are set equal (2.7 g/ cm?) and the Lame
constants A and u for each material are also equal, so that Poisson’s ratio is 0.25 for both materials.

The results of our calculations are shown in Fig. 2. Nondimensional vertical displacement, v/c, is
plotted vs nondimensional time, t/tg, for the point x = 0.8¢c, y = 0.lc. Three calculations were made,
corresponding to three sets of values for the Lame constants as shown in the figure. The constants x| and A,
were kept at 30 GPa for all three calculations so that the center curve corresponds to the homogeneous case.
Points of maximum displacement are related to the maximum likelihood of crack reinitiation. We see that in-
terface penetration becomes less likely as the second material becomes stiffer. We also note that the peak dis-
placement occurs earlier as the second material becomes stiffer.

Our equilibrium model* was applied to analyze some of the effects of frictional interfaces on a
pressurized fracture as the crack propagates toward the interface. Three calculations were performed with
these different frictional stresses applied along the interface. The geometry of the fracture and the interface
used in the calculations is shown in Fig. 3. The pressure in the crack was constant and the material on both
sides of the interface was identical. Material properties on both sides of the interface were identical with a
Poisson’s ratio equal to 0.25. The ratio of the pressure in the crack to the Young’s modulus for the material

(P./E) was 1.5 X 1073 In these calculations we ignored the effects of changes in pore pressure caused by fluid
leaking from the crack into the surrounding material.
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FIG. 3. Geometry of fracture near frictional inter-
face (Note: materials were the same in these calcula-
tions).

The results of the calculations are shown in Fig. 4, and for presentation we have scaled the distance
of the crack from the interface with the crack length. The ratio of the initial frictional stress to the pressure in
the crack, v = 7¢/P,, for these three sets of calculations was 0.033, 0.067, and 0.1. In these calculations, the
crack did not penetrate the interface; hence, we have not attempted to evaluate the frictional conditions for
such penetration. However, we are developing experimental data that can provide correlation for these
analyses. The results presented show how changes in the interfacial frictional stress tend to enhance or impede
fracture propagation toward the interface.

As expected, when the scaled distance from the crack to the interface is greater than one, the effects
of the frictional interface on the pressurized crack are small. Relative motion along the interface was seen to
increase both as the pressurized fracture approaches the interface and as the frictional coefficient becomes
smaller. The frictional stress along the interface changes as the crack nears the interface. The largest change in
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FIG. 4. Variation in Mode I stress-intensity factor
as crack approaches frictional interface for variations
in frictional stress along interface (see text for defini-
tion of variables).

this frictional stress occurs in a region directly ahead of the crack tip where it decreases to very small values
when the scaled distance is less than 0.2. As has been done previously,* we have scaled the Mode I stress-
intensity factor (Fig. 4) with P, /a where P, is the pressure in the crack and a is the semimajor axis of the frac-
ture ellipse. Figure 4 shows changes in the scaled Mode I stress-intensity factor (Kj) as the crack tip ap-
proaches the interface for the three values of the initial frictional stress on the interface. The stress-intensity
factor can be thought of as the tendency to break, and as we see this fraction increase, we should expect frac-
ture propagation to be enhanced. Figure 4 shows that for the lower frictional stresses along the interface, the
tendency to break increases more rapidly as the crack approaches the interface. This indicates that the crack is
more strongly drawn toward the interface for the lower frictional stresses, a similar tendency as that when
there is a lower modulus material to the right of the interface. However, the chance of penetrating the interface
decreases with frictional stress comparing with the experimental results.

o

TRACING OF FRACTURE-FLUID
PRESSURE EVOLUTION

Previously we were able to develop numerical procedures stable enough to allow explicit computa-
tion of evolving fluid pressure and crack geometry.> However, the results obtained were inevitably too-little-
influenced by the elastic properties of the rock, and were effectively dominated by the requirement of fracture-
fluid mass conservation, which dictated the change in width from one step to the next. For this reason we
believed it essential to employ a method by which fracture-fluid pressure would be implicitly computed at each
time step so as to satisfy simultaneously the requirements of elasticity and mass conservation. Further,
because of the success achieved with the dislocation dipole scheme, it was decided to base our implicit method
on. the latter, rather than on the dislocation density scheme, in order to avoid anticipated trouble with the
higher order differentiation.

Thus, we start with the integral equation relating fracture-fluid pressure and dipole density or crack
opening displacement 41;
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P(xg)/G = f 7D (x> I8 (%) - 8 (xg)]dx - 8 () [V(xg, ) - V(x(,-9)] (1)
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where, for a homogeneous isotropic infinite medium,
¥p = -1/21(1 - B)(xg - X)? = -dv/dx. (1b)

Here, vp is the influence function that gives the stress at point xg due to the difference in dipole strengths § at
points x and xp, and vy is the analogous influence function associated with dislocations.*’ Differentiating
Eq. (la) with respect to time gives (for time-independent v and stationary crack-tips):

