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EXECUTIVE SUMMARY

The permeability to gas of eight samples of eastern Devonian black shale
was measured by a steady-state method under pressures bracketing reservoir net
stress. Porosity to gas was also measured under these net stresses, utilizing
a Boyle's Law procedure. The cores had been dried prior to analysis such that
all free pore water was removed from the rock, although ome to two layers of

water of hydration were retained by swelling (smectite) clays.

Seven of thé,eight cores analyzed consist of the lower Huron Member of

the Ohio Shale. One of these was recovered from southeastern Kentucky, and

the other six were obtained from wells drilled in the Ohio-West Virginia

border region along the Ohio River. The eighth core consists of Marcellus
Shale obtained from a well drilled in Morgantown, West Virginia. The lower
Huron core samples are from depths of 2440 to 3320 feet, and all seven were
run at the same two net stress values. The Marcellus core was from a depth of

7448 feet and was run at two correspondingly higher net stresses.

The lack of adequate reservoir pressure data prohibited performance of

. core analysis measurements under in-situ net stress. Estimated high and low

net confining stress values were used in hopes of bracketing the true

reservolr stress experienced by the rocks in the ground.

The lower Huron Shale cores had extremely low porosity to gas. All seven
samples had porosity to gas values of less than 0.3 + 0.1%. Gas permeability
of most lower Huron samples varied with time and differential pressure values
in a manner suggestive of a mobile liquid phase in the pores. Capillary
pressures for the liquid in the range of 1.1 to 30 psi were measured by slowly
reducing upstream pressure on the plugs until gas flow stopped due to
imbibition of liquid into the downstream end. Permeabilities to gas, after
extended flow with pressure drops in the range of 3 to 10 times capillary
entry pressure, ranged from 8 microdarcies down to 1 nanodarcy with a net
stress of 1750 psia on the shale, and from 5 microdarcies to less than 0.2
nanodarcy with a net stress of 3000 psia on the shale. Subsequent
chromatographic analysis revealed that the liquid in the lower Huron core was
a light, paraffinic petroleum (C;H,¢ to C23H48). The presence of this
petroleum as a mobile liquid in the lower Huron pores accounts for both the

nonlinear permeability behavior and the low porosities to gas of these rocks.
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Core analysis on the Marcellus Shale sample was also performed under two
values of net stress. Dry gas permeability on this core ranged from 19.3

microdarcies at 3000 psia net stress to 5.9 microdarcies at 6000 psia net

stress. Mobile liquid hydrocarbon was not present in the Marcellus Shale as
indicated by the permeability behavior and chromatography. Apparent porosity

of this rock to gas, however, behaved in an unusual manner. Twelve

measurements, spanning the gas pressure range of 45 to 1500 psia, revealed

that the volume of methane (at 14.7 psia and 60°F) per volume of rock varied
with pressure as 0,448 X P 1/2, This led to the calculation that under near-
hydrostatic pressure at a depth of 7448 feet, the Marcellus Shale contains
26.5 SCF of gas per cubic foot of rock. The mechanism responsible for

entrainment of these large volumes of gas has not been identified.

Cas flow rate measurements taken under two net confining stress values,
with a variety of gas pressures and pfessure drops, indicate that gas
permeability in Devonian shale is strongly stress—dependent. 1In the Marcellus
sample, for instance, doubling the net confining stress reduced the gas
permeability by nearly 70%. Gas flow path dimensions deduced from high
quality Klinkenberg data on the Marcellus sample have a characteristic width
of 0.05 microns at a net stress of 3000 psi and 0.35 microns at a net stress
of 6000 psi. This surprising result of wider flow path openings under higher
net stress suggests a bimodal pore size distribution with the small openings
being closed at the higher stress. Although the oil in the Huron seriously
degraded the quality of Klinkenberg data, similar bimodal flow path
characteristics were deduced for those samples having effective permeabilities

in the microdarcy range.
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1.0 INTRODUCTION

