Geometry of Sandstone Reserveir Bodies®

Abstract Natural underground reservoirs capaoble of
containing woler, petroleuti, and gases include sand-
siones, limestones, dolomile:, ond fraciured rocks of vari-
aus types. Comprehensive research and exploratian =f-
forts by the petroleum industry hove revealed much abaut
the choracler and disiribulion aof corbanate rocks {lime-
siones and dolomites) and sondslones, Porosity and per-
mesobility of the deposils ore crileria for delermining
their efficiency os reservoirs for fluids, Trends of cerfain
sandstones are predicloble. Furthermore, sandsione res-
ervoirs have been less offecled thon corbonate reservoirs
by postdepositionol cementation and campaction, Froc-
lure poresity has received less concentrated study; hence,
we know less about this type of reservoir. The discussions
in this puper are confined 1o sandsione reservoirs.

The principal sandstone-generaling environmen!s are
{1} Auvial environments such as alluviol fons, braided
streams, ond meandering streoms; (2} distributary-channel
ond delia-front environments af various types of dellas;
{3} coastal barrier islands, tidal channels, end chenier
plains: [4) desert and coostal eolian plains; cnd (5)
deeper marine environments, where the sands ore dis-
tributed by both normal and density currents.

The olluviol-fan environment is choraclerized by flesh
floods and mudfows or debris flows which deposil the
toarsest and most irregular sand bodies. Braided streams
have numerous shollow channels seporoled by broad
sandbars; laferal channel migration results in the deposi-
tion af thin, lenticular sand bodies, Meandering streoms
migrate within belts 20 fimes the chonnel width end
deposit two very common types of sand bodies. The
processes of bonk-caving and peini-bar occrelion result
in loleral channel migratioan and the formotion of sond
bodies {poinl bors) within each meander loop, Natural
cul-offs ond channel diversions result in the abondon-
menf of individuol meanders and long channel seg-
ments, respectively, Ropidly abandoned chonnels are
filled wilh some sand bul predominantly with fine-groined
sediments (clay plugs}, whereas graduolly obondoned
channels are fliled moinly with sonds ond sills,

The mos! common sondsione reservoirs are of deltoic
origin, They are lalerally equivalent to fluvial sonds and
prodelta and marine cloys, and they consist of two lypes:
dello-fron! or {ringe sands and abandoned dis‘ributary-
channel sands. Fringe sands are sheetlike, and their lend-
ward morgins are abrupl {ageinst organic clays of the
delioic plain). Seaword, these sands grode info the
finer prodelio and marine sediments, Distributary.channel
sandsione bodies cre norrow, they hove abrup! besal
conlacts, and they decreose in groin size upward. They
cut inlo, or campletely through, the fringe sands, and
also connect with the upsiream fluvial sands ar braided
or meandering sireams,

Some of the more porous and permecble sondsione
reservoirs are deposiled in the coaslal interdellaic realm
of sedimenlotion, They consist of well-sorled beach end
shareface sands associoted with barrier islonds ond tidel
channels which occur belween barriers. Barrler sand
bodies are long and narrow, are aligned parollel with
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the coastline, ond are choracterized by on upward in-
crepse in grain size, They are flanked on the landward
side by logoonal cloys and on the opposite side by
marine clays, Tidal-channel sand bodies have abrupt
basal contacls ond range in grain size from coorse at
the bose to fine a! the top. Laterally, they merge with
barrier sands and grode inlo the finer sediments of
tido! dellas ond mud fiats.

The most porous and permeoble sondstone reservoirs
are products of wind octivity in coastal and desert re-
gions, Wind-laid (ealian] sands are typically very well
sorled and highly crossbedded, and they occur as ex-
tensive sheefs.

Marine sondstones are those associated with normal-
marine processes of the confinental shelf, slope, and
deep and those due to density-currenl orig’'n {turbidites),
An importcnt type of normal-marine sand is formed
during marine transgrass’ans. Althaugh these sands are
extremely thin, they are very distinctive and widespread,
have sharp updip limits, and grode seoward into marine
shales. Della-fringe and borrier-shorefoce sands ore two
other types of shallow-morine sands,

Turbidites hove been interpreied to be associated
with submarine canyons. These sonds cre fransported
from nearshore environments seaward through cenyons’
ond ore deposited on submarine fons in deep morine
basins. Other turbidites form as a result of slumping of
delfaic focies at shelf edges. Turbidite sonds are usually
assaciated with thick marine shales,
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INTRODUCTION

dmportant natural resources such as water,
oil, gas, and brines are found in underground
reservoirs which are composed principally of
the following types of vocks: (1) porous sands,
sandstones, and gravels; (2) porous limestones
and dolomites; and (3) fractured rocks of vari-
ous types. According to the 1971 American Pe-
troleum Institute report on reserves of crude oil
and natural gas, sandstones are the reservoirs
for about 75 percent of the recoverable oil and
65 percent of the recoverable gas in the United
States. It is also estimated that approximately
90 percent of our underground water supply
comes from sand and gravel (Walton, 1970).

Sandstone and carbonate (limestone and do-
lomite) reservoirs have been intensively studied
during the past 2 decades; conmsequently, the
general characteristics and subsurface distribu-
tion of these two important types of reservoirs
are relatively well known in numerous sedimen-
tary basins, The factors which control the ori-
gin and occurrence of fracture porosity have
received less attention; thus, our knowledge
and understanding of this type of reservoir are
more limited.

The detection of subsurface porosity trends
within sedimentary basins was recognized by the
petroleum industry as one of its most signifi-
cant problems, and for the past 2 decades it has
addressed itself to a solution through extensive
research. Largely as a result of this research,
which is summarized below, our ability to de-
termine trends of porous sedimentary rocks has
progressed noticeably, especially during the
past 10 years,

The amount of porosity and permeability
present within sedimentary rocks and the ge-
ometry of porous rock bodies are controlled
mainly by two important factors: (1) the envi-
ronmental conditions under which the sedi-
ments were deposited and (2) the postdeposi-
tional changes within the rocks as a result of
burial, compaction, and cementation. Postde-
positional diagenetic processes have less effect
on the porosity and permeability of sands and
sandstones than they have on carbonate sedi-
ments; consequently, porosity trends are signifi-
cantly more predictable for sandstones than for
limestones and dolomites,

Organization of paper—The following two
parts of this paper give a brief historical sum-
mary of the early research on clastic sediments
and present a classification of environments of
deposition and models of clastic sedimentation.
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A résumé of significant studies of modern clas-
tic sediments—mainly by the petroleum indus-
try, government agencies, and universities—
follows. The main part of the paper concerns
the sedimentary processes, sequences, and ge-
ometry of sand bodies which characterize each
of the following models of clastic sedimenta-
tion: alluvial fan, braided stream, meandering
stream, deltaic (birdfoot-lobate and cuspate-
arcuate), coastal inierdeltajc (barrier island
and chenier plain), and marine (transgressive,
submarine canyon, and fan).

Historicar Summary oF EarLy RESEARCH ON
MobpeRN CLASTIC SEDIMENTS

Geologists are now capable of interpreting
the depositional environments of ancient sedi-
mentary facies and of predicting clastic poros-
ity trends with a reasonable degree of accuracy
(Peterson and Osmond, 1961; Potler, 1967;
Rigby and Hamblin, 1972; Shelton, 1972).
This capability stems from the extensive re-
search conducted on Holocene sediments by
several groups of geologists during the past 3
decades. Conditions which led to this research,
and the most significant studies of clastic sedi-
mentation which provided the models, criteria,
and concepts necessary to make environmental
interpretations, are summarized below.

During the late 1930s and early 1940s, pe-
troleum geologists became aware that improved
methods of stratigraphic interpretations were
badly needed, and that knowledge and geologic
tools necessary to explore for stratigraphic
traps were inadequate. A detailed study made
by the Research Committee of The American
Association of Petroleum Geologists on the re-
search needs of the industry uliimately led to
the establishment of geologic research depart-
ments by major oil companies. By 1948, explo-
ration research by the ofl industry was in its
early stages, and expansion proceeded rapidly
thereafter,

Meanwhile, some very significant develop-
ments were occurring at Louisiana State Uni-
versity. H. V. Howe and R. J. Russell, together
with their graduate students, had already pub-
lished several Louisiana Geological Survey bul-
letins summarizing their pioneer work on the
late Quaternary geology of southern Louisiana
{Howe and Moresi, 1931, 1933; Howe ef al.,
1935; Russell, 1936). Their early work on the
Mississippi deltaic plain and the chenier plain
of southwestern Louisiana is considered o be
the beginning of the modern environmental ap-
proach to stratigraphy. Fisk became fascinated
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Geometry of Sandstone Reservoir Bodies

with the Howe and Russell approach, and he
applied results of their research to his study of
Tertiary sediments. The work of Fisk (1940)
in cenfral Louisiana, which included a study of
the lower Red River Valley and part of the
Mississippi Valley, attracted the attention of
General Max Tyler, president of the Mississippi
River Commission in Vicksburg., Genera] Tyler
enguged Fisk as a consultant and provided him
with a staff of geologists to conduct a geologic
investigation of the lower Mississippi River al-
luvial valley.

The Fisk (1944) report on the Mississippi
Valley, which now has become a classic geo-
lagic document, established the relations be-
tween alluvial epvironments, processes, and
character of sediments, The AAPG, recogniz-
ing the significance of this contribution, re-
tained Fisk as Distinguished Lecturer, and the
results and significance of his work became
widely known, One of his most significant con-
tributions came when, as the petroleum indus-
iry was getting geologic research under way, he
was selecled by a major oil company to direct
its geologic research effort in Houstou,

By 1950, a few major oil companies were
deeply involved in studies of recent sediments.
However, the small companies did not have
stal and facilities 1o conduct this type of re-
search, and American Petroleum Institute Proj-
ect 51 was established for the purpose of con-
ducting research on recent sediments of the
Gulf Coast. Scripps Institution of Oceanogra-
phy was in charge of the project, which contin-
ued for 8 years. Results of this research were
available to all companies (Shepard ef al.
1960). ’

While the petroleum indusiry was conduct-
ing “in-house” research and supporting the API
project, some significant research was being
done by the U.S. Waterways Experiment Sta-
tion in Vicksburg, Mississippi, and by the new
Coastal Studies Institule at Lovisiana State Uni-
versity under the direction of R, J. Russell.
These two groups conducted detailed studies of
recent sedintents for many years, and resulls
were made available to the petroleum industry.

By 1955, a fairly good understanding of pro-
cesses of sedimentation and character of related
sediments in several depositional environments

had been acquired. Although the application of
" this wealth of knowledge fo operational prob-
lems was very difficult, some useful applica-
tions nevertheless had been made by the middle
1950s, and it was generally agreed that the ini-
tial research effort was successful,
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Since 1955, Eéo]ogists all over the world
have become involved in studying recent sedi-
ments and applying the results to research on
older rocks., Geologists with the U.S. Geologi-
cal Survey and several universities have con-
ducted studies of alluvial fans, braided streams,
and eolian deposits; and the oceanographic in-
stitutions, such as Scripps, Woods Hole, and
Lamont, have investigated deep-marine sedi-
ments on a worldwide basis. Publication of pa-
pers on clastic sedimentation has been increas-
ing rapidly. The first textbook on the geology
of recent sediments cites more than 700 refer-
ences, 75 percent of which have appeared since
1955 (Kukal, 1971). Many of these contribu-
tions, considered to be most significant to the
current understanding of clastic sediments, are
cited in this paper.

MobpeLSs AND ENVIRONMENTS OF
CLASTIC SEDIMENTATION

The realm of clastic sedimentation ¢an be di-
vided into several conceptual models, each of
which is characterized by certain depositional
environments, sedimentary processes, se-
quences, and patterns, What are considered to
be some of the most common and basic models
and environments? of clastic sedimentation, ar-
ranged in order from the periphery to the cen-
ter of a depositional basin, are listed below and
are shown on Figures 1-4. ‘

Continental
Alluvial (fluvial) models
Alluvial fan
Braided stream
Meandering stream (includes flood basins be-
tween meander belts)
Eolian (¢an occur at varions positions within con-
iinential and transitional models)
Transitional
Deltaic models
Birdfoat-lobate (fluvial dominated)
Cuspate-arcuate (wave and current dominated)
Estuarine (with strong tidal influence)
Coastal-interdeliaic models
Barrier-island model (includes barrier islands,
lagoons behind barriers, lidal channels, and
tidal deltas)
Chenier-plain model (includes mud flats and
cheniers)
Marine
(Note: Sediments deposited in shallow-marine en-
vironments, such as dellas and barrier islands, are

' The classification of depositional environments pre-
sented herein was initially developed by the writer and
his colleague, Hugh A. Bernard, during tbe early 1950s
(LeBlanc and Berpard, 1954) and was recently modi-
fied (Bernard and LeBlanc, 1965). For other classifi-
cations, refer to Laporte (1968), Selley (1970), Crosby
(1972), and Kukal (1971).
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LEGEND

CONTINFNIAL .
AF- ALIUVIAL FAN
BS - BRAIDED STREAM
M5 - MEANDERING STREAM
AE- EDLIAN
TRANSITION AL
. o~ DELTAIC
C1D - COLSTAL
INTERDELTAIC
CP- CHERIER PLAIN
BIC - BARRIER-I15L AND
MPLEX
MARINE {M]
TM TRANSGRESSIVE
MARINE
SCF - SUBMARIRE CANYON
ARD FAN

MARINE

71-0383-4

F16, 1—Some common models of clastic sedimentation. See Figures 2-4 for details.

included under. the transitional group of environ-
ments.)

Transgressive-marine model

Submarine-canyon and submarine-fan model

REsuME OF SIGNIFICANT STUDIES OF
MopERN CLASTIC SEDIMENTATION

Alluvia) Fans

Although much work has been done on allu-
vial fans, only a few papers discuss the relation
of sedimentary sequences to depositional pro-
cesses. Some of the more important contribu-
tiops are by Rickmers (1913), Pack (1923),
Blackwelder (1928), Eckis (1928), Blissen-
bach (1954), McKee (1957), Beaty (1963),
Bull (1962, 1963, 1964, 1968, 1969, 1971),
Hoppe and Ekman (1964), Windzr (1965),
Anstey (1965), Denny (1965, 1967), Legget
et al, (1966), and Hooke (1967).