) +Q . . .
B(xg)/G = f T kgr DB () - 8(xg)1dx - 8 (xg) [Y(xg, +2) - Yxgu=2)] - @

-2

We have seen earlierS that the simplest fluid flow model—Poiseuille flow—gives the result that 45 = [33p']’
(here # denotes an effective viscosity, and we have used G, » for shear modulus and Poisson’s ratio of the sur-
rounding rock; also, the apostrophe denotes spatial differentiation, while the dot indicates differentiation with
respect to time). If we now make the following approximations:

th _ t+Ats N B 3)
S =« 8+(1—0£)5,p——zt——‘—,

and substitute into Eq. (2), we get an equation that may be rearranged so that only terms evaluated at time
t+At are on the left and only those at time t are on the right. When we completely nondimensionalize all
terms, we get (assuming fluid penetration all the way to the tip; viz., a stationary crack):

+1
t+Atp(x0) _ O;At f 7 (Xg» ¥) {t+At[63p,]'(x) _ t+At[53p,],(xo)} dx
c -1

* aT_At BHAS3p7) () [7(%g, 1) = Y(%gs -1)]

= tp(xg) + LD f vD(xo,x){t[53p'1'<x)-t[s3p']’(x0)]dx

c -1

_ (L -a)at 189 (xg) [¥(xq, 1) = Y(xg, -DI | ®

c

where it is understood that p and & are now dimensionless; that is,

is the characteristic time predicted by Cleary.® The parameter « is chosen to provide the most stable solution;
in fact, it will be seen later that the best choice is @ = 1. If we make the assumption that t+2% = 3 (or any
other relation between *215 and %) we can rewrite Eq. (4) as a set of linear algebraic equations by using the
appropriate discrete formulas for integration and differentiation. First, we approximate the integrals in
Eq. (4) by the Gauss-Chebyshev formula:



+1
f Tp (X5 X) {[539']'04) - 18P (x) } dx

-1

N
- 5 {10 - Bp1e0 | VI 2 )
X, = -cos(mr/N), r=1,---,N-1, (5b)
t; = -cos[m(2i - 1)/2N] , i=1,---,N (5¢)

Since we wish to formulate the equations in terms of p, we need to represent [63p'] in terms of & and p. Our
previous success in termwise differentiation of a Chebyshev series” leads us to use that method here:

™ s [M[1wPem b " T (0p(x)
£p1= 3 TE— 2 daxfax |. 6
[8°p']'() ?;1 O ]:1 = Z=: RV x {dx ©)

Since we will need to impose two constraints on the solution for t+2% (viz., we will in particular maintain the
borehole pressure at some desired value, and t+2%p will be such that **8t%|t] = 0) we will have one more
equation than unknowns (i.e., N+1 equations, N unknowns) unless we obtain p(x.) from a set or N+ 1 points
by interpolation. Again we make use of the Chebyshev series:

W= 5 1|2 ﬂT(x)p(x) ™
p(x,) = (%) | = .
2=0 T J; \/

If we apply the Gauss-Chebyshev integration formula in Egs. (6) and (7), and substitute into Eq. (5) and
thence to Eq. (4), we obtain our system of equations:

L-1

Z (X)Z T(t)[““p(t) 'p(ty)]

Q=

N M M
4t (;)21 o) [Tj'(ti) - T,f(xr)] NRIED PR CRLICY

LM'rc

L L
X TReQE R0+ a- et ]
e=1 s=1 :

M M
+ 413' [’Y( Xps 1) - ‘Y(xf’.—l)] Z:'I}'(xr) Z T}(tk)ss(ts)
o i=1 k=1
L L
X SZ§=:1'r;2(ts) ;TQ(ts)I}HAtp(ts) v - a)tp(ts)] o -

Here we find it natural to make the following identifications:

.= 77[2(1(,5)— 1] —
tels cos {———-—-———2L }, L=M. . (8b)



Equations (8a) and (8b) may be simplified, and the time required to set up and to solve them reduced, through
the use of the following matrices:

AmETR-l(xr) s r=l,'-',N-.1;9.=1,-",L, (9a)
A= %Tg_l(ts) : s=1,-0L8=1, 0L, (9b)
B, = —I:—r:IYD(xr,ti) T(ty) - Tj'(xr)]\h -2 ©c)
C; = T(x) , (5d)
Chy = Tt k=1, M : (%)
Dy = Tt o
Ay = (1, )8, » 9g)
E, =Tt (oh)
F, = %Tg(fs), s=1, 0L ©i)
G, =8,;[r(x, 1) - v(x, D] i)

where
s o [10 =i
ij 0, i#j

Our experience with fitting functions by a Chebyshev series indicates that when the series is to be differen-
tiated it is best to transform the function so as to make it pass through the origin and be antisymmetric, and
then to retransform the series if necessary.’ To effect the necessary transformations, we define these matrices:

qu = —Ssq sign (ty) + 5(L/2)s sign (t) , (9%)
Sij = 855 * Sy sien () ' ©n
Ty = -8 sign (t) (Om)
where
i -1, x<0
sign(x) = +1, x>0, (9m)

and the borehole is located at tyq 5. Here H and T are used for transforming p before and after fitting and dif-
ferentiation, and S is used for transforming 3p’ before fitting and differentiation.
' We may now define the “secondary’ matrices:
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M1 = AA’, M2 = BDS, M3 = TEFH, M4 = GCDS, M5 = C'DS, (10)

so that Egs. (8a) and (8b) can be written more compactly:

t
M1 - 22 M2 am3 + 22 Mg amsltratp
TC 7'C
= M1+(i;°‘)ﬁM2AM3--(1—'§lA—tM4AM3 tp, (1)
% I
or
Mi*tAtp = R . (11b)

As mentioned before, we need to impose two constraints on the solution t+4!p. The first of these is the require-

ment that T4t Ifll = 0 (by analogy with closure in our dislocation density schemes), which can be realized by
adding a row to B and R:

Bovani = TED - TED, Ryyy =0 12)

The second constraint is on the borehole pressure, the value of which we wish to specify. We impose this con-
straint by adding rows to M and R:

Mn+2); =82y > Rns2 =P - 13)

Our procedure for computing fluid pressure and crack opening starts by evaluating the matrices in
Eq. (11a); this evaluation is required only once. Then, starting with an initial pressure distribution and crack
geometry, we can compute the new pressure (viz., '¥2%p). The new crack opening is obtained from the relation:

vrats = [(1 - ot + att A1 AL 4
T
C

s (14a)

where

§ =M5AM3P . (14b)

We may then continue to compute the next pressure, and so on. Note that 1741 is necessarily consistent with
t+Aty; jteration on 83 in §3p’, although rigorously needed, produces only small effects for reasonable time
steps. The implicit scheme may also be formulated on the basis of local interpolation methods.’ Although the
local matrices would be simpler to generate, global interpolation offers the advantage of greater accuracy for
the same number of nodal points, and it may provide more stability.

Typical results from the global formulation of our implicit integration scheme are presented in

Figs. 5 through 11. These results yield great insight on the effects of the value of «, initial pressure distribu-
tion, and time-step size.
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stability of implicit scheme.)
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FIG. 11b. Plots showing 5 for a different initial
pressure distribution [p(x,t=0) = /1+|x[]. Note
the reversal in curvature of p/pg near the borehole af-
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pressure than is obtained with a triangular initial
pressure distribution. Again, At = 0.25 7.

pressure than is obtained with triangular initial
pressure distribution. Again, At = 0.25 7.

Figure 5 shows the result of a preliminary validation of the FORTRAN coding of our algorithm, es-
pecially the formulation and computation of the matrices in Eq. (9). By using p(t) =t 53(t5) =
1/2 sin"1(t) + 1/2 ¢ \/T-:tz— and replacing H, S, and T with identity matrices, we have [8*p']’ = /1 - E,
which, when integrated with yp, should produce a constant p. This curve, while constant over most of the in-
terval (-1,1), has “spikes’’ at both ends that are apparently the result of slight inaccuracies in the explicit com-
putation of the various derivatives. We plan to remedy this, but it has not caused any serious perturbations in
our remaining computations.

Figure 6 shows a set of pressure evolution curves, obtained with « = [ and At = 0.25 7, in which
the borehole pressure is maintained at a constant level at each time step. As is the case for all other figures ex-
cept Fig. 11, it starts from the triangular pressure distribution shown in Fig. 5. We note that, near the
borehole, p has the positive curvature necessary to produce an ever increasing crack opening at the borehole
(since & = (83)'p’ + 83p"), which is consistent with the continuous addition of fracture-fluid. At t = 1.5 7. the
fluid pressure becomes essentially constant over the crack length, verifying that 7. is an excellent estimate of
the time required for pressure penetration to the crack tips. Also, att = 1.5 7. we note that the crack opening
is very close to the analytical result 6 = /1 - x2 that we would expect from a uniform pressure.

Figure 7 shows results of computations similar to those in Fig. 6 except that we have chosen « = 0.5,
bringing **4% under 'the influence of the requirement of mass conservation at time t. The effect is that the
algorithm tends to become unstable for t near 7. Similar calculations with @ = 0.9 produced the results shown
in Fig. 8. The solutions exhibit nearly as much stability as for @ = 1. We thus conclude that, in general, the
best results are to be obtained when a = 1 and that there is little computational advantage to using a < 1.

The effect of changing the time-step size is shown in Figs. 9 and 10 along with the previous results
(Fig. 6). Comparison reveals that there is enough difference between the curves obtained by various step sizes
to warrant the use of At =~ 0.10 7, or smaller. _

Figure 11 shows the effect of using a different initial pressure distribution, in this case
p(x,t=0) = /1 + [x]| rather than the triangular distribution used in the other cases. Two phenomena are
noteworthy: first, the pressure reaches an essentially uniform value more rapidly (1.25 7. vs 1.5 7.), and as
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well, the negative (adverse) curvature of the initial pressure curve has reversed by time 0.25 7. The latter ob-
servation provides evidence that we can start with a variety of initial distributions and be assured of stability
of the solution, and that the various pressure distributions will quickly tend towards the same shape with
ongoing time.

Our next task will be to develop the capability of simulating a fracture-fluid front moving toward the
crack tip (allowing a study of the associated pressure evolution). Then we will proceed to model the actual
crack propagation, as necessitated by a finite allowable stess-intensity factor at the tip. The equations we have
formulated for these analyses do not contain appreciable increases of complexity over the equations and solu-
tions just presented; indeed, only small modifications are needed.