Braided Streams

Early papers on braided streams concerned
channel patlerns, origin of braiding, and physi-
cal characteristics of braided streams. Signifi-
cant studies of this type were conducted by
Lane (1957), Lcopold and Wolman (1957),
Chein (1961), Krigstrom (1962}, Fahnestock
(1963), and Brice (1964).

The relatively few papers on the relation of
braided-stream deposits to depositional pro-
cesses did not appear until the 1960s. Doeglas
(1962) discussed braided-stream sequences of
the Rhéne River of France, and Ore (1963,
1965) presented some criteria for recognition
of braided-stream deposits, based on the study
of several oraided streams in Wyoming, Colo-
rado, and Nebraska, Fahnestock (1963) de-
scribed braided streams associated with a gla-
cial outwash plain in Washinglon. More re-
cently, Williams and Rust (1969) discussed the
sedimentology of a degrading braided river in
the Yukon Territory, Canada. Coleman (1969)
presenied results of a study of the processes
and sedimentary characteristics of one of the
largest braided rivers, the Brahmaputra of
Bangla Desh (formerly East Pakistan). N.
Smith (1970) studied the Platte River from
Denver, Colorado, to Omaha, Nebraska, and
used .the Platte model to interpret Silurian
braided-stream dzposits of the Appalachian re-
gion, Waechter (1970) has recently studied the
braided Red River in the Texas Panhandle, and
Kessler (1970, 1971) has investigated the Ca-
nadian Riverin Texas. Boothroyd (1970) stud-
ied braided streams agsociated with glacial out-
wash plains in Alaska.
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Meandering Streams

H. N. Fisk’s studies of the Mississippi allu-
vial valley, conducted for the Mississippi River
Commission during the period 1941-48, repre-
sent the first significant contribution on mean-
dering stream environments and deposits. This
pioneer eflort provided geologists with knowl-
edge of the fundamental processes of alluvial-
valley sedimentation. Another study of a mean-
dering stream, the Connecticut River, and its
valley was made by Jahns (1947). Important
work on alluvial sediments deposited by mean-
dering streams was also done by Sundborg
(1956) in Sweden, and by Frazier and Osanik
(1961), Bernard and Major (1963), and
Harms et al. (1963) on the Mississippi, Brazos,
and Red River paint bars, respectively. Thus,
by 1963 the general characteristics of point-bar
sequences, and the closely related abandoned-
channe] and fload-basin sequences, were suffi-
ciently well established to permit geologists to
recognize this type of sedimentary deposit in
oufcrops and in the subsurface.

Other important contributions were made by
Allen (1965a) on the origin and characteristics
of alluvial sediments, by Simons ez al. (1965)
on the flow regime in alluvial channels, by Ber-
nard et al. (1970) on the relation of sedimen-
tary siructures to bed form in the Brazos valley
deposits, and by McGowen and Garner (1970)
on coarse-grained point-bar deposits.

Deltas

The early work by W. Johnson (1921, 1922)
on the Fraser delta, Russell (1936) on the Mis-
sissippi delta, Sykes (1937) on the Colorado
delta, and Fisk (1944) on the Mississippi delta
provided a firm basis for subsequent studies of
more than 25 modern deltas during the Jate
1930s and the 1960s.

Fisk continued his studies of the Mississippi
delta for more than 20 years. His greatest con-
tributions were concerned with the delta frame-
work, the origin and character of delta-front
sheet sands, and the development of bar-finger
sands by seaward-migrating rivermouth bars.

Scruton’s (1960) paper on delta building
and the deltaic sequence represents results of
APT Project 51 on the Mississippi delta. Addi-
tional research on Mississippi delta sedimenta-
tion, sedimentary structures, and mudiumps
was reported by Welder (1959), Morgan
(1961), Morgan ef al. (1968), Coleman e! al.
(1964), Coleman (1966b), Coleman and Gagli-
ano (1964, 1965), and also by Kolb and Van
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Lopik (1966). Coleman and Gagliano (1964)
also discussed and illustrafed processes of
cyclic sedimentation. The most recent papers
on the Mississippi delta are by Frazier (1967),
Frazier and Osanik (1969), and Gould
(1570).

Studies of three small birdfoot deltas of
Texas—the Trinity, Colorado, and Guadalupe
—were made by McEwen (1969), Kanes
(1970), and Donaldson (1966), respectively.
In addition, Donaldson et al. (1970) presented
a summary paper on the Guadalupe delta.
These four contributions are valuable because
each one presents photographs and logs of
cores of complete deltaic sequences.

European geologists associated with the pe-
troleum industry and universities also have
made valuable contributions to our understand-
ing of deltas. Kruit (1955) and Lagaaij and
Kopstein (1964) discussed their research on
the Rhdne delta of southern France, Allen
(1965¢c, 1970) summarized the geology of the
Niger delta of western Africa, and van Andel
(1967) presented a résumé of the work done on
the Orinoco delta of eastern Venezuela, More
recently, the Po delta of Jtaly was studied by B.
Nelson (1970) and the Rhéne delta of southern
France by Oomkens (1970).

Other recent contributions on modern deltas
are by Coleman et al. (1970) on a Malaysian
delta, by R. Thompson (1968) on the Colo-
rado delta in Mexico, and by Bernard et al
(1970) on the Brazos delta of Texas.

The deltaic model is probably the most com-
plex of the clastic models. Although additional
research is needed on this aspect of sedimenta-
tion, the studies listed have provided some
valuable concepts and criteria for recognition
of ancient deltaic facies.

Coastal-Interdeltaic Sediments

Valuable contributions to our knowledge of
this important type of sedimentation have been
made by several groups of geologists. In the
Gulf Coast region, the extensive Padre Jsland-
Laguna Madre complex was studied by Fisk
(1955), and the chenier plain of southwestern
Louisiana was studied by Gould and McFarlan
(1959) and Byrne er.al. (1959). The Galves-
ton barrier-island complex of the upper Texas
coast was investigated mainly by LeBlanc and
Hodgson (1959), Bernard ef al. (1959, 1962),
and Bernard and LeBlanc (1965),

Among the impressive studies made by Euro-
peans during the past 15 years are those by van
Straaten (1954), who presented results of very
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significant work on tidal flats, tidal channels,
and tidal deltas of the northern Dutch coast,
and by Horn (1965) and H. E. Reineck
(1967}, who reported on the barrier islands and
tidal flats of northern Germany.

During the past several years, a group of ge-
ologists has conducted interesting research on
the coastal-interdellaic complexes which char-
acterize much of the U.S. Atlantic Coast re-
gion. Hoyt and Henry (1965, 1967) published
several papers on barriers and related f{eatures
of Georgia. More recently, results of studies at
the University of Massachusetts on recent
coastal environmenis of New England were re-
ported by Daboll (1969) and by the Coastal
Research Group (1969).

In addition, Curray ef al. (1969) describad
sediments associated with a strand-plain barrier
in Mexico, and Potter (1967) summarized the
characteristics of barrier-island sand bodies.

Eolian Sand Dunes

Prior to the middle 1950s, eolian deposi-
tional environments were studied principally by
European geologists (Cooper, 19358). Since
that time, the coastal sand dunes of the Pacific,
Atlantic, and Gulf coasts of the United States,
as well as the desert dunes of the United States
and other countries, have been investigated by
university professors and by geologists with the
U.S. Geological Survey. Some of the most sig-
nificant contributions, especially those con-
cerned with dune stratification, are discussed in
the section on the ealian model of clastic sedi-
mentation.

Marine Sediments

Early work on modern marine sands, exclu-
sive of those deposited adjacent to and related
to interdeltaic and deltaic depositional environ-
ments, was conducted largely by scientists asso-
ciated with Scripps, Woods Hole, and Lamont
oceanographic departments. Several aspects of
marine sediments were discussed by Trask er al.
(1955), and the recent sands of the Pacific
Ocean off California were studied by Revelle
and Shepard (1939), Emery ef al. (1952), and
Emery (1960a). Stetson (1953) described the
northwestern Gulf of Mexico sediments, and
Ericson ef al. (1952, 1955) and Heezen ef al.
(1959) investigated the Atlantic Ocean sedi-
ments. Later, Curray (1960), van Andel
(1960), and van Andel and Curray (1960) te-
ported results of the API project on the Gulf of
Mexico.. A few years later, results of the API
project studies on the Gulf of California were
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reported by van Andel (1564) and van Andel
and Shor (1964). Menard (1564) discussed
sediments of the Pacific Ocean. For a more
complete list of references to studies of recent
marine sands, the reader is referred fo Kuenen
(1950), Guilcher (1958), Shepard es al
(1963), and Kukal (1971).

Much of the early research on modern ma-
rine environments was devoled to submarine
canyons, fans, and basins considered by the in-
vestigators to be characterized mainly by tur-
bidity-current sedimentation. Several scientists
affiliated with Scripps and the University of
Southern California published numerous papers
on turbidites which occur in deep marine ba-
sins,

It is extremely difficult to observe the pro-
cesses of turbidity-current sedimentation ux?der
natural conditions; consequently, the relations
between sedimentary sequences and Processes
are still relatively poorly understood. Much of
the research dealing with turbidity currents has
been concerned with theory, laboratory models.
and corzs of deep-water sediments deposited by
processes which have not been observed.

Avrruviar-Fan Moper oF CLASTIC
SEDIMENTATION

Occurrence and General Characteristics

Alluvial fans occur throughout the world,
adjacent to mountain ranges or high hills. Al-
though they form under practically all types of
climatic conditions, they are more common apd
best developed along mountains of bold relief
in arid and semi-arid regions (Figs. 5, 6).

The alluvial-fan model has the following
characteristics: (1) sediment transport occurs
under some of the highest energy conditions
within the entire realm of clastic sedimentation.
(2) deposition of clastic sediment occurs di-
rectly adjacent to the areas of erosion which
provide the sediments, and (3) deposits are qf
maximum possible range in size of clastic parti-
cles (from the largest boulders to clays) and
are commonly very poorly sorted con?pared
with other types of alluvial sediments (Fig. 5).

The size of individual alluvial fans is con-
trolled by drainage-basin area, slope, c]imat.e,
and character of rocks within the mountain
range. Individual fans range in radius from sev-
eral hundred feet to several tens of miles. Co-
alescing fans can occur in linear belts that are
hundreds of miles long. Fan deposits usually at-
tain their maximum thicknesses and grain size
near the mountain base (apex of fan) and
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Fi6. 5—Alluvial-fan model of clastic sedimentation.

gradually decrease in thickness away from the
apex.

The alluvial-fan environments commonly
grade downstream into brajded-siream or
playa-lake environments. In some areas, where
mountains are adjacent to oceans or large in-
land lakes, alluvial fans are formed under both
subaerial and submerged conditions. Such fans
are now referred to as “Gilbert-type” deltas,

Alluvial-fan deposits form important reser-
voirs for groundwaler in many areas, and adja-
cent groundwater basins are recharged through
the fan deposits which fringe these basins.

Source, Transportation, and Deposition
of Sediments

Tectonic activity and climate have a pro-
found influence on the source, transporiation,
and deposition of alluvial-fan deposits, Uplift
of mountain ranges results in very intensive
erosion of rocks and development of a very
high-gradient drainage system. The rate of
weathering and production of clastic material is
controlled mainly by rock characteristics and
climate (temperature and rainfall),

Clastic materials are transported from source
areas in mountains or high hills to alluvial fans

o I 1 ot

O S
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by several types of flows: stream fows and
sheetfloods and debris flows or mudfiows. Sedi-
ment transport by streams is usually character-
istic of large fans in regions of high to moder-
ale rainfall. Mudfiows or debris flows are more
common on small fans in regions of low rain-
fall characterized by sudden and brief periods
of heavy downpours.

Stream deposits—Streams which drain rela-
tively small segments of steep mountain ranges
have steep gradients; they may erode deep can-
yons and transport very large quantities of
coarse debris. The typical overall stream gra-
dient is concave upward, and the lowest gra-
dient occurs at the toe of the fan (Fig. 5).

Hooke (1967) described a special type of
stream-flow deposit, which he called “sieve de-
posits,” on fans which are deficient in fine sedi-
ments, These gravel deposits are formed when
water infiltrates completely into the fan. Bull
(1969) described three types of water-laid sedi-
ments on alluvial fans: channel, sheetflood, and
sieve deposits. Stream channels radiate outward
from the fan apex and commonly are braided.
The processes of channel migration, diversion,
abandonment and filling, and development of
new main channels and smaller distributary
channels on the lower part of the fan surface
are characteristic features. Most fan surfaces
are characterized by one or a few active chan-
nels and numerous abandoned channels. De-
posits on abandoned portions of gravelly and
weathered fan surfaces are referred to as
“pavement.”

Alluvial-fan channel deposits have abrupt
basal contacts and chaonel geometry; they are
generally coarse. Bull (1972) described chan-
nel deposits as imbricated and massive or thick-
bedded.

Heavy rainfall in mountainous source areas
can result in floods on alluvial fans. The rela-
{ively shallow and wide fan channels are not
capable of carrying the sudden influx of large
volumes of waler; consequently, the streams
overtop their banks and flood part of the fan
surface. The result is the deposition of thin lay-
ers of clastic material between channels, Bull
(1969) reporied sheetflood deposits to be finer
grained than channel deposits, cross-bedded,
and massive or thinly bedded.

Debris-flow deposiis—Some workers refer to
both fine-grained and coarse-grained types of
plastic flowage in stream channels as mudflows,
but others consider mudflows 1o be fine-prained
debris flows., Examples of transportation and
deposition of clastic sediments by mudflows

Fi6. 6—Stratigraphic geometry of an alluvial fan.
After Bull (1972).

were first described by Rickmers (1913) and
Blackwelder (1528). The following conditions
favor the development of mudflows: presence
of unconsolidated material with enough clay to
make it slippery when wet, steep gradients,
short periods of abundant water, and sparse
vegetation.