NUMERICAL SOLUTION OF THREE-DIMENSIONAL
CRACK PROBLEMS BY LOCAL INTERPOLATION PROCEDURES

Consider a three-dimensional plane crack with arbitrary shape, as shown in Fig. 12. We have es-
tablished that such a fracture geometry can be represented by a continuous distribution of three pairs of
mutually orthogonal force dipoles as shown inset in Fig. 12.9 Such a combination of dipoles arises from the
recognition of the tensile crack as a distribution of nuclei of effectively infinite one-dimensional strain, such
that integration through the vanishing crack thickness gives the actual opening displacement §(x;, x5). This
basic unit of the model for the fracture event will be referred to as the “‘tensile dipole™ hereafter. The ap-
propriate influence function for such a tensile dipole can be obtained readily from Kelvin’s solution for a
point force in an infinite elastic medium. Taking the x3-axis to be parallel to the force dipole with strength T,
the stresses o;; at a point (1, X, x3) due to a tensile dipole at (£, &, £3) are:

T 3(x; - )% - &) . (x4 - ) L v - £)?
. 8n(l - v)r3 r? r? 1-v r2
_ 2
+ v ) £) _ <1 + 2v )
1-v r2 1-v
6V(x3 - &)

- _“‘rz— [(xi - Ei)ajg, t+ (xj - Ej)sa]

602 (x, - £))
BT Rk A R ot
6v% (x, - &,)
- —(i—__l))rT [(xl - 21)8]2 + (XJ - Ej)812]
36ij 5 v 2 v 2
B Tl K Tl Vel G P 1-u(x2_52)]

2v v v
'5ij<1 + - )+ 2(6i35j3 + . 8181 t 1—_-V—8i28j2> . (15)
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FIG. 12. Crack geometry and loading. Shown inset is the tensile dipole used as a basic influence function for
three-dimensional cracks in isotropic medium; completely analogous representation for anisotropic medium.

where r2 = (x; - £)(x; - &) and T is the strength of the tensile dipole.

When we take the plane of the crack to be normal to the x3-axis, the stress component of interest is
o33. Also, we will be evaluating o33 on the crack surface from tensile dipoles on the same surface, so that
x3 = §3 = 0. Thus Eq. (15) reduces to:

033 =C, />, €, = (1 -2)8n (L -0)?, (16)
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where 12 = (x; - £)? + (x; - £,)? expresses the planar radial position from the dipole.

By distributing an unknown density, u(x;, x,), of these tensile dipoles over the whole plane St, con-
taining the crack surface, and equating the known pressure distribution acting on the crack surface to that
produced by the distribution of tensile dipoles, we obtain:

C .
p(Xl, x2) = - ﬂ—%#(il, 52)d21 déz s an
I

S
T
where p(x;, x,) is the pressure acting on the crack surface and the signs for p(x;, x;) are taken to be positive in
the sense shown in Fig. 12.

The relevant tensile dipole density, u(£;, &), can be expressed in terms of the crack opening 8(x;, x;)
as:

ity ) = S 56, 6) - 56 xp)] a8)

The reason for introducing (x,, X,) as reference is that the influence at a point (x;, x;) from another point (¢,
&,) is due to the difference of the openings at the two points. This is appreciated by recognizing that a uniform
misfit strain [with associated opening &(x,, x;)] over the whole plane St would produce zero stress at all points,
and at (x;, X5) in particular. The constant of proportionality in Eq. (18) can be obtained by considering the
stress required to produce a uniaxial misfit strain, corresponding to the crack opening. Effectively, u/Ax; is
equated to the uniaxial straining modulus times the effective misfit strain [6(¢;, &) — 6(x;, X;)]/Ax;. Equa-
tions (17) and (18) together give:

P(xls xz) ff [6 (El’ 52) 5(x1, xz)] dzldzz, Z"(lg‘:—;)' 19

Alternatively, Eq. (19) can be written as:

EP; = _jf.:? [8(E,, &) - 8(xy, x,)1dE A, - 8(xy, X,) -9(:1 . VE(%) ds , (20)
S 38

where V; is the two-dimensional gradient operator with respect to £, £; n is the unit vector normal to the
boundary of the crack aS. The Green’s theorem has been employed to rewrite the surface integral of [3(£,
£5) - 8(Xy, X2)1/13 over St — S as a line integral along 8S, and the vanishing of (£}, £,) outside the crack surface
S has been used.

This particular result gives that equation obtained by Clifton et al.!? but the method has far more
general applications to inhomogeneous and anisotropic media. Also, Eq. (20) obviously reduces to Eq. (1) for
two-dimensional tensile crack problems. Equation (1) was derived from a dislocation density formulation.’

Prompted by the success of the local interpolation scheme in two-dimensional problems? and also by
its simplicity, we apply the scheme to Eq. (20). First, we discretize the crack into N elements (Fig. 13). In the
simplest formulation, we assume a constant value for the crack opening over each element, and we collocate at
N points. Thus, we obtain a system of N equations in N unknowns; namely:

f dg, dg, j{)‘
1 .
j n- V —1ds } 6. 1=19'..:Na
£l R, i’

1

RY = 0 - §)7 + 0 - 57, @1)
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i ™ collocation point (x} , xi,)

oS.

ith element, S,

Y
X
N

FIG. 13. Discretization of crack surface.

where (x f, xj) is the ith collocation point and p; is the pressure at the same point. Notice that the surface in-
tegral in Eq. (20) vanishes for i = j because of our constant interpolation function. For i # j, the §(¢;, £&)/r°
part of the surface integral gives us the first sum in Eq. (21). If we apply the Green’s theorem to the remaining
part of the surface integral in Eq. (20)—namely, 5(x|, x;) /r3>—we obtain:

8(xq, x,) 1
,/]—_;3—— dg, dg, = 8(x1, X,) f - f n- vy (T)ds . (22)

S-S, as 05,
Thus, we see that the line integrals along 3S cancel each other, and we are left with only an integral along aS;,
which is the second term in Eq. (21). This is extremely convenient because it avoids the cumbersome integra-
tion over the whole crack boundary, for each collocation point. Once the crack opening is obtained, the stress-
intensity factor can be found (e.g., from Ref. 10), namely:
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© G5(xy, X,) o
Kl(yl’ Y2) = _T(l—l-:_l—)-)z— ‘%E , d = \/(xl - yl)Z + (X2 - Y2)2 ’ (23)

where d is the distance from (yy, y) to (x;, x») along the normal to the crack edge at (y, y,)-

The numerical procedure was tested first for a square crack (side length 2a) under uniform pressure
Po- Although no analytical solution with which to compare the results is available for such a geometry,
numerical data on the stress-intensity factor Kj have been produced.!! This and the crack opening & is expect-
ed to be slightly higher than that of a penny-shaped crack with the radius a and quite a bit lower than that of a
penny-shaped crack with radius y/2a. Different numbers of elements were used. A typical mesh used is shown
in Fig. 14. The collocation points were imposed at the centers of the elements. The integrations in Eq. (21)
were of the Gaussian type, and the openings §; were solved for by using a standard elimination routine. The
stress-intensity factor K; along the side of the square was then obtained by using Eq. (23). Results are sum-
marized in Table 1 and Fig. 15.

(-1,-1) (-1, 1)
1 8 15 22 29 36 43
2 44
3 45
4 46 o X2/a
5 47
6 48
7 14 21 28 35 42 49
(1 ] _1 ) . (1 ’ 1 )
Y
X1 /a

FIG. 14. Typical mesh used in square-shaped crack.
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Table 1. Crack opening ‘displacement at center of
square-shaped crack and upper bound on its percent
error tabulated against number of elements.

Opening displacement
at center Upper bound on
Gs percent error
Number of - in &g
elements 4n(1 - v)apg (%)
1 0.17678 74.5
0.13433 326
25 0.12659 249
49 0.12261 21.0
81 0.11954 18.0
0 0.10132-0.14329 0 " -0 Bui's result! T

[ —-&= N=49

—o— N=81

FIG. 15. Stress-intensity factor K* for square-
shaped crack plotted against position along one of its

! — (along < =1.0)
sides. - a a

In Table 1 we examine the crack opening é. at the center. The lower and upper bounds on g,
provided by penny-shaped cracks of radii a and v/2a, are 6c1 = 4(1 - v)apy/wG and 4., = 42 (1 - v)apy/7G,
respectively. For all except a very small number of elements N, é, does fall within the two limits, and it tends
toward é; ) as N increases. Using the lower bound on § as a reference, we obtained an upper bound on the per-
centerror in . namely:

5 .,-8
Percent Error =

X 100% . (24)

c,R

This quantity decreases monotonically as N increases but convergence is slow. An explanation for such a slow
rate of convergence is the low order of interpolation used in approximating the crack opening é in Eq. (20);
this low order of interpolation can readily be remedied.

In Fig. 15 the stress-intensity factor K*, normalized to the stress-intensity factor K| = 2p, (a/x)!/2
for a penny-shaped crack of radius a, is plotted along a side of the square. As in the case of 5., we may also ob-
tain lower and upper bounds for Ky*, from inside and outside circular cracks; namely, K;*; = 1.0 and
Ki* u = 1.1892. These values are indicated in Fig. 15, and we observe that the calculated K;* has an error of
approximately 40% for N = 81. Again, the fault lies with the crude interpolation used for é. In addition,
Eq. (23) is true only when d is small. Since the collocation points are at the center of each element, it is natural
to take the crack openings obtained to be a representative value at the center as well. Therefore, the distance d
is determined by the mesh size. This means that a finer mesh near the edge of the crack will help to improve the
accuracy of the stress-intensity factor K* calculated.