Pack (1923) discussed debris-flow deposi-
tion on alluvial-fan surfaces. Debris flows occur
as a result of very sudden, severe flooding of
short duration. Beaty (1963) described eye-
witness accounts of debris flows on the west
flank of the White Mountains of California and
Nevada, Debris flows follow channels, overtop
the channel banks, and form lobate tongves of
debris along channels. Debris-flow deposits are
very poorly sorted, fine- to coarse-grained, and
unstratified; they have abrupt margins. This
type of deposit is probably most common on
the upper parts of the fans between the apex
and midfan areas.

Summary: Character and Geometry of
Alluvial-Fan Deposits

Most of the alluvial-fan studies conducted
thus far have been concerned primarily with
the origin and general characteristics of fans
and the distribution of sediments on the sur-
faces of fans. An exception is Bull's excellent
summary paper (Bull, 1972), which contains
significant data on the geometry of channel,
sheetflood, debris-flow, mudfiow, and sieve de-
posits, The abstract of Bull's paper is quoted
below:

s
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Alluvial fans commonly are thick, oxidized, orogenic
deposits whose geometry is influenced by the rate and
duration of uplift of the adjacent mountains and by
climatic factors.

Fans consist of water-laid sediments, debris-flow de-
posits, or both. Water-laid sediments occur as channel,
sheetflood, or sieve deposits. Entrenched stream chan-
nels comnionly are backfilled with gravel that may be
imbricated, massive, or thick bedded. Braided sheets of
finer-grained sediments deposited downslope from the
channel may be cross-bedded, massive, laminated, or
thick bedded. Sieve deposils are overlapping lobes of
permeable gravel,

Debris-flow deposits generally consist of cobbles and
boulders in a poorly sorted matrix. Mudfiows are fine-
grained debris flows. Fluid debris flows have graded
bedding and horizonlal orientation of tabular particles.
Viscous flows have uniform particle distribution and
vertical preferred orjentation that may be normsl to
the flow direction,

Logarithmic plots of the coarsest one percentile ver-
sus median particle size may make patterns distinctive
of depositional environments. Sinuous patterns indijcate
shaliow epbemeral stream environments, Rectilinear
patterns indicate debris flow environments,

Fans consist of lenticular sheets of debris (length/
width ratio generally 5 to 20) and abundant channel
fills near the apex. Adjacent beds commonly vary
greatly in particle size, sorting, and thickness. Beds ex-
tend for long distances along radial sections and chan-
nel deposits are rare, Cross-fan sections reveal beds of
limited extent that are interrupted by cut-and-fill struc-
tures,

Three longitudinal shapes are common in cross sec-
tion. A fan may be Jenticular, or a wedge that is either
thickest, or thinnest, near the mountains.

Ancient Alluvial-Fan Deposits

Some examples of ancient alluvial-fan depos-
its which have been reported from the United
States, Canada, Norway, and the British Isles
are summarized in Table 1, together with other
types of alluvial deposits.

LeBlane

=
BRAmED-STREAM MODEL oF CLASTIC
SEDIMENTATION

\

Occurrence and General Characteristics

Braided streams occur throughout the world
under a very wide range of physiographic and
climatic conditions. They are common features
on extensive alluvial plains which occupy a po-
sition in the clastic realm of sedimentation be-
tween the high-gradient alluvial-fan environ-
ment at the base of mountain ranges and the
low-gradient meapdering-stream model of sedi-
mentation (downstream). In physiographic
provinces characterized by mountainous areas
adjacent 1o the sea, the braided-stream environ-
ment can extend directly to the coastline and
thus constitute the predominant environment of
alluvial deposition, In this type of situation,
meandering streams do not exist (Fig. 7)., The
braided stream is also a common feature of gla-
cial outwash plains associated with the fluvio-
glacial environment.

The braided-stream mode] is characterized
by extremely variable rates of sedimentation in
multiple-channel streams (Fig. 8), the patterns
of which vary widely compared with meander-
ing channels. Braided channels are usually wide
and shallow; they contain numerous bars, are
slightly sinuous or straight, and migrate at
rapid rates. Stream gradients are high, are quite
variable, and are less than those of alluvial fans
but generally greater than those of meandering
streams. Large fluctuations in discharge occur-
ring over short periods of time are also com-
mon. The combination of steep gradients and
high discharge rates results -in the trapsporta-
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tion and deposition of large amounts of coarse
material, ranging from boulders to sand.
Braided-stream deposits overall are finer than
those of alluvial fans, coarser than those of
meandering streams, and quite varied in stratifi-
cation,

Source, Transportation, and Deposition
. of Sediments

Apgrading braided streams transport very
large quantities of clastiz material derived from
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a variety of sources, such as outwash plains, al-
luvial fans, mountainous areas, and broad
plains. Unlike that of meandering streams, the
bulk of the sedimentary load of mosl braided
streams is transported as bed load. Rates of
sediment transport and deposition uare ex-
tremely variable, the maximum rate uceurring
during severe floods of short duration. High-
gradient upstream segments of braided streams
close to source areas are characterized hy depo-
sition of poorly sorted clastic sediments which

Tahle 1. Examples of Ancient Alluvial-Fan, Braided -Stream, and Meandering-Stream Deposjts,

Allutial Fan Braided Stream

Meandering Stream

Compasite Author

Arizona
California
California

Colorado

Colorado

Colorado

Colorudo

Connecticut Valley
llinois
Tilinois

Kansas
Llano Estacado
Maryland Maryland
Massachuselts

Massachuserns

Michigan
Montana
Mississippi Mississippi
Montuna Montana
Montana
Momana

New York
New Jersey, New York

New York

Pennsylvania
Pennsylvania
Pennsylvania

5.W, USA

Texas
Texas
West Virginia
Wyoming

Wyaming Wyoming

Northeastern Canada
Nova Scotia

Northwest Territories  Northwest Territories

England
Wales and Scotland
South Wales
Norway
Scottand
Spain
Spitsbergen Spitsbergen

New South Wales

Northwest Territories

Melton, 1965

Crowell, 1954

Filemal, 1967

Galehouse, 1967

Bagps, 1966

Bolyard, 1959

Brady, 1969

Finch, 1959

Stokes, 1961

Howard, 1566

Hubert, 1960

Klein, 1968

Hewitt ef al., 1965
Shellon, 1972

Lins, 1950

Shelton, 1971

Bretz & Horberg, 1949
Hansen, 1969

Wessel, 1969

Sianley, 1968

Mutch, 1968

Shideler, 1969

Gwinn, 1964

Berg & Cook, 1968
Gwinn & Muich, 1965
Shelion, 1967

Wilson, 1967, 1970
Beaty, 1961

Exum & Huarms, 1968
Harms, 1966

Burtiner, 1968

Smithy, 1970; Shelion, 1972
Royse, 1970

VYisher, 1965b

Beutner ef al., 1967
Smith, 1970

Ryan, 1965

Mutch, 1968

Bull, 1972

Fisher & McGowen, 194
McGowen & Groat, 1971
McGowen & Garner, 19¢. Yelion 1971
Beerbawer, 1964, 1969 '
Berg, 1968

Spearing, 1969

Byers, 1966

Dineley & Williams, 1967
Klein, 1962

Way, 1968

Miall, 1970

Allen, 1964; Laming, 164
Bluck, 1965, 19€7
Kelling, 1968

Nilsen, 1969

Williaras, 1966, 1969
Nagtegaal, 1966
Moody-Stuart, 19¢6
Conolly, 1965

Arizona

California
California

Colorado

Colo, Plateau
Colo. Plateau

Kansas

Massachusetis

Montana

Nebraska
Nebraska

North Dakota
Oklahoma

Rhode Island

Texas

Alberta
Quebec
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F16. 8—Types of braided-stream channels and bars.

range in size from boulder to sand. Farther
downstream, there is a gradual decrease in
grain size and an increase in sorting,

The bed-Joad materials are transported under
varying bed-form conditions, depending upon
river stage. Coleman (1969) reported ripple
and dune migration in the Brahmaputra River
of Bangla Desh ranging from 100 ft to 2,000 ft
(30-610 m) per day. Chein (1961) reported
downstream movement of sandbars in the Yel-
low River of China to be as great as 180-360
ft (55-110 m) per day. (For comparison, the
rate of bed-load movement in the meandering
Mississippi is about 40 ft [12 m] per day.)

Process of channel division (braiding) by de-
velopment of bars—The exact causes of chan-
nel division which results in the development of
the braided pattern are not very well under-
stood. Two methods in which channel division
takes place have been described by Ore (1963)
as follows:

Leopold and Wolman (1957, p. 43-44), using re-
sults of both stream-table studies and observations of
natural braided streams, discuss in some detail how
channel division may take place. At any time, the
stream is carrying coarser fractions along the channel
center than at the margins, and due fo some local hy-
draulic conditien, part of the coarsest fraction is depos-
ited. Finer material is, in part, trapped by coarser par-
ticles, initiating a central ridge in the channel. Progres-
sive additions to the top and downstream end of the
incipient bar build the surface toward water level, As
progressively more water is forced into lateral channels
beside the growing bar, the channels become unstable
and widen. The bar may then emerge as an island due
to downcutting in lateral channels, and eventually may
become stabilized by vegetation. New bars may then
form by the same process in lateral channels,” These
authors stress that braiding is not developed by the
stream's inability to move the total quantity of sedi-
ment provided to it; as incapacity leads merely to ag-
gradation without braiding. The condition requisite to
braiding is that the stream cannot move certain sizes
provided; that is, the stream is incompetent to trans-

‘ LRufus J.
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port the “Toarsest fraction furnished to s given reach,
Observations for the present study subslantiate the
braiding process of Leopold and Wolman.

Many {eatures of streams, bars, and braided reaches
result from changes in regimen (e.g., discharge, load,
gradient), to a large extent representing seasonal fluc-
tnations, Other features of bars result from normal
evolution, and represent no change in regimen.

The incipient longitudinal bar formed in a channel
commonly has an asymmetric, downstream-pointing,
crescentic shape, This coarse part is the “nucleus™ of
the bar, it coarser than successive additions to the
downstreant end, and largely retains its position and
configuration as long as any part of the bar remains,
During longjtudinal bar evolution downstream of this
incipient bar the water and jts sediment load com-
monly sweep from one lateral channel diagonally
across the downstream end of the bar, forming a
wedge of sediment with an advancing front at its
downstream edge. This wedge of sediment is higher at
its downstream edge, both on the longitudinal bars de-
scribed here, and where found as transverse bars to be
considered later, The latter build up the channel floor,
independent of longitudinal bar development, simply
by moving downstream,

After a certain evolutionary stage, bar height stops
increasing because insufficient water for sediment
transport is flowing over its surface, and deepening and
widening of lateral channels slowly lower water level,
From then on, the bar may be either stabilized by veg-
elation or dissected.

Widening of a reach after bar deposition is in some
cases associated with lateral dissection of the newly
formed bar, Most erosion, however, apparently occurs
on the ouler channel margins, I{ water level remains
essentially constant for Jong perjods of time, lateral
dissection may establish terraces along bar margins, A
compound ferrace etlect may be established during
falling water stages. The constant tendency of the
stream 1o establish a cross-sectional profile of equilib-
rium is the basic cause of lateral cutting by the stream.

Longitudinal bars which become awash during high-
waler slages may be dissected by small streams fiowing
transversely over their surfaces. In stream-table experi-
menls, sediment added to a system eroding transverse
channels on bar surfaces is first transported along lat-
eral channels beside the bars. Eventually, these chan-
nels fill to an extent that sediment starts moving trans-
versely over bar surfaces, and fills bar-top, transverse
channels. The addjtion of sufficient sediment to fil] lat-
eral and bar-lop channels ofien culminates in a trans-
verse bar covering the whole bar surface evenly.

Another process of braiding, in addition to that de-
scribed by Leopold and Wolman, takes place in well
sorted sediments, and involves dissection of transverse
bars. This is in opposition to construction of Jongitudi-
nal bars in poorly sorted sediment, the type of braiding
discussed above. Both types may occur together geo-
graphically and temporally. During extended periods of
high discharge, aggradatior. is by laige tabular bodies
of sediment with laterally sinuous fronts at the angle
of repose migrating downstream, Stabilization of dis-
charge or decrease in load after establishment of these
transverse bars results in their disseclion by anastomos-
ing channels; bars in this case form as residual ele-
ments of the apgradational patlern.

The transient nature of braided stream depositional
surfaces is characteristic of the environment. The
streams and depositional areas within the stream exhibil
profound lateral-migration tendencies, especially during
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periods of high discharge. Channel migration takes
place on several scales. Individual channels erode later-
ally, removing previously deposited bars. They divide
and coalescé, and several are usually flowing adjacent
o ome another concurrently within the main channel
syslem. The whole channel system, composed of sev-
eral flowing channels with bars between, also exhibits
migrating tendencies.

Braided-streum deposits—Qur knowledge of
madern braided-stream deposits has increased
substantially during the past several years as a
result of studies of several rivers in Wyoming,
Colorado, and Nebraska by Ore (1963, 1965);
the Brahmaputra River of Bangla Desh (for-
merly East Pakistan) by Coleman (1969); the
Platte River of Colorado and Nebraska by N.
Smith (1970); the Red River of the Texas pan-
handle by Waechter (1970); the Canadian
River of northwest Texas by Kessler (1970,
1971); and the Copper River of Alaska by
Boothroyd (1970). These studies revealed that
braided-stream deposits are laid down princi-
pally in channels as longitudinal bars and trans-
verse bars, Abandoned-channel deposits (chan-
nel fills) have  been reported by Doeglas
(1962) and Williams and Rust (1969).

According to Ore (1963, 1965), longitudi-
nal-bar deposits occur mainly in upstream
channel segments and transverse bars are more
common in downstream segments; however, in
some places these two types of bars occur to-
gether (Fig. 8). Longitudinal-bar deposits are
lens-shaped and elongated in the downstream
direction. Grain size decreases downstream
from coarse to fine in an individual bar; depos-
its are poorly sorted and mainly horizontally
stratified but laterally discontinuous. Trans-
verse-bar deposits occur as long thin wedges
and are highly dissected by channels. The
downstream edges of transverse bars migrate to
produce planar cross-stratification and some
festoon crossbedding. Sediments of transverse
bars are generally finer and better sorted than
those of longitudinal bars.