From the numerical results obtained we conclude that the local interpolation scheme is a satisfactory
way of solving Eq. (20). A global interpolation scheme has also been suggested.!2 The latter involves a map-
ping of the arbitrary crack geometry onto a square. This mapping poses a problem when the crack geometry is
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irregular, because irregularity introduces singularities in the mapping. On the other hand, in the local inter-
polation, we need only refine the mesh around the irregular part of the geometry. Also, we see an advantage of
local interpolation over global interpolation for problems that involve moving boundaries, such as crack
propagation problems, especially with fracture-fluid evolution. For local interpolation, we have only to add
more elements to the existing mesh to account for the new boundary at each step. To update the coefficient
matrix, we simply supplement the previous one with a row and a column. In global interpolation, a different
mapping of the crack geometry is required at each step; moreover, the coefficient matrix must be constructed
at each step as well. Since the latter requires a large amount of computation, especially by comparison with the
local scheme, the balance would appear to tip in favor of the latter. However, the global interpolation scheme
does give much greater accuracies than does the local interpolation scheme for a corresponding size of matrix.
At this point, no firm preference can be established between the two schemes because, for the hydrofracture
problem, we have not performed sufficient evaluation of relative costs and effectiveness in solution.

LABORATORY EXPERIMENTS

Experiments have been started to study hydraulic crack growth in limestone near interfaces that are
.intersected by cracks. This phenomenon has been modeled theoretically, and the stress-intensity factor near
the tip of the pressurized crack has been computed as the crack approaches an interface that is intersected by
0, one, and two preexisting cracks.’ To model experimentally this geometry our standard setup for the study
of crack growth was modified as shown in Fig. 16. The setup consists of a sandwich of three limestone blocks,
4-in. by 4-in. by 2-in. (100-mm by 100-mm by 50-mm), with the fluid-pressurized crack initiated and driven in
the center block. A load is applied so that a normal stress is set up across interfaces I} and I5. In these experi-
ments, however, the upper block consists of three blocks that are precisely machined and aligned adjacent to
one another to give the effect of preexisting cracks C; and C, that intersect the interface I; at right angles. In
an initial experiment in which the applied load, W, exceeded the threshold stress for crack growth across un-
bonded interfaces in limestone, ~45 MPa (~650 psi), the pressurized crack crossed the interface I, from the
central block in which it was initiated into the lower single block but failed to cross the interface I}, which was
intersected by the two cracks C, and C,. This result is consistent with the predictions of the mathematical
model when the Mode 1 stress-intensity factor is used as a criterion for predicting crack growth. However,
because this result is based on only one observation, it must now be considered preliminary and subject to
further modification. Further experiments are planned to establish a definite trend.

REVIEW OF DATA ON EVOLUTION AND STRESS HISTORY
OF SOME WESTERN GAS SANDS

The physical properties that control many of the productive characteristics of gas reservoirs are a
result of original sedimentary character and the changes since deposition. These physical and chemical
changes are due to burial, heat, and the effect of applied stress over time. The stress history includes compres-
sion and shear due to burial and compaction, unloading due to erosion, predominantly effective tensile
stresses during uplift, and a wide range of compressive and shear effects—all caused by tectonic processes.

Stratigraphy and stress history are important for several reasons. Reservoir behavior is in part a
function of original permeability as modified by natural and artificially induced fracturing. Original per-
meability is a function of the stratigraphic-tectonic environment at deposition. Natural fracturing is a result of
past stress history, and artificial fracturing is in part controlled by mechanical properties including discon-
tinuities, and by the present state of stress in the rock. Analyses of the stratigraphy and the stress history of
reservoirs should assist in interpretation of well logs, geologic and geophysical data, and field production
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FIG. 16, Experimental setup to study crack growth
near interfaces that are intersected by cracks cy and
Cs.

data. Moreover, analyses can help us to understand reservoir behavior and to design fracture and other
stimulation techniques.

The area of the Wind River, Green River, Uinta-Piceance basins of the Rocky Mountain foreland,
and the San Juan basin is suited to such an analysis because of abundant surface and subsurface data and in-

tensive fuel and mineral development that has produced a very large number of structural and stratigraphic
studies and analyses. '3

PROCESSES

AN

The processes involved can be described generally as:
® Deposition

® Burial and early diagenesis

® Tectonism

® Thermal and metamorphic processes

® Erosion and uplift.

These processes may be repeated in whole or in part, and commonly have been repeated in the older
rocks. The following paragraphs present a brief discussion of the processes and possible implications as they
apply to the Mesaverde and related rocks in the central Rocky Mountain area.
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DEPOSITION

This discussion is limited to the Mesaverde type rocks of the Upper Cretaceous Montana Group, the
regressive sandstone tongues of Weimer’s regressive cycles R, and R. 14 These rocks produce gas and oil in the
Wind River, Green River, Uinta-Piceance, and San Juan basins. They are often of low permeability and, for
commercial production, require artificial fracturing.

The reservoir sandstones are generally poorly sorted and in discontinuous bodies deposited in a
shoreline or near-shore environment.!® The sand bodies are the result of repeated advance and retreat of the
western shore of the Late Cretaceous Sea. The source of sediment was to the west; the environment changes
from marine to coaly to alluvial nonmarine in a westward direction. The greatest thickness of these rocks and
the most sandy sections are generally in the location of the present Green River and Piceance basins.
Equivalent rocks in the San Juan basin are generally thinner. The sedimentary environment results in reservoir
units of limited extent encased in less permeable sediments.

BURIAL AND EARLY DIAGENESIS

Thickness is generally a function of rate of deposition; thicker sections of rock probably underwent
earlier burial, compaction, and first-stage diagenesis. Rapid burial may promote early failure along steeply
dipping shear planes in the immature sediments.

TECTONISM

The region was generally subject to compression in an east-west direction before deposition of the
Upper Cretaceous sediments. This compression resulted in mountains to the west that were the source of the
coarse sediments, in the formation of the depositional basins, and ultimately in the overthrust belt to the west
and the major folds and faults of the Rocky Mountain foreland referred to as the Laramide orogeny. The
detailed mechanics were complex; the general east-west compression was modified by local and inherited
structures.!®-18 Unmodified compressive stress in rocks at depth would tend to promote near vertical fractur-
ing.

THERMAL AND METAMORPHIC PROCESSES

The depositional basins of interest have had little intrusive or extrusive igneous history since Late
Cretaceous time. This is in marked contrast to adjoining regions; e.g., the Colorado mineral belt, the
Absaroka-Yellowstone region, and the Snake River plain. Present heat-flow is minimal!®—againin contrast
to some neighboring areas. We can conclude that any thermal metamorphism, which is low in the particular
regions of interest, will be due to deep burial rather than to igneous activity. We would expect that areas with
the thickest Upper Cretaceous and younger rocks (i.e., the Green River and Piceance basins) would have more
effects of deep burial.

EROSION AND UPLIFT

The post-Paleocene history of the region includes both erosion and uplift followed by downwarp and
deposition. The modern state is one of uplift and erosion. This state is the final stage in a series including
Eocene deposition, then erosion, followed by Late Tertiary deposition, and a final uplift cycle. Uplift and ero-
sion may promote tensional fracturing and finally a state in which the minimum principal stress is vertical,
and near-horizontal jointing develops. Because burial may change the stress state again, maximum pressure is



vertical and high-angle shears and vertical tension fractures develop. In this deposition/downwarp, uplift/ero-
sion, deposition/downwarp cycle, several distinct sets of shear and tension fractures could develop. Figure 17
illustrates some possible relationships between fractures, simple stress regimes, and some simple stratographic
units. With underlying or inherited structures and local discontinuities in rock properties, the detailed picture
may become very complicated. In any event, the rock, its discontinuities including fractures, and the present
state of stress are the end result of this history.
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FIG. 17. Simple stress-fracture relationships.
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Figure 17 illustrates the possible relationships between the fractures produced by three simple stress
regimes and the orientation of typical barrier bar sand bodies, such as those in the Almond Formation on the
Wamsutter Arch in the Green River basin of Wyoming. In the figure, o is the maximum principal stress direc-
tion (stress taken as compressive), o5 is medium principal stress, and o4 is the least principal stress.

® Case I is simple subsidence and compaction, where maximum stress is vertical. Steeply dipping
shears (I;) and vertical tension fractures (I;) may develop, with an east-west strike. These shears and fractures
cut across the small dimension of the sandstone barrier bar reservoir.

® Case II has maximum stress horizontal in an east-west direction. Preferred shear directions are
northeast-southwest and northwest-southeast, with relative movement as shown by the arrows (I5). These
fractures cut the bars at an acute angle but might serve to connect them across the channel in the middle. Ten-
sion fractures (II,) are again vertical and east-west.

® Case III has maximum compressive stress in a horizontal and northeast-southwest direction,
which stress could be the result of an east-west left-lateral shear couple as shown. This orientation could
produce one set of shears almost parallel to the long dimension of the bars (IILy). The tensional fractures (111
are rotated so that they cut the bars at an acute angle and could serve to connect across the middle channel.

In summary, understanding the sedimentary features and their relation to the stress-induced changes
may aid in the analysis of oil and gas reservoirs and the design of stimulation treatments. For example, it may
be possible from geologic data to predict where natural fractures parallel the long dimension of the reservoir
unit. Or this information may be used to form new fractures that do the same thing.

Tectonic and stress-history investigation should be continued along these lines:

® Compilation of regional, basin, and field scale data on stratigraphy, structure, and tectonics

® Development of theoretical stress analyses from the above

® Checking of these against available information on mechanical properties, including fractures
and in situ stress measurements

® Development of new information if required

® Correlation of stratigraphic and mechanical data against reservoir and well performance.

The results should be useful in predicting reservoir behavior, in designing and interpreting well log-
ging and testing programs, and ultimately in field development and stimulation programs.

LOGGING

In a previous report?® we discussed the digitization of the coda of a variable-intensity-recorded
continuous-velocity log. We associated dips in a contour of amplitude of this coda (signifying that the signal
of a given amplitude had died away at an earlier time) with gas shows. This digitization process is slow, costly,
and inaccurate, and has never been repeated.

Another logging contractor ran a similar log in anothcr hole (Columbia Gas No. 20403) at the same
site. The sonic tool used in this well had a much longer source-detector spacing, 25 m instead of 1 m (8 ft in-
stead of 3 ft), but there were four detectors and the amplitude vs time for these detectors was digitized and
taped. Recently we wrote a computer program to read these tapes and to plot a color variable-intensity log.
Samples of sections of this log are shown in Figs. 18 and 19. The vertical axis is depth, and the horizontal axis
is time out to 5 ms, and therefore does not show the entire coda (the log discussed above had time out to 20 ms
and did show all of the coda). Amplitude of the signal is represented by color. Black signifies negative am-
plitude, green near-zero amplitude (both positive and negative), and the other colors represent positive am-
plitudes as shown in the callout. The maximum possible amplitude is 2048.