N. Smith (1970) described some very signifi-
cant relations between types of bars, stratifica-
tion, and grain size in the Platte River. In the
upstream segment in Colorado, the deposits
consist mainly of longitudinal bars character-
ized by low-relief stratification, gencrally hori-
zontally bedded but including some festoon
crossbedding. The downstream channel seg-
ment in Nebraska is characterized by trans-
verse-bar deposits consisting of better sorted,
fine-grained sand with abundant tabular cross-
stratification and some festoon crossbedding.

The Red River braided-stream sediments of

West Texas consist of longitudinal-bar deposits
with low-angle or horizontal stratification; they
are deposited during waning flood stages
(Waechter, 1970). Low-river-stage deposits
consist mainly of migrating transverse-bar de-
posits (in channels) with tabular cross-stratifica-
tion and some festoon crossbedding, The migra-
tion of very shallow channels results in stratifica-
tion sets that are horizontal, tabular or lentic-
ular, and laferally discontinucus.

Kessler (1970) reported Jongitudinal-bar de-
posits consisting mainly of fine sand in up-
stream reaches of the Canadian River in West
Texas. Transverse-bar deposits are predominant
in the downstream part of the area studied.
Kessler (1971) also discussed individual flood
sequences of deposits which contain parallel
bedding and tabular and small-ripple cross-lam-
inations. These sequences are covered by clay
drapes and are laterally discontinuous.

Coleman (1969) presented the results of a
significant study of one of the largest braided
rivers of the world, the Brahmaputra in Bangla
Desh. This river is 2-6 mi (3-9.5 km) wide
and migrates laterally as much as 2,600 ft (790
m) per year; deposition of sediments in its
channels during a single flood occurs in a defi-
nite sequence of change, ranging from ripples
up to 5 ft (1.5 m) high that migrate down-
stream 400 ft (120 m) per day to sand waves
50 ft (15 m) high that migrate up to 2,000 ft
(610 m) per day.

Williams and Rust (1969) presented results
of a very detailed study of a 4-mi (6.5 km)
segment of a degrading braided stream, the
Donjek River of the Yukon Territory, Canada,
They divided the bar and channel deposits,
which range from coarse gravels to clays, into
seven facies, Ninety-five percent of the bar de-
posits are of the longitudinal type and consist
of gravel, sand, and some finer sediments.
Abandoned-channel deposits consist of grada-
tional sequences of gravels, sand, and clays that
become finer upward,

Summary: Braided.Stream Deposits

Most of the sediments of modern braided
streams studied during the past decade have
been referred to by authors as transverse- or
longitudinal-bar deposits, These sediments were
deposited within braided channels during vary-
ing discharge conditions ranging from low wa-
ter to flood stage. Thus, all longitudinal and
transverse bars should be considered as a spe-
cial type of bed form occurring within active
braided channels.
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Studies by Doeglas (1962) and Williams
and Rust (1969) are significant because they
describe abandoned-channel deposits. Doeglas
discussed the methods of channel abandonment
and described the channel-fill deposits as coarse
grained, with channel or festoon laminations, in
the upstream portions of abandoned channels,
and as fine grained, silty, and rippled in the
downstream portions of abandoned channels.

Ancient Braided-Stream Deposits

Some examples of ancient braided-stream de-
posits whjch have been reported from the
United States, Spitsbergen, and Spain are sum-
marized in Table 1.

MEANDERING-STREAM MODEL OF
CLASTIC SEDIMENTATION

Occeurrence and General Characteristics

Meandering streams generally occur in
coastal-plain areas updip from deltas and
downdip from the braided streams. The axis of
sedimeniation is usually perpendicular to the
shoreline (Fig. 9).

This model is characterized by a single-chan-
nel stream which is deeper than the multichan-
nel braided stream, Meandering streams usually
have a wide range in discharge (cu ft/sec)
which varies from extended periods of low-wa-
ter flow to flood stages of shorier duration.
Flooding can occur one or more times per year
and major flooding once every several years.

The meandering channel is flanked by natural
levees and point bars, and it migrates within a
zone (meander belt) about 15 to 20 times the
channel width. Channel segments are aban-
doned and filled with fines as new channels de-
velop.

Source, Transportation, and Deposition
of Sediments

Sediments are derived from whatever type of
deposit oceurs in the drainage area. Clays and
fine silts are transported in suspension (sus-
pended load), and coarser sediments such as
sand, gravel, and pebbles are transported as bed
load. Sediment transport and deposition during
extended low-water stages are confined to the
channel and can be nil or very slow. Maximum
sediment transport occurs during rising flood
stage when the bed of the channel is scoured.

The maximum rate of sediment deposition
occurs during falling flood stages. Grain size
depends on the type of sediment available to
the channel; the coarsest sediments are depos-
ited in the deepest part of the channel, and the
finest sediments accumulaie in floodbasins and
in some parts of the abandoned channels. -

Channel migration and deposition of poini-
bar sediments-—The most Important processes
of sedimentation in the meandering-stream
model are related to channel migration which
occurs as a resuit of bank caving and point-bar
accretion (Fig. 10). The process of bank cav-
ing occurs most rapidly during falling flood

Erormea - i
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Fic. 10—Areas of bank caving and point-bar accretion along a meandering channel.

stage, when currents of maximum velocities are
directed against the concave bank. Bank caving
occurs at maximum rates in bends where the
bed and bank materials are very sandy. Rates
are much slower in areas where banks are char-
acterized by clayey sediments (Fisk, 1947).

Deposition occurs on the convex bar (point
bar) simultaneously with bank caving on the
concave bank,

Bank caving and point-bar accretion result in
channel migration and the development of the
point-bar sequence of sediments (Fig. 11). The
point bar is probably the most common and
significant environment of sand deposition. The
thickness of this sequence is governed by chan-
nel.depths. Point-bar sequences along the Mis-
sissippi River attain thicknesses in excess of
150 ft (45 m). Medium-size rivers like the Bra-
zos of Texas produce point-bar sequences that
are 50 ft (15 m) thick (Bernard er al.,, 1970).

Channel diversions and filling of abandoned
channels—The process of channel diversion
and channel abandonment is another character-
istic feature of meandering streams, There are
two basic types of diversion and abandonment:
(1) the neck or chute cutoff of a single mean-

der loop and (2) the abandonment of a Jong
channel segment as a result of a major stream
diversion (Fisk, 1947).

Meander loops which are abandoned as a re-
sult of neck or chute cutoffs become filled with
sediment (Fig. 12A). The character of the
channel fill depends on the orientation of the
abandoned Joop with respect to the direction of
flow in the new channel. Meanders oriented
with their cutoff ends pointing downstream
(Fig. 12B) are filled predominantly with clays
(clay plugs); those oriented with the cutofl
ends pointing upsiream are filled principally
with sands and silts.

A major channel diversion is one which re-
sults in the abandonment of a long channel seg-
ment or meander belt, as shown in Figure 13.
Channeling of flood water in a topographically
low place along the bank of the active channel
can rapidly erode unconsolidated sediments
and create a new channel. This process can
happen during a single flood or as a result of
several floods. The newly established channel
has a gradient advantage across the topographi-
cally lower floodbasin. A diversion can occur at
any point along the channel.

NATURAL
LEVEE

POINT-BAK DEPOSITS

7103439

Frg, 11—Development of point-bar sequence of sediments,
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Fig, 12-—Channel diversion, abandonment, and filling as a result of neck and chute cutoffs,

The character of the sediments which fill
long channel segments is governed by the man-
per of channel diversion. Abrupt abandonment
(during a single flood or a few floods) results
in the very rapid filling of only the upstream
end of the old channel, thus creating a long sin-
uous lake. These long, abandoned channels
(1akes) fill very slowly with clays and silts
transported by flood waters (Fig. 14, left).

Gradual channel abandonment (over a long
period) results in very gradual channel deterio-
ration. Diminishing flow transports and depos-
its progressively smaller amounts of finer sands
and silts (Fig. 14, right).

Summary: Characteristics of Meander-Belt
and Floodbasin Deposits

The meandering-stream model of sedimenta-
tion is characterized by four types of sedi-
ments: the point bar, abandoned channel, natu-
ral levee, and floodbasin, The nature of each of
these four types of sediments and their interre-
lations are summarized in Figure 15.

Only two main types of sand bodies are asso-
ciated with a meandering stream: the point-bar

DIVERSION &
;F_OINI

Q-

MATURE MEANDER B£17 CONSTRUCIED TOPOGRAPHICALLY HIGH ALLUVIAL RIDGE
AND LONG 5INUDUS COQURSE FIOOD WATERS DIVERTED TO LOW FIDODBASIN
DEVELOP NEW CHANNEL

~LATAALY

Fic. 13—Major channel diversion and abandonment
of a meander belt.

sands and the abandoned-channel fills, The for-
mer, which are much more abundant than the
latter, oceur in the lower portion of the point-
bar sequence and constitute at Jeast 75 percent
of the sand deposited by a meandering stream.
Coalescing point-bar sands can actually form a
“blanketlike” sand body of very large regional
extent, The continvity of sand is interrupted
only by the “clay plugs” which occur in aban-
doned meander loops or in the last channel po-
sition of meander belts which have been aban-
doned abruptly.

Examples of ancient alluvial deposits of
meandering-siream origin which have been re-
poried in the literature are summarized in
Table 1.

DEerTAIc MODELS OF CLASTIC SEDIMENTATION
Occurrence and General Characteristics

Deltaic sedimentation occurs in the transi-
tiona} zone between continental and marine (or
inland seas and lakes) realms of deposition.
Deltas are formed under subaer;al and suba-
queous conditions by a combination of fluvial
and marine processes which prevail in an area
where a fluvial system introduces land-derived
sediments into a standing body of water.
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Fio. 14—Variations in character of abandaned channel
fill typical of meander belts.
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Large deltas usually are associated with ex-
tensive coastal plains; however, all coastal
plains do not include large deltas, The deltaic
environment occurs downstream from the
meandering-stream environment and is directly
adjacent to, and updip (Jandward) from, the
marine environment; it is flanked by the
coastal-interdeltaic environment. Most large
deltas occur on the margins of marine basins,
but smaller deltas also form in inland lakes,
seas, and coastal lagoons and estuaries (Fig.
16).

That portion of a delta which is constructed
under subaerial conditions is called the “deltaic
plain”; that portion which forms under water is
called the “delta front,” “dela platform,” and
“prodelta.” The bulk of the deltaic mass is de-
posited under water,

Deltas are considered to be extremely impor-
tant because they are the sites of deposition of
sand much father downdip than the interdeltaic
environment, as well as being thz sites where
clastic depasition occurred at maximum rates,

Source and Transportation
of Sediments

Sediments deposited in large deltas are de-
rived from extensive continental regions which
are usually composed of rock types of varied
compositions and geologic ages. Thus, the com-
position of deltaic sediments can be quite var-
ied.

Rofus J.

leBlanc

The-sediment load of rivers consisis of two
parts: (1) the clays and fine silts transported in
suspension and (2) the coarser silts and sands,
and in some cases gravels, transporied as bed
load. The ratio of suspended load to bed load
varies considerably, dzpending upon the rock
types and climatic conditions of the sediment-
source areas, The suspended load is generally
much greater than the bed load.

The transportation of sediment to a delta is
an intermittent process. Most rivers transport
the bulk of their sediments during flood stages.
During extended periods of low discharge, riv-
ers contribute very little sediment to their del-
tas,

The extent to which deltaic sediments are
dispersed into the marine environment is de-
pendent upon the magnitude of the marine pro-
cesses during the period that a river is in flood
stage. Maximum sediment dispersal occurs
when a river with a large suspended load
reaches flood stage at the time the marine envi-
ronment is most aclive (season of maximum
currents and wave action). Minimum dispersal
occurs when a river with a small suspended
load (high bed load) reaches flood stage at a
time when the marine environment is relatively
calm,

Size of deltas—There is an extremely wide
range in the size of deltas;! modern deltas
range in area from Jess than 1 sq mi (2.6 sq
km) to several hundreds of square miles, Some
large deltaic-plain complexes are several thou-
sand square miles in area. Delta size is depen-
dent upon several factors, but the three most
important are the sediment load of the river;
the intensity of marine currents, waves, and
tides; and the rale of subsidznce. For a given
rate of subsidence, the ideal condition for the
construction of a Jarge delta is the sudden large
influx of sed'ments in a calm hody of water
with a small tidal range. An equally large sedi-
ment influx into a highly disturbed body of wa-
ter with a high tidal range results in the forma-
tion of a smaller delta, because a large amount
of sediment is dispersed beyond the limits of
what can reasonably be recognized as a delta.
Rapid subsidence enhances the possibility for a
large fluvial system to construct a large delta.

Types of deltas—A study of modern deltas
of the world reveals numerous types. Bernard

4 Published figures on areal extent of deltas are based
on size of the deltaic plain and do not include sub-
merged portions of the della, which in many cases are
as large as or larger than (he deltaic plains,
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(1965) summarized some of the factors which
contro} delta types as follows:

Deltas and “dellaic sediments are produced by the
rapid deposition of stream-borne materials in relatively
still-sianding bodies of water, Notwithstanding the
effects of subsidence and water Jevel movements, most
deltaic sediments are deposited off the delta shoreline
in the proximity of the river's mouth. As these materi-
als build upward 1o the level of the still-standing body
of water, the remainder of deltaic sediments are depos-
iled onshore, within the delta's flood plains, lakes,
bays, and channels.

Nearly 2,500 years ago, Herodotus, using the Nile as
an example, stated that the land area reclaimed from
the sea by deposition of river s:diments is generally
deitoid in shape. The buildup and progradation of del-
taic_sediments produces a distinct change in stream
gradient from the fluvial or alluvial plain 10 the deltaic
plain. Near the point of pradient change the major
courses of rivers penerally begin 10 transport much
finer materials, to bifurcate into major distributaries,
and to form subaerial deltaic plains, The boundaries of
the subacrial plain of an individual delta are the lat-
eral-most  distributaries, including their related sedi-
ments, and the coast line. Successively smaller distribu-
taries form sub-delias of progressively smaller magni-
tudes.

Deltas may be classified on the basis of the nature of
their associated waier bodies, such as lake, bay, inland
sea, and marine deltas. Other classificalions may be
based on the depth of the water bodies into which they
prograde, or on basin structure.

Many delia types have been described previously.
Most of these have been related to the vicissiwudes of
sedimentary processes by which they form. Names
were derived largely from the shapes of the delta
shorelines. The configuration of the delta shores and
many other depositional forms expressed by different
sedimentary facics appear to be directly proportional
to the relatjve relationship of the amount or rate of
river sediment influx with the nature and energy of the
coastal processes. The more common and better under-
stood types, listed in order of decreasing sediment in-
flux and increasing energy of coastal processes (Waves,
currents, and tides), are: birdfoot, lobate, cuspate, ar-
cuate, and estuarine, The subdelias of the Colorado
River in Texas illusirate this relationship, During the
first part of this century, the river, transporting ap-
proximately the same yearly load, built a birdfoot-lo-
bate type delta in Matagorda Bay, a low-energy water
hody, and began to form a cuspate delta in the Gulf of
Mexico, a comparatjvely high-energy water body.
Many deltas are compounded; their subdclas may be
representative of two or more types of dehas, such as
birdfoot, Jabate, and arcuate. Less-known delias, such
as the Irrawaddy, Ganges, and Mekang, are probably
malure estuarine types. Qthers, Jocated very near major
scarps, are referred to the *Gilbert type,” which is sim-
flar to an alluvial fan,

Additional studies of modern deltas are re-
quired before a more suitable classification of
delta types can be established. J. M., Coleman
(personal commun.) and his associates, to-
gether with the Coasial Studies Institute at
Louisiana State University, are presently con-
ducting a comprehensive investigation of more
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than 40 modern deltas. Results of their studies
undoubtedly will be a significant contribution
toward the solution to this problem.

Only three types of deltas will be considered
in this report: the birdfoot-lobate, the cuspate-
arcuate, and the estuarine,

Sedimentary' Processes and Deposits of
the Birdfoot-Type Delta

The processes of sedimentation within a
delta are much more complex and variable
than those which occur in the meandering-
stream and coastal-interdeltaic environment of
sedimentation. It is impossible to discuss these
deltaic processes in detail in 2 short summary
paper such as this; therefore, only a brief sum-
mary of the following significant processes is
presented.

1. Dispersal of sediment in the submerged parts of
the delta (from river mouths seaward);

2. Formation of rivermouth bars, processes of chan-
nel bifurcation, and development of distributary chan-
nels;

3. Seaward progradation of delta, deposition of the
delaic sequence of sediments, and abandonment and
filling of distributary channels; and

4. Major river diversions, abandonment of deltas,
and development of new deltas.

Dispersal and deposition of sediments—Riv-
erborne sediments which are introduced in a
standing body of water (a marine body or in-
land lakes and seas) are transported in suspen-
sion (clays and fine silts) and as bed load
(coarse silts, sands, and coarser sediments).
Most of the sands and coarse silts are deposited
in the immediate delta-front environment as
rivermouth bars and slightly beyond the bar-
front zone. The degree of sand dispersal is, of
course, controlled by the level of marine en-
ergy; however, in most birdfoot deltas, sands
are not transported beyond 50-ft (15 m) water
depths. Fisk (1955) referred to the sands de-
posited around the margins of the subaerial del-
taic plain as “delta-front sands,” and they are
called “delta-fringe sands™ herein,

The finer sediments (clays and fine silts),
which _are transported in suspension, are dis-
persed over a much broader area than the
fringe sands and silts. The degree of dispersal is
governed by current intensity and behavior.
Accumulations of clays seaward of the delta-
fringe sands are referred to as “prodelta” or
*distal clays” (Fig. 17).

Channel bifurcation and development of dis-
tributary channels—Some of the most signifi-
cant deltaic processes are those which result in
the origin and development of distributary
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Fic. 17—Distribution of distributary-channel and fringe sands in a birdfool-lobate delta.

channels. Welder (1959) conducted a detailed
study of these processes in a part of the Missis-
sippr delta, and Russell (1967a) summarized
the origin of branching channels, as follows:

The creation of branching channels is determined by
the fact that threads of maximum turbulence and tr-
bulent interchange (Austausch; 1.2.3; 3.5) lie deep and
well toward the sides of channels, particularly if they
have flat beds (typicsl of clay and fine sediments in
many delta regions). These threads are associated with
maximum scour and from them, sediment is expelled
toward areas of less turbulence and Austausch. Signifi-
cant load is propelled toward mid-channel, where
shoals are most likely to form.
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Fia. 18—Stages in development of channel bifurcation.
After Russell (1967).

At its mouth, the current of a delta channel contin-
ues forward (as a result of momentum) and creates je
flow into the lake or sea il enters, After leaving the
confinement imposed by fised banks, however, the cur-
rent flares marginally 10 some extent (widening the jet,
reducing its velocity, and eventually dissipating its flow
energy). Near the termination of confining banks the
jet flow is concentrated and moves ahead into relatively
quiet water, With flaring of jet flow comes an increase
in spacing between threads of most intense turbulence
and exchange, There is a tendency (oward scour helow
gach thread, but the exchange process sends most of
the entrained material toward marginal quiet water on
both sides (Fig. 8 |Fig. 18 of this paper]). Deposition
creales a submarine natural levee on the outer side of
each thread. Sediment is alsa attracted toward and de-
posited in the widening areza of mid-channel water,
where it bujlds a shoal. The channel divides around the
shoal, creating two distributaries, each of which devel
ops its own marginal threads of maximum turbulence,
perpetuating conditions for other divitions below each
new channe] mouth, If not opposed by wave erosion
and longshore currents, the svbdivision continues in
geometnic progression (2, 4, 8, 16, etc.) as the delta
deposit grows forward.

The marginal natural levees are submarine features
at first and fish may swim across their crests, Later
they grow upward, and for awhile become areas where
Jogs and other flotsam accumulate and where hirds
walk with talons hardly submerged. Salt- or {resh-wa-
ter-tolerant grasses invade the shallow water and newly
created land, first along levee crests, later (o widen as
the levees grow larger. Salicornia and other plants be-
come established pioneer trees such as willows, and
eventually in the plant succession comes the whole
complex characleristic of natural Jevees upstream. In
tropical areas mangroves are likely 10 becomg 1h¢
dominant trees,
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A similar conversion exists in mid-channel, where
the original shoal becomes land and either develops
into & lenticular or irregular island or becomes tﬁe
point of land at"the head of two branching distributar-
1es,

Progradation of delia and deposition of del-
taic sequence—FisK’s discussion of the process
of distributary-channel lengthening (prograda-
tion of delta seaward) is probably one of the
most significant of his many con ributions on
deltaic sedimentation (Fisk, 1958). His de-
scription of this important aspect of deita de-
velopment is presented below. (Stages in the
development of a bird{oot-type delia are shown
in Figure 19.)

Each of the pre-modern Mississippi River courses
was initialed by an upstream diversion, similar to the
one presently aflecling the Mississippi as the Atchafa-
faya River enlarges (Fisk, 1952). Stream capture was a
gradual process involving increasing flow through a
diversional arm which offered a gradient advantage to
the gulf. Afier capture was effected, each new course
fenglhened seaward by building a shallow-water delia
and extending it gulfward. Successive stages in course
lengihening are shown diagrammatically on Figure 2
[Fig. 19, this paper]. The onshore portion of the della
surface . . . is composed of distributaries which are
flanked by low natural levees, and interdistributary
troughs holding near-sea-level marshes and shallow wa-
ter bodies. Channels of the principal distributaries ex-
tend for some distance across the gently sloping offshore
surface of the della 1o the inner margin of the steeper
delta front where the distributary-mouth bars are situ-
ated. The offshore channels are bardered by submarine
levees which rise slightly above the offshore exiensions
of the interdistributary troughs.

In the process of course lengthening, the tiver occu-
pies a succession of distributaries, each of which is fa-
vorably aligned to receive increasing flow from up-
stream. . . . The {avored distributary gradually widens
and deepens to become the main stream . , . ; its natural
levees increase in height and width and adjacent inter-
distributary troughs filt, permitting marshland develop-
ment. Levees along the main channe} are built largely
during floodstage; along the distal ends of distributar-
les, however, levee construction is facilitated by cre-
vasses , . . which breach the Jow levees and permit
waler and sediment to be discharged into adjacent
troughs during intermediale river stages as well as dur-
ing floodstage, Abnormally wide sections of the levee
and of adjucent mudflais and marshes are created in
this manner, and some of the crevasses continue 1o re-
main open and serve as minor distributaries while the
levees increase in height. Crevasses also occur along
the main streem during floodstages . . . and permit
tcngues of sediment to exten¢ into the swamps and
marshes for considerable distances beyond the normal
toe position of the levee.

Distributaries  with less favorable alignment are
abandoned during the course-lengthening process, and
their channels are filled with sandy sediment. Aban-
doned distributaries associated with the development of
the present course below New Orleans vein the marsh-
lands, . . . Above the birdfoot delta, the pattern is simi-
lar to that of the older courses . .. ; numerous long,
branching distributaries diverge at a low angle.
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Stream diversions, abandonment of delias,
and development of new deltas—Deltas pro- .
grade seaward but they do not migrate later-
ally, as a point bar does, for example. A delta
shifts position laterally if a major stream diver-
sion occurs upstream in the alluvial environ-
ment or in the upper deltaic-plain region (Fig,
20). Channel diversions were discussed in the
section on the meandering-stream model.

Deltas, like meander belts, can be abapdoned
abruptly or gradually, depending upon the time
required for channel diversion to occur. Once a
delta is completely abandoned, ali processes of
deltaic sedimentation cease to exist in that par-
ticular delta. With a standing sea level, the sedi-
ments of the abandoned delta compact, and
subsidence probably continves, The net result is
the encroachment of the marine environment
over the abandoned delta, This process has er-
roneously been referred to by some authors
as “the destructive phase of deltaic sedi-
mentation.” The author maintains that the
proper terminology for this process is “trans-
gressive marine sedimentation.” The two pro-
cesses and their related sediments are signifi-
cantly different, as the discussion of the trans-
gressive marine model of sedimentation demon-
strates (see the succeeding section on this
maodel).

As the marine environment advances jand-
ward over an abandoned subaqueous delta
front and the margins of the deltaic plain, the
uppzr portion of the deltaic sequence of sedi-
ment is removed by wave action. The amount
of sediment removed depends on the inland ex-
tent of the transgression and on the rate of sub-
sidence. The front of the transgression is usu-
ally characterized by deposition of thin marine
sand units. Seaward, sediments become finer
and grade into clays. Thus, local marine trans-
gressions which occur because of delta shifts
result in the deposition of a very distinctive
marine sedimentary sequence which is easily
distinguished from the underlying deltaic se-
quence.

Concurrent with marine transgression over
an abandoned delta, a new delta will develop on
the flanks of the abandoned delta, Sedimentary
processes in the new delta are similar to those
described under the discussion of progradation
of deltas.

Repeated occurrences of river diversions re-
sult in the deposition of several discrete deltaic
masses which are separated by thin trapsgres-
sive marine sequences (Fig. 20). Under ideal
conditions, deltaic facies can attain thicknesses
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of several hundreds of feet in a large sedimen-
tary basin.

Sedimentary Processes and Deposits of the
Cuspate-Arcuate Type of Delta

The shape of a delta is controlled by the in-
fluence of marine processes which are active
against the delta front (Table 2). Russell
(1967a) presented the following excellent sum-
mary of the modification of deltas by marine
processes.

The deposilional processes characteristic of river
mouths are opposed by marine processes that work
toward removal of deposits. In a quiet sea or lake the
geometric increase in number of distributaries is most
closely approached. Below the most inland and earliest
forking of the river, the delta builds out as a fan-
shaped accumulation, with distributaries creating ribs
with natural levees separating basins that widen and
open toward the sea. The point deserving greatest em-
phasis is that the entire delta system originates under-
water and only later becomes features visible as land.

The ideal delta front is arcuate or has a bird-foot
shape as viewed from the air or indicated on a chart,
The latter pattern indicates a condition in which the
deposition of load is dominant over the efforts of ma-
rine processes, It results from the forward growth of
natural Jevees and the inability of Jongshore currents to
carry away sediment about as rapidly as it is brought
to the river mouth, The delta of the Mississippi is the
largest and most typically cited example. Some talons
of the foot extend out more than 20 miles and the
basins between natural levees flank V-shaped marshes
and bays up to about 1.5 fathoms deep. Many smaller
bird-foot deltas occur in lakes and estuaries, whero
there is relatively little distance for fetch to generate
high waves and where there are only feeble longshore
currents.,

The arcuate-front deltas, such as those of the Nile
and Niger, indicate sufficient wave action and removal
of sediment by longshore currents to maintain rela-
tively stable, smooth fronts. In some cases the momen-
tum of jet flow is apparently sufficient to prevent much
flaring, and a single pair of nalural Jevees advances
seaward to form a cuspare delta front, Jocalized along
a single channel. The Tiber, Taly, is the commonly
cited example. The Sakayra River, on the Black Sea
coast of Turkey has such a delta, but the reason is
dontinance of wave action. Ahead of it is a large area
of shoal water with an extremely irregular system of
channels and natural Jevees (changing so rapidly that a
Eilot keeps daily walch over them in order to guide

oats back to the river mouth). Levees are prevented

from growing up to sea level becauss wave erosion
keeps them planed off to a depth of a few feet and
because longshore currents entrain and transport sedi-
ment away effectively enough to prevent seaward
growth of land area. This lcaves but one channel
mouth in a central position as a gently protruding sin-
gle cusp.