In Fig. 18 we see a pair of magenta lines between 3990 and 4010 ft that seem to be caused by a water
wave reflected from a feature intersecting the hole (or caused by a change in hole size—but the caliper gives no
indication of such a change). These lines are visible on an ordinary black and white plot of this log. But

another feature, starting at about 3940 ft at 5 ms and continuing to about 3950 ft at 3 ms, would not be visible
in the ordinary log.
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FIG. 18. Part of color-variable-intensity-recorded
continuous-velocity log. Vertical axis represents
depth in feet; horizontal axis, time in seconds. Am-
plitude of acoustic signal is represented by colors:
green signifies near-zero amplitude, both positive and
negative; black signifies appreciable negative am-
plitude; on a scale of 0 to 2048, yellow signifies
positive amplitudes between 100 and 400, blue be-
tween 400 and 700, cyan between 700 and 1000, red
between 1000 and 1500, and magenta greater than
1500.
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FIG.19. Part of color-variable-intensity-recorded
continuous-velocity log; significance of colors is same
as in Fig. 18.

Figure 19 shows a low-amplitude region extending over much of the section, but this low amplitude
does not appear until approximately 2 ms. An ordinary amplitude log of this hole shows only the changes in
amplitude of the first few cycles. This low-amplitude region seems to be associated with gas shows on a sibila-
tion log, with a dip in the sibilation signal in the region near 3590 ft where the acoustic amplitude increases.
However, other gas shows in the sibilation log are not associated with low-amplitude regions in this color log.
Perhaps, were the entire coda available, such regions could be found, but this is still a matter for conjecture.

We believe that a shorter transmitter-receiver distance will also be more satisfactory in locating frac-
tures. In the near future we hope to be able to obtain logs with shorter transmitter-receiver distances and
longer sweeps. We then will be able to learn whether this technique will help to locate fractures.
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ROCK MECHANICS MEASUREMENTS

Our rock mechanics measurements activity during the quarter includes:

® Completion of the Brazilian Test (tensile strength) of the Mesaverde sandstone from Sublette
County, Wyoming. The specimens were loaded either perpendicular or parallel to bedding.

® Completion of the specimen preparation of the Wyoming Mesaverde sandstone for the other
planned equation of state studies.

® [Initiation of the pressure-volume measurements for the Mesaverde sandstone and shale from
Rio Blanco County, Colorado.

® Completion of assembling the high-pressure vessel for simultaneous ultrasonic velocity measure-
ments in multiple directions. A protective cover for the high-pressure system was fabricated.

® A visit to the drill site of Well No. Federal 22-12, Rio Blanco County, Colorado, to select the
samples of Mesaverde shale and sandstone from the depth of approximately 1980 m (6500 ft). The Mesaverde
samples that we have been studying were from the Twin Arrow well at a depth of approximately 365 m
(1200 ft) in the same county. The samples selected during that visit had been received.

Current methods for predicting fracture intensity, geometry, and extent resulting from fracturing
stimulation (using either high explosive or hydraulic means) of an initially impermeable natural-gas-bearing
rock require certain equation of state measurements as input data to the calculation codes. In the previous
quarter we began to generate the required equation of state data for Mesaverde sandstone (reservoir rock) and
shale (source rock) core sections (10.16-cm-diam) from the Federal No. 24-19 well in Sublette County, Wyo-
ming. The depth of sample origin ranged from 1579.9 to 1582.8 m.

The core sample contains alternating sections of sandstone, shale, and the mixture of the two. Both
sandstone and shale sections are quite homogeneous. The bedding planes between sandstone and shale are
horizontal (perpendicular to the axis of the core sample). However, within the sections of pure sandstone or
shale, the bedding is not obvious. The colors of the sandstone and shale are light gray and dark gray, respec-
tively. The sandstone is very fine grained.

To date we have completed the Brazilian test for the Wyoming Mesaverde sandstone. The results of
the Brazilian test yield tensile strengths that are summarized in Table 2. We see that the tensile strength of the
Wyoming Mesaverde sandstone is almost independent of the direction of loading with respect to bedding. The
Wyoming Mesaverde sandstone has a much greater tensile strength than the tensile strengths of the Colorado

Mesaverde sandstone and shale reported in the previous quarterly and reproduced in the lower part of Table 2
for comparison.

Table 2. Tensile strength of Mesaverde sandstone from Sublette County, Wyoming.

Parallel(]))

Averaged tensile
strength at 1

Depth Number perpendicular standard deviation
Rock (m) of test (€W (MPa)
Wyoming 1581.6 12 I 1446 + 124
sandstone 1582.8 11 L 14.31 + 2,07
Colorado 352.7 13 ] 3.29 £ 0.56
sandstone 20 L 3.19 £ 045
Colorado 3499 12 L 1151 +321
shale 354.2 7 I 8.83+453
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