The modern Brazos River delta of Texas
(constructed since 1929) is a good example of
a small modern arcuate delta which has been

LeBlong_

strongly influenced by marine processes. Ber-
nard et al. (1970) discussed this small delta
and its vertical sequence of sediments. Stages in
the development of this type of delta are shown
in Figure 21.

The modern Niger delta of western Africa is
a classic example of a large arcuate-type deita
that is highly influenced by marine processes
and tidal currents. Allen (1965c, 1970) de-
scribed the environments, processes, and sedi-
mentary sequences of this interesting delta. On
the basis of data presented by Allen, it is obvi-
ous that, although there are many similarities
between the Niger delta and the birdfoot-type
Mississippi delta, there are certainly some sig-
nificant differences. For example, from the
standpoint of sand bodies, the characeristics
and geometry of the delta-fringe sands of the
Niger are considerably different from those of
the Mississippi. As indicated on Figure 22, a
very large quantity of the sand that is contrib-
uted to rivermouth bars by the Niger is trans-
ported landward and deposited on the front of
the deltaic plain as prominent beach ridges
(this is a special form of delta-fringe sand ac-
cording to the writer's deltaic classification).
This process results in the development of a
thick body of clean sands along the entire front
of the deltajc plain.

Another important difference between the
Niger and the Mississippi is the occurrence of a
very extensive tidal-marsh and swamp environ-
ment on the Niger deltaic plain behind (land-
ward of) the prominent beach ridges. This en-
vironment is characterized by a network of nu-
merous small channels which connect with the
main distributary channels. These channels,
which are influenced by a wide tidal range, mi-
grate rather freely and become abandoned to
produce extensive point-bar deposits and many
abandoned channel fills. In contrast, the Missis-
sippi River distributary channels migrate very
little and, hence, point-bar sands constitute
only a small percentage of the deltaic deposits.

In summary, the Niger arcuate delta is char-
acterized by prominent delta-fringe sands
(which include the beach-ridge sands) occur-
ring 2s a narrow belt along the entire front of
the deltaic plain, Point-bar sand bodies are very
common directly adjacent to and landward of
the delta-fringe sands. The combination of
high-level marine energy and strong tidal cur-
rents results in development of a relatively
large quantity of distributary and point-bar
(migrating channels) sands,
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-

River diveraion (st a pofnr within slluvial valley or deltale plain) rasulta Lo tha
developnent of & nee chennel. During the dnfedel szage of deits devel npoent »
xelatively smal} river mouth bar t5 formed in the saring environmmi. The distanca
of ihis bar from the origina! shoreline 14 approximecely four timea the width of
the chapnel. This eype of river mouth bar {5 generally brasches by two or more
rubaquenur channels vhich radiace trom the Tiver mouth. The bar cresc ia
chazsclerfeed hy aand and the bar-back stex (vhich acts sk & ari)ling bamn) is
characterised by clays an¢ ailte wieh ninor amounta of sand. Sesvard fro the bar
erest {rhe barslront} the sediments grade frow aanda to allts and clayr. Daposieion
stong ssction Lot conrints of norms| merine muda.

EITE

z53°

The stage 2 viver mouth bAv continues 1o grov sasvard by sccretion and vertleally
curing [lood stages, Wheo hat ctert vescher elpvation atightly aboue mean sesslaval
1t hecomer nttathed 1o the stage 7 deleair pisin, The arves of (he stage I bar

15 saprracen from the seape b bat by sheliow lakes, A new Tiver soulh bar (a
tonsitucted {n thy wideic part of srccian 3-2, and deltr friage vands are dapariced
ovat thy older euter fringe ahe profelis seéiments.

.

SHORELTHE MIOR:

SRUSNEER SRR P

(15N

1
3]

The tetcie) river wourh bar {shown in scage 1) continuss to grow (hoth varcloally
and vequard by accratios. 1f wmajor flood eccurs wheu marine enyiromsent is
rrtatively quiet {mon-acare parted) che Tiver wouth bar s bullt upsrdr to an
alevacton tlightly ebove wean saeslevel. Vegmtatiom on wevly formad avhaerial
wat erepn Zina-grelned sedlmetite and the bar becrmar atceched to the malnlaod,
Thua che taitial vivas wouch bar shown 1o Stage | becomes part of the delisle

pleto. The vivar chagasl cuct sxvosy the old bar {(of stage 1) And & nev rivar mouth

bat develope offshore. Diposleion sloug section 7+% conalats of produlte clays,

RZEEZ

Delta contlnues tc grow sws
depostted ar the subeertsl
conier of srcilom bek’, Th

wnd the uppermort portioc af the della nequance la
plate 1a courtructsd pvar tha arss alony the
at vhich thit rypi of delts sdventar rasvard is

govarned by the fraquency snt magnitubs nf TAvar (loods and storss. 1f wijor [loeds

meeur fiaquently duricg periods charssterirmd by talatively lov marine wnafry
(sco-aterm} tha dalts will sévaser pasverd rapidly, Bevera rurrenl and wive actiow
AUR0C1oLsE VIEE major piprme, wrpecislly during ooosflood viages of the rivar,

hava & tesdenry to perifally dasiroy the Tived wourh bers and thereby Tedute the
rols af baavart dullr sdvascr,

Fia, 21-—Stages in development of 2 cuspate delta,

Sedimentary Processes and Deposits of .
Estuarine-Type Delta
Large deltas such as the Ganges, Amazon,
and Colorado (5n Gulf of California) are con-
sidered to be examples of estuarine-type delas.
Although our knowledge of these deltas is ex-
tremely limited, it is now reasonably well estab-
lished that they are associated with extreme

tidal conditions (up to 25 ft [8 m] at the mouth
of the Colorado River). It is apparent that very
strong tidal currents have a profound influence
on the distribution of sediments. Sands are
known to be transported for great distances in
front of these deltas; however, the geometry of
these sand bodies is unknown. Additional stud-
ies of this type delta are badly needed,

R
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~Table 3. Examples of Ancient Deltaic Deposits

Geogruphic Occurrence

Author

California
Dlinois

Indiana

Towa & Tllinols
Kapsag

Louisiana

Michigan

Miss., La, & Ala.
Montana
Nebraska

New Mexico
New York

New York & Ontario
New York

North Dakota

Ohlo

Oklahoma

Oregon
Pa., W, Va,, Ohio

South Dakota
Texas

W. Va,, Pa., Ohio
Wyoming

Wyoming & Celorado
Several states, U.S A,
N. Appalachians
Central Appalachians
Central Appalachians
Upper Miss. embayment
& lltinois basin
Upper Miss. Valley
Okla., lowa, Mo., Kana,,
1L, Ind., Ky,
Oklz. to Penn,
Central Gulf Coast
Albena, Canada

England

Ircland
Scotland

Todd and Monroe, 1968
Lineback, 1568

Swann et at,, 1965
Hrabar and Potier, 1969
Wier and Girdley, 1963
Laury, 1968

Brown, 1967

Hautin, 1965

Clurk and Rouse, 1971
Curtis, 1970

Asseez, 1969

Gallowey, 1968

Simas, 1967

Shelton, 1972

Schlee and Moench, 1961
Friedman and Johnson, 1964
Lumsden and Pelletier, 1969
Martini, 1971

Wolff, 1967

Shelion, 1972

Knight, 1969

Lené and Owen, 1969
Busch, 1953, 1971
Shetion, 1972

Visher e? al,, 1971

Dott, 1964, 1966
Snavely ef al., 1964
Beerbower, 1961

Ferm and Cavaroc, 1969
Petryjobn, 1967

Brown, 1969

Fisher and McGaowen, 1969
Gregory, 1566

LeBlanc, 1971

Nanz, 1954

Shannon and Dahl, 1971
Wermund and Jenkins, 1970
Shelton, 1972
Donaldson, 1969

Barlow and Haun, 1966
Dondanville, 1963

Hale, 1961

Paull, 1962

Weimer, 1961b

Weimer, 1965

Fisher et al., 1969

Ferm, 1970

Horowitz, 1966
Dennison, 1971

Pryor, 1960, 1961

Swann, 1964
Manos, 1967

Wanless ef al., 1970
Munn and Thomas, 1968
Carrigy, 1971

Shawa, 1969

Shepheard and Hills, 1970
Thachuk, 1968

Allen, 1962

Taylor, 1963

Hubbard, 1967
Greensmith, 1966

Summary: Deltaic Sand Bodies

There are three basic types of deltaic sand
bodies: delta-fringe, abandoned distributary-
chapnel, and point-bar sands. The relative
abundance and general characteristics of these

sand bodier i the three types of deltas consid-
ered herein zre semmarized below.

Birdfoof-{;opg delte—The most common
sands are theme of the delta-fringe environment.
These sands ccour as relatively thin, wide-
spread sheets, znd they contain a substantial
amount of cluvs znd silts,

Abandomd distributary chaanels contain
varied amounts of sand, probably composing
less than 20 pereent of the tota) delta sand con-
tent. These sund bodies are lonz and narrow,
are only slightty sinuous, and are encased in the
de]ta-fringe sands or prodelta clays, depending
upon channe] depths and the distance that the
delta bas prograded seaward. ‘

Cuspate-arcuate type of delta—Delta-fringe
sand complexes are wide (width of della),
though individual sand bodies are relatively
narrow, and are generally much cleaner than
delta-fringe sands of the birdfoot-type delta.

Dlstributary-channel sands and point-bar
sands are much more common than in bird-
foot-type deltas and can constitute up to 50
percent of the total sand content of the delta,
Tl_mese two types of sands are encased in delta-
fringe and prodelta sediments.

Esiuarine-type delta—Delta-fringe  sands
appear to be much more cornmon than distrib-
utary and point-bar sands. They probably ex-
tend for great distances within the marine envi-
ronment in front of the delta; however, their
geomelry remains unknown.

Ancient Deltaic Deposits

Deposits of deltaic origin have been reported
from more than 40 states and from several for-

eign countries, Some examples are summarized
in Table 3,

CoasTaL-INTERDELTATC MODEL OF
SEDIMENTATION

Setting and General Characteristics

This type of sedimentation occurs in Jong,
narrow belts parallel with the coast where
shqrelme and pearshore processes of sedimen-
tation predominate. The ideal interdeltaic de-
posit, as the name implies, occurs along the
coast between deltas and comprises mud flats
and cheniers (abandoned beach ridges) of the
chenier-plain complex and the barrier-island-
lagoon~tidal-channel complex (Fig. 23). It can
also occur along the seaward edge of 2 coastal
plain which is drained by numerous small
streams and rivers but is devoid of any sizable
deltas at the marine shoreline.
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COASTAL INTERDILTAIC MODEL

CURRENT MRECTION —

71026317

Fi16. 23—General setting and characteristics of coastal-interdeltaic model of clastic sedimentation.

Source and Transportation of Sediments

Most of the sediments deposited are derived
from land, but minor amounts come from the
marine environment. A portion of the sediment
transported to the marine shoreline by rivers
and smaller streams is dispersed laterally by
marine currents for great distances along the
coast. Clays and fine silts are carried in suspen-
sion, and sand is transported mainly as bed
load or by wave action in the beach and near-
shore zane. The suspended sijt and clay load is
dispersed at a rapid rate and is most significant
in the development of the mud flats of the che-
nier plain. Lateral movement of the sand bed
load occurs at a relatively slow rate and is most
significant in the development of the cheniers
and the barrier-island complex.

A minor amount of sediment can also be de-
rived {from adjacent continental-shelf areas if
erosion occurs in the marine environment.

Sedimentary processes and deposits of che-
nier plain—Major fioods result in the sudden
large influx of sediments at river mouths. Much
of the suspended load introduced to the coastal-
marine environment is rapidly dispersed later-
ally along the coast by the predominant long-
shore drift. A considerable portion of this sus-
pended load is deposited along the shoreline
(on the delta flank) as extensive mud flats.
This period of regressive sedimentation (pro-
gradation or-offlap) occurs in a relatively short

period when rivers are at flood stages (Fig.
24),

During Jong periods when rivers are not
flooding, the supply of sediment to the coast is
reduced considerably or is nil. Coastal-marine
currents and wave action rework the seaward
edge of the newly formed mud flat, and a trans-
gressive situation develops. A slight increase in

71-0382-10

Fia., 24—Stages in development of & chenier plain,
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sand supply can result in a regressive situation,
and the initial transgressive beach accumulation
will prow seaward by regressive beach accretion
to form a long, narrow, well-defined chenier on’
the seaward edge of the extensive mud flat.

Another period of river flooding develops an-
o her mud flat on the seaward edge of the che-
nier. During the subsequent nonflond season,
the coastal-transgressive processes produce an-
oher beach ridge. Thus, over a long period, a
chenier plain consisting of mud flat and beach
ridges is canstructed,

The width of a mud flat is varied and is de-
pendent on the magnitude and duration of a
river flood. The size of the chenier (height and
width) is determined by two factors: duration
of the nonflood season .(absence of muds) and
magnitude of coastal-marine processes, includ-
ing storm tides and waves,

Small streams which drain to the coastline
across a chenier plain contribute little sedi-
ment to the chenier-plain environment. The
mouths of these streams are generally deflected
in the direction of the littoral drift.

Sedimentary processes and deposits of bar-
rier-island complex—The typical barrier-island
complex comprises three different but related
depositional environments: the barrier island,
the lagoon behind the barrier, and the tidal
channel-tidal deltas between the barriers.

The seaward face of a barrier island is pri-
marily an environment of sand deposition.
Coastal-marine energy (currents and wave ac-
tion) is usually much greater than ir. the che-
nier-mud-flat regions. Sediments are trans-
ported along the coast in the direction of the
predominant littoral drift. Coarser sands are
deposited mainly on the beach and upper
shoreface, and finer sands are deposited in the
lower shoreface areas. Silts and clays are de-
posited in the lower shoreface zones on the ad-
jacent shell botlom—at depths greater than
40-50 ft (12-15 m). Storm tides and waves
usually construct beach ridges several feet
above sea level, depending on the intensity of
storms, and ulso transport sandy sediments
across the barrier from the beach zone to the
lagoon.

Under ideal conditions, a barrier grows sea-
ward by a beach-shoreface accretion process to
produce a typical barrier-island sequence of
sediments which prades upward from fine to

coarse (Figs. 25, 27). The various organisms

which live in the beach, shoreface, and adjacent
offshore areas usually have a significant influ-
ence on the character of sedimentary struc-
tures.

LeBlanc

Dry beach sand can be transported inland by

the wind and redeposited as dupe sand on the
barrier, in the ]aggon, or on the mainland
across the lagoon.
" Tidal  channel-tidal delta—Tidal action
moves a large quantity of vater in and out of
Jagoons and estuaries through the tidal chan-
nels which exist between barrier islands, These
channels are relatively short and narrow and
vary considerably in depth. Maximum chan-
nel depths occur where the tidal flow is
confined between the ends of barriers. The
channel cross section is asymmetric: one side
of the channel merges with the tidal flats and
spit; the opposite side of the channel has abrupt
margins against the barrier (Fig. 26).

As marine waters enter the Jagoon or estuary
system during rising tides, the inflow attains its
maximum velocity in the deepest part of the
confined channel. The tidal flow is dispersed as
it enters the lagoon, and current velocities are
greatly reduced. The result is the deposition of
sediment in the form of a tidal delta which con-
sists of a shallow distributary channel separated
by sand or silt shoals. Similar tidal deltas are
also formed on the marine side of the system
by similar processes associated with the falling
or outgoing tide.

The depth of tidal channels and the extent of
tidal deltas are dependent on the magnitude of
the tidal currents. The deepest channels and the
largest deltas are associated with large lagoons
and estuaries affected by extreme tidal ranges.

Tidal channels migrate laterally in the direc-
tion of littoral drift by eroding the barrier head
adjacent to the deep side of the channel and by
spit and tidal-flat accretion on the opposite side.

CORSIAL LAGDON. BAIEJER
PLAIN
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Fra, 25—Stages in development of a barrier istand.
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Lateral migration of the tidal system results in
the deposition -of the tidal-channel and tidal-
delta sequences of sediments.

Summary: Characteristics of Coastal-
Interdeltai¢ Deposits

The coastal-interdeltaic model of sedimenta-
tion is characterized by six distinct but related
types of deposits: mud flat, chenier, barrier is-
land, lagoon, tidal channel, and tidal delta,
Characteristics of these deposits are summa-
rized in Figure 27.

Three main types of sand hodies are associ-
ated with this model: barrier island, chenier,
and tidal channel-tidal delta. The barrier-is-
land sand body, which is the largest and most
significant of the three, is long (usually tens of
miles )and narrow (2-6 mi or 3-10 km), is
oriented parallel with the coastline, and attains
maximum thicknesses of 50-60 ft (15-18 m).
The chenier sand bodies are very similar to
those of the barriers; however, they are gener-
ally only about a third as thick. Tidal-channel
sand bodies are oriented perpendicular 1o the
barrier sands, and their thickness can vary con-
siderably (less than, equal to, or greater than
that of the barrier sands), depending on the
depth of tidal channels.

Ancient Coastal-Interdeltaic Deposits

Examples of ancient coastal-interdeltaic de-
posits reported from 13 states are summarized
in Table 4,

LOAMTAL PLAN
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Fig, 26—Relation of tidal channels and 1idal delias to
barrier islands.
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Table 4. Examples of Ancient Coastal-
Interdeltaic Deposits

Geographic Occurrence Author

Colorado Griffith, 1966

Florida Gremillion e al., 1964

Georgia ) Hails and Hoy1, 1969
MacNeil, 1950

lllinois Rusnak, 1957

Louisiana Sloane, 1958

Louisiana & Arkansas Thomas and Mann, 1966

Berg and Davies, 1968

Montana Cannon, 1966
Davies et al., 1971
Shelton, 1965

New Mexico Sabins, 1963

New York McCave, 1969

Oklahoms & Kansas Bass ef al., 1937
Boyd and Dyer, 1966
Dodge, 1965

Texas Fisher and McGowen, 1963
Fisher et af., 1970
Shelion, 1972
Harms e al., 1965
Jacka, 1965

Miller, 1962

Paull, 1962

Scruton, 1961
Weimer, 1961a

Wyoming

Eovian MobeL oF SAND DEPOSITION
Occurrence and General Characleristics

A very common process of sedimentation is
transportation and deposition of sand by the
wind. Two basic conditions are necessary for
the formation of windblown sand deposits: a
large supply of dry sand and a sufficient wind
velocity. These conditions are commonly pres-
ent along coasllines characterized by sandy
beaches and also in semiarid regions and de-
serts, where weathering and fluvial sedimenta-
tion produce a large quantitiy of sand (Fig.
28).

Under certain conditions, sands on the
downstream parts of alluvial fans and along
braided streams are transported and redepoq-
ited by the wind (Glennie, 1970). Sands origi-
nally deposited on point bars of meandering
streams and along distributary channels of some
deltas are also picked up by the wind and rede-
posited locally as dune sand. Similarly, sands
deposited along beaches of the coastal-interdel-
taic environments are redeposited by onshore
winds as sand dunes on barrier islands or on
the mainland. Thus, the eolian process of sand
deposition is likely to occur within all models
of clastic sedimentation discussed in the pre-
ceding sections.

Eolian Transport and Sedimentation

The complex processes of sand transport and
deposition by the wind were studied and de-
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Fic. 28—Occurrences of eolian sands in coastal and desert regions. Y
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A

FORDUNES

ALK 1OGE DUNTS

o

Low mwounde gnd amell elongate ridges 8
. few feet high occurring adjacent and
- parallel to eand beach and shoreline,
usually partly stabilized by vegetation.

Ounes against vegetation coalesce to form
long, slightly sinvous ridge or series of
ridges parallel to eoastline. Closely
associated with beach accretion ridges formed
by wvave aciion. Characleristic of barvier
islands and shorelines on flanks of deltas.

BAKCRAN DUNES

FARARGAIC DUNES

nosun

Cancentric with steep slope on concave
(leeward) side facing away from beach.
extend downwind. C€an occur 8t scattered

isclaved dunes or several barchams can join

to form sinuous ridge which resembles
transverse dunes.

Horns

Y-shaped with open end toward beach (wind-
ward) and steep side awsy from beach.
Resulrs from send blowonts. Middle part
moves forvard (downwind) with respect to
sides. Long arms usually enchored by
vegetation.

TRANSYEREE DUKES

IDNGH UDINAY DUNLY

renn

Dunes or ridges oceur porollel or slightly
oblique Lo coastline and elongoted in
direction perpendiculer to effective wind
direction. Generslly symmetrical in cross
section. Leeward side steep #nd windward
side hos very pentle slope,

Elongated pavallel to wind direction and
usually oblique or perpendicular to
coastline. Cross section symmetrical.
Separated from each other by flat areas.
Seif duncs are specisl Llype of
longitudinal dunes.

F16. 29—Some common types of coastal dunes which also occur in deserts.

scribed by Bagnold (1941). Recently, Glennie
(1970) summarized this type of sedimentation
4s observed under desert condilions.

The most common method of sand deposi-
tion is in the form of sand dunes. Many types
of dunes have been recognized and described
by numerous authors (Fig. 29). H. Smith
(1954) presented the following classification
and description of coastal dunes which can oc-
cur either under active or stabilized conditions.

1. Foredune ridges, or elongate mounds of sand up
1o a few tens of Teet in height, adjacent and parallel
with beaches.

2. U-shaped dunes, arcuate to hairpin-shaped sand
ridges with the open end toward the beach,

3. Barchans, or crescentic dunes, with a steep lee
slope on the concave side, which faces away from the
beach,

4. Transverse dune sidges, trending parallel with or

oblique to the shore, and elongated in a direction es-
sentially perpendicular to the dominant winds, These
dunes are asymmetric in cross profile, having a gentle
slope on the windward side and a steep slope on the
leeward side,

5. Longitudinal dunes, elongated paralle] with wind
direction and extending perpendicular or oblique to the
shoreline; cross profile is typically symmetric.

6. Blowouts, comprising a wide variety of pits,
troughs, channels, and chute-shaped forms cutling into
or across other types of dunes or sand hills, The larger
ones are marked Ey conspicuous heaps of sand on the
landward side, assuming the form of a fan, mound,‘or
ridge, commonly with a slope as steep ss 32° facing
away from the shore.

7. Ausched dunes, comprising accumulations of
sand trapped by various types of topographic obstacles.

McKee (1966) described an additional type,
the dome-shaped dune, from White Sands Na-
tional Monument, and Glennie (1970) de-
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scribed the seif dune of Oman, which is a spe-
cial type of longitudinal dune. Many other
dune types have heen described; however, the
above types appear to be the most common.

Studies of modern eolian sand bodies—
Cooper (1958) reviewed the early studies of
sand dunes, mainly by Europeans, and summa-
rized the status of dune reseach in North
America. Additional sand-dune studies in the
United States since 1959 were made in Alaska
by Black (1961), on the Texas coast by Mec-
Bride and Hayes (1962), on the Georgia coast
by Land (1964), in the Imperial Valley of Cal-
ifornia by Norris (1966), in coastal California
by Cooper (1967), and in the San Luis Valley
of Colorado by R. Johnson (1967). Additional
studjes outside the United States were made in
southern Peru by Finke] (1959), in Baja Cali-
fornia by Inman ef al. (1966), in Libya by Mc-
Kee and Tibbitts (1964), in Russia by Zenko-
vich (1967), and in Australia by Folk (1971).

During the past several years, some very im-
portant studies on eolian sands, which included
detailed observations of internal dune structure
and stratification in deep trenches cut through
dunes, were made along the Texas coast by
McBride and Hayes (1962), in White Sands
National Monument by McKee (1966), along
the Dutch coast by Jelgersma er al. (1970), and
in the deserts of the Middle East by Glennie
{1970). These authors presented photographs
and sketches of various types of sedimentary
structures exposed in trench walls and de-
scribed their relations to dune types, wind re-
gime, and grain-size distribution. These studies
have provided some badly needed criteria for
recognition of ancient eolian sands, The follow-
ing summary of the geometry and general char-
acteristics of modern eolian sand bodies was
prepared largely from the references cited
above.

Summary: Coastal Eolian Sand Bodies

Coastal eolian sand bodies, consisting of sev-
eral types of dunes, are very long and quite
narrow; they range in thickness from a few feet
to a few hundreds of feet, and are aligned par-
allel with or oblique 1o the coastline. Becuuse
these sands are derived from beach deposits
and form in vepetated areas, they commonly
contain fragments of both shells and plants.
They are characterized by high-angle crossbed-
ding and are usually well sorted, The adjacent
and laterally equivalen! beach deposits are gen-
erally horizontally bedded and have some Jow-
angle crossbedding,
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Summ;'y: Eolian Sand Bodies of
Desert Regions

Desert eolian sand bodies differ from coastal
eolian sands mainly in their distribution. The
internal sedimentary structures and their rela-
tions to dune types are similar (Bigarella ef al.,
1969). Seif dunes are products of two wind di-
rections and appear to occur more commonly
in desert areas. These duaes are characterized
by high-angle crossbedding in two directions.

Ancient Eolian Deposits

Ancient eolian deposits have been reported
from the Colorado Plateau by Baars (1961)
and Siokes (1961, 1964, 1968), from the
southwestern United States by McKee (1934),
from England by Laming (1966), and from
Brazil and Uruguay by Bigarella and Salamuni
(1961). Criteria for recognition of eolian de-
posits have been summarized by Bigarella
(1972).

MARINE CLASTIC SEDIMENTATION

Trapsportation and deposition of sand in the
marine environment occur under a wide range
of geologic and hydrologic conditions, ranging
from those of the coastal shallow-marine envi-
ronments to the deeper water environments of
the outer continental shelves, the slopes, and
the abyssal plains (Fig. 30).

As indicated in the Introduction, sands de-
posited under regressive (progradational) con-
ditions within the coastal shallow-marine envi-
ronments are considered herein as products of
either the coastal-interdeltaic or the deltaic
mode! of sedimentation. Other important shal-
low-marine sand bodies are produced as a re-
sult of marine transgressions.

During the past several years, studies made
principally by the major oceanographic institu-
tions on the modern deep-marine environments
and research by petroleum geologists, univer-
sity professors, and graduate students on an-
cient clastic sediments of various geologic ages
have revealed that sand bodies of deep-marine
origin are rather common throughout the
world. Although most geologists now accept
the fact that some sands are of deep-marine or-
igin, our understanding of the various geologic
processes which produce these sand bodies is
relatively poor. The writer's pzrsonal experi-
ence with this type of clastic sedimentation is
limited; however, on the basis of familiarity
with the literature on marine sediments, it ap-
pears that most deep-marine sands are depos-
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Fia. 30—Deposition of sand in marine environments,

ited under three principal types of environmen-
tal conditions: (1) on the outer shelf, the
slope, and the continental rise, as a result of
slumping, sliding, and tectonic activity such as
earthquakes; (2) in abyssal plains, by density
(turbidity) and bottom currents; and (3) in
submarine canyons, fan valleys, and fans, by
both bottom and density currents.

Only two of these several types of marine
-sands are discussed in this paper: (1) the shal-
low-marine sands deposited as a result of tran-
gressive-marine sedimentation associated with
the shifting of deltas and (2) the deep-marine
sands deposited in submarine canyons, fan val-
leys, and fans.

Transgressive-Marine Model of
Clastic Sedimentation

Setting and general characteristics—Deposi-
tion of clastic sediments during periods of ma-
rine transgressions (cnlap) is a common pro-
cess of sedimentation in most basins, There are
two basic types of marine transgression: that
which is associated with the shifting of deltas as
a result of major river diversions during a pe-
riod of standing sea level, and that which oc-
curs as a result of a relative rise in sea level
(due to subsidence of a coastal plain or eustatic
rise in sea level). The inland and lateral extents
of marine transgressions resulting from delta
shifts are limited in size, depending on the di-
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mensions of the abandoned deltaic plains. Ma-
rine transgressions resulting from relative
changes in 8ea level extend over much broader
regions and are commonly referred to as re-
gional transgressions. Their dimensions are
governed mainly by the topography of the
coastal plain being transgressed and by the
amount of relative rise in sea level, Thus, trans-
g-essive-marine” deposition can occur Jocally
over abandoned deltas or regionally over eo-
lian, alluvial, interdeltaic, and deltaic deposits
of a Jarge part of a coastal plain.

Modern marine transgressions resulting from
major changes in drainage and delta shifts have
been described by several authors: Russell,
1936; Russell and Russell, 1939; Kruit, 1955;
van Straaten, 1959; Scruton, 1960; Curray,
1964; Coleman and Gagliano, 1964; Rainwa-
ter, 1964; Coleman, 1966b; Scott and Fisher,
1969; L. Brown, 1969 and Oomkens, 1970.

Sources, transportation, and deposition of
sediments—Afier a della is abandoned because
of upstream channel diversion, a very signifi-
cant change occurs in conditions of sedimenta-
tion. The abandoned deltaic plain and subaque-
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ous delta front no longer receive sediment and
gradually subside owing to the compaction of
the deltaic deposits. The seaward edge of the
abandoned delta is attacked by marine wave
and current action and recedes landward at rel-
atively slow rates. As marine processes erode
the upper part of the deltaic sequence, the
sandy sediments within the sequence are win-
nowed and deposited along the advancing
shoreline as barrier islands, beaches, and shal-
low-marine sands; finer sediments are deposited
farther offshore. Thus, the transgressive-marine
depositional profile is characterized by sands
and shell material nearshore and by progres-
sively finer sediments offshore. Over a period of
time, as the transgression proceeds inland, the
thin veneer of shallow-marine sands which are
deposited over the underlying delta sediments is
in turn overlain by marine silts and clays.
Stages in the development of such a trangres-
sive-marine sand body are illustrated in Figure
31

Character of sediments—This type of sedi-
mentation, although largely restricted in extent
to abandoned deltas and adjacent and laterally

PROGRADING DELTA

ABANDONNENT OF DELTA,
MAPINE TRANSGRESSION AND
B DEVEIOPMENT OF NEW DELTA

ZiREs DF °
TR ANSGRES!

NS VE
NARINE SEQUENCE

MARINE CLAYS
TRANSGRESSIVE MARINE SAND

OELTAIC SEQUENCE

GRESS]

IVE L+ 7
RARING SEQIMENTATION

CONTINUED TRANSGRESSIVE MARINE SEDIMENTATION AND DEVELOPMENT OF
TRANSGRESSIVE SEQUENCE OF SEDIMENTS.

71-0063-2&

Fia. 31—Transgressive-marine sedimentation resulting from delta shifts,
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equivalent interdeltaic and offshore-marine en-
vironments, is significant because it produces
very diagnostic blanketlike layers of marine
sediments (thin shallow-marine sand overlain
by clays) which separate the individual deltaic
units (Fig. 31), These layers usually provide the
only podd correlations within thick deltaic fa-
cies, and the marine shales act as impervious
seals between deltaic sand bodies. The trans-
gressive-marine sands containing calcareous
shell inaterial usually become cemented and
thus do not form very efficient reservairs,

Submarine Canyon-Fan Model of
Clastic Sedimentation

Occurrence and general characteristics—The
occurrence of modern and Pleistocene sands in
deep-marine environments of the world is well
documented as a result of numerous deep-sea
investigations by oceanographic institutions
during the past 20 years. Although there is
much controversy regarding the origin of these
sands, it is certain that such sands do exist. An
analysis of the literature reveals that some of
the most common deep-sea sands are those as-

LeBlanc

sociated with submarine canyons and fans,
(For a discussion of types of submarine can-
vons, troughs, and valleys, the reader is re-
ferred to Shepard and Dill, 1966.)

Submarine canyons and fans are common
features associated with continental shelves,
slopes, and rises. The canyons and fans off the
Pacific Coast of the United States and Canada
have received the most attention. Significant
papers on these features off the coasts of Wash-
inglon, Oregon, California, and Baja Califor-
nia, and off the Gulf and Atlantic coasts, are
listed in the selected references. Also included
are references 1o papers on canyons and fans in
the Mediterranean, the Atlantic Ocean off Af-
rica, and the Indian Ocean off Pakistan.

Characteristics and origin of submarine can-
yons have been discussed by numerous authors
(for summary, see Shepard and Dill, 1966).
Although it is still uncertain how some deep-sea
canyons and valleys originated, it is now rea-
sonably well established that a large number of
canyons and fans are related to rivers, and that
they were formed during stages of Jow sea level
of the Quaternary Period (Figs. 32, 33). For
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Fic. 32—S1ages in development
Stage A: Standin
clays on shelf and slop

Srage B: Falling and low.sea-level siluation, Develo

of submarine canyon and fan.

g sca-level sitnation, Development of alluvial valley and delia and deposition of marine
e Basc of aggrading river is well below sea Jevel,

. rment of entrenched-valley sysiem on coastal plain and
of submarme_canyon. offshore, Bases of enirenched valley (neer coast) and of canyon are well below sea level.
Rates of §ed{mcnlauon are very high. Material removed by canyon-cutling and sediments flowing through
cenyon while it formed are deposited as extensive submarine fan.

Stage C: Rising and standing sea-level situation, Alluviation of entrenched-valle
of canyon. Rates of sedimentation are

y system and partial filling
fan by normal-marine processes occurs,

greatly reduced after sea level reaches a stand. Slight modification of
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Fig, 33—-Relation of submarine-fan deposits to submarine-canyon and entrenched-valley system.

example, the Mississippi Canyon off southern
Louisiana js a continuation of the late Pleisto-
cene Mississippi entrenched valley system
(Fisk, 1944; Osterhoudt, 1946; Fish and Mec-
Farlan, 1955; and Bergantino, 1971). Also, the
Asloria canyon and fan off Oregon are related
to the Columbia River (Duncan and Kulm,
1970); the Newport Canyon is related to the
Santa Ana River of California (Felix and Gors-
line, 1971); the Congo Canyon connects with
the Congo River (Heezen et al, 1964); the
Monterey and Soquel canvons and fans occur
off the Great Valley of California (Martin and
Emery, 1967); the Benpal deep-sea fan and the
“Swatch-of-No-Ground” canyon occur off the
Ganges River delta (Curray and Moore,
1971); and the Inguri canyon is related to a
river flowing in the Caspian Sea (Trimonis and
Shimkus, 1970). The Naiional Geographic
magazine maps of the Indian and Atlantic
Ocean floors (Heezen and Tharp, 1967, 1969)
show large fans off the Indus and Amazon Riv-
ers and also off the Laurentian Trough, and the
Hudson Canyon is associated with the Hudson
River. Seismic reflection surveys between can-
yon heads (on shelves) and the coastline most
probably will reveal more examples of canyons
related to entrenched river valleys on land.
There is an extremely wide variation in the
size of submarine canyon-fan systems, Some of
the small ones off California studied by Gors-
line and Emery (1959) include short canyons

5-10 mi (8-16 km) long and fan areas of
about 50 sq mi (130 sq km). The largest can-
yon-fan systems studied thus far are those of
the Congo, Ganges, and Rhoéne Rivers. The
Bengal fan is 2,600 km long and 1,100 km
wide; the Congo fan is more than 520 km long
and 185 km wide; and one of the largest fans
ofl the Pacific coast of the United States, the
Delgade fan, is 300 km long and 330 km wide
(Normark, 1970), Menard (1960) discussed
the dimensions of several other fans.

Some very significant studies of deep-sea
sands associated with canyons and fans—basad
on core, seismic reflection, and bathymetric
data, and bottom observations and photography
by divers—have been made during the past 3
years (Winterer et al., 1968; Carlson and Nel-
son, 1969; Shepard er al., 1969; Curray and
Moore, 1971, Normark, 1970; Nelson ef al,
1970; Piper, 1970; Duncan and Kulm, 1970;
and Felix and Gorsline, 1971).

Physiographic  fearures—Detailed bathy-
metric surveys over several canyons and fans of
various sizes have revealed that these subma-
rine features are characterized by physio-
grapbic features very similar to those of subaer-
ial alluvial fans. The canyons are V-shaped and
have steep walls and gradients, The surfaces of
the fans are characterized by lower pgradient
distributary channels with natural levees and by
topographically low interchannel areas. Some
fans are crossed by relatively large fan valleys
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Fic. 34—Submarine-canyon and fan model of clastic sedimentation.

which also have natural levees. The principal
physiographic features of a typical canyon and
fan are illustrated in a generalized fashiorn in
Figure 34,

The overall shape of a submarine fan can ei-
ther be symmetrical or asymmetrical, depend-
ing on strong current directions and on the
presence of high topographic features on the
abyssal plains, Sizes of the distributary chan-
nels and patural levees are widely varied; the
larger channels usually have the highest and
broadest natural levees. The Jower paris of fans
merge with the abyssal plains. Channels on fan
surfaces were probably formed by depositional
processes. Erosiopal channels that have been
reported probably represent an entrenchment
stage, as is the casc with subaerial alluvial fans.

Many canyons were cut across continental
shelves and slopes, and the fans were con-
structed at the base of the slopes or on the con-
tinental rises. Some canyons presently do not
extend landward across the continental shelves
(e.g., the Mississippi Canyon) because they
have been filled with sediments. Seismic surveys
reveal that this type of canyon was once con-
nected with inland entrenched valley systems.

Longitudinal profiles of canyons and fans are
concave upward. The steepest gradients occur
in the vpper (Jandward) portions of canyons,

and the lowest gradients occur on the outer or
lower portions of fans.

Depositional processes and character of sedi-
ments—It is absolutely certain that large quan-
tities of sediment, including a significant
amount of sand, have been transported through
submarine canyons and deposited as submarine
fans in deep-sea environments, The manner in
which these sediments were transported, espe-
cially the sands, is much less certain. Nearly 2
decades ago, some very strong stalements were
made by oceanographers regarding the turbid-
ity-current origin of both the canyons and the
fan deposits. Although no one had actually
seen or measured a turbidity current in a can-
yon or over a submarine fan, the turbidity-cur-
Tent concept was very popular with most
oceanographers during the early 1950s. During
the past 20 years, numerous additional observa-
tions have been made, but no one has yet seen
a live turbidity current in a natural marine en-
vironment. On the basis of direct observations
of the ocean boftom and sedimentary structures
in cores, many oceanographers now believe
that some submarine-fan sand deposits were
transported mainly by normal bottom currents,
especially during low stages of sea level of the
Pleistocene. A typical example is the origin of
the sand associated with the Mississippi cone in
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the Gulf of Mexico off southern Louisiana.
Greenman and LeBlanc (1956) did not con-
sider these sands to be of turbidity-current ori-
gin, but Ewing et al. (1958) were certain that
the sands were transporied and deposited by
turbidity currents, Twelve years later, Huang
and Goodell (1970) concluded, on the basis of
detajled studies of sedimentary structures ob-
served in numerous cores, that the sands are
not of turbidity-current origin, but that the
mechanisms of transport are bottom currents,
differential pelagic settling, and mass movement
by sliding and slumping, Walker and Massingill
(1970} reported that part of the Mississippi
cone sediments were recently involved in large-
scale slumps, They presented evidence that one
slump moved from near the mouth of the Mis-
sissippi Canyon southeastward for at least 160
n. mi. Thus, the origin of these deep-sea sands
and many others remains a problem.

Regardless of the mechanisms of sediment
transport through submarine canyons and of
deposition of fans, the general nature and dis-
tribution of fan deposits have been determined
for several fans. The coarsest and most poorly
sorted sediments occur in canyons. Sands are
common in distributary channels and fan val-
leys and on the lower parts of the open fan.
Sandy sediments also occur on natural levees,
but the inferchannel areas are characterized by
fine-grained sediments (Fig. 35), Core data
from several faps indicate that sand bodies are
usually thin and very lenticular, and are inter-
bedded with fine-grained sediments,

For details concerning the sedimentary struc-
tures which characterize submarine-canyon and
fan deposits, the reader is referred to Carlson
and Nelson (1969); Shepard et al. (1969);
Stanley (1969); Huang and Goodell (1970);
and Haner (1971). i

Horn et a?, (1971) described the characteris-
tics of sediments related to submarine canyons,
fans, and adjacent abyssal plains of the north-

east Pacific Ocean ofl Alaska, Canada, Wash-
inglon, Oregon, and porthern California. They
interprefed sediments with a wide range in
layer thickness, with graded and nongraded lay-
ers, and with sand in the basal parts of graded
units to be proximal turbidites related to main
routes followed by turbidity currents (probably
chanpels). The finer grained sediments, mainly
graded silts and clays, were inferpreted as distal
turbidites deposited beyond the main avenues
of turbidite flows.

It is the opinion of the writer that many of
the submarine canyons and related fans which
now are found off rivers are the products of en-
trenchment (canyons) and deposition (fans)
during stages of low sea level of the Pleisto-
cene. Oceanographers who have studied several
of these fan deposits have concluded that they
are of Miocene to Pleistocene age. The geo-
logic-age determipations were made on the ba-
sis of present sediment load of the related riv-
ers and known thickness of fan deposits. This
writer suggests that rates of sedimentation were
probably several times greater during Pleisto-
cene low-sea-level stages than at the present
time (period of higher and standing sea level)
and, consequently, that the fan deposits are
probably chiefly of Fleistocene age.

Ancient examples of submarine canyon and
fan deposits—Some examples of ancient depos-
its of submarine canyon and fan origin have
been described from the Gulf coast by Oster-
houdt (1946), Bornhauser (1948, 1960), Hoyt
(1959), Paine (1966), and Sabate (1968);
from California by Sullwold (1960), Martin
(1963), Bartow (1966), Dickas and Payne
(1967), Normark and Piper (1969), Piper and
Normark (1971), Davis (1971), Fischer
(1971), and Shelton (1972); from Canada by
Hubert et al. (1970); from Europe by Walker
(1966), Stanley (1567, 1969), and Kelling and
Woollands (1969); and from Australia by Co-
nolly (1968).
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