The Institute of Gas Technology (IGT) has performed core analyses under
contract to the U.S. Department of Energy (DOE), Morgantown Energy Technology
Center (METC), on Eastern Gas Shale and Western Tight Gas Sands. These core
analyses were directed at achieving a better understanding of the fundamental
reservoir properties of these low permeability rocks, measured with IGT's
Computer Operated Rock Analysis Laboratory (CORAL). CORAL was built under
subcontract to Sandia National Laboratories to implement techniques developed
under prior contract to the Bartlesville Energy Technology Center (BETC). The
CORAL is capable of measuring actual gas flow rates through rock as low as
10_6 cm3/second with an accuracy of a few percent and can measure
permeabilities below a nanodarcy (10_6md). Other rock properties measured by
the CORAL include gas porosity under net confining stress with a resolution of
about +2% of the measured value, and pore volume compressibility with a
resolution of 1 X 1070 psi_l. The CORAL has proven to be a state—of-the-art
tool capable of performing the type of accurate core analysis measurements
that are needed and have never before been made on tight sand or shale. A
description of the engineering and operational design of the CORAL has been
presented by Randolph (1983) in SPE/DOE Paper 11765 and also in the dry
sandstone core analysis topical report (DOE/MC/20342-4) prepared under this

contract.

The work plan for this project divided the core analysis into two
tasks. One task was concerned with the suites of measurements performed on
tight sandstone core from the DOE Multiwell Experiment (MWX) in the Piceance
Basin of Colorado. Results from IGT's core analysis on the MWX samples have

been reported to METC via a series of four topical reports.

The other task under this contract provided for porosity and permeability
measurements of Devonian shale core. These types of analyseé had never before
been performed on eastern gas shale with any degree of confidence due to the
resolution limits inherent in measuring gas flow rates with a pipet and
stopwatch. The development of the CORAL at IGT permitted the measurement of
ultra low flow rates by electronic means in a stable isothermal environment
with unprecedented accuracy and repeatability. Although the equipment was
originally developed for use on tight gas sands, there were obvious

applications to other tight gas reservoirs, including Devonian shale.
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One of the major uses for accurate porosity and permeability data on
eastern gas shale is to provide inputs for numerical simulators. Using
previously available, relatively inaccurate data for the reservoir parameter
inputs, numerical reservoir simulations have been run in the past by DOE on
several producing shale wells in the Appalachian Basin. The production curves
generated by the simulator were compared with the actual production histories
over the same period of time from the producing wells in order to ascertain
the degree of history-matching. The comparison between the simulator curves
and actual well production curves resulted in a reasonably good history-match
on three representative shale wells located in Ohio (Lewin and Associates,

1982) .

A basic principle of mathematical reservoir simulation models is that the
output is only as good as the input. 1In the history-matching described above,
additignal runs of the simulator showed that reasonable history matches of gas
production were attainable using a wide range of values for different inputs,
and that a considerable amount of uncertainty existed regarding realistic
values for many of the basic shale reservoir parameters such as porosity,
permeability, in-situ gas content, and response of the rock to stress. With

conventional reservoirs, such reservoir properties are commonly measured to an

accuracy of a few percent, which does not affect their usefulness as inputs to

a model, nor hinder the capability to history-match and reasonably project
production with the simulator. However, to reach the same accuracy of
numerical simulation for the unconventional natural gas resources, a
substantially upgraded effort is required for the measurement of input
parameters. For example, permeabilities measured to an accuracy of 0.l
microdarcy may be considered more than adequate when modeling a millidarcy
sandstone reservoir, but are clearly inadequate when trying to model a one-
microdarcy tight sand. It is very important, therefore, to quantify and
account for the reservoir parameters used to simulate unconventional gas
production in a precise and reliable manner that reflects the actual reservoir
conditiéns as best possible. The objective of the shale core analysis work
was to provide understanding and improvements in the accuracy and reliability
of the most sensitive simulator input parameters, leading to a significant

improvement in predicting shale gas produétion.
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2.0 SAMPLE PREPARATION AND ANALYSIS

To provide accurate data inputs to METC's shale reservoir modeling
efforts, IGT was to measure porosity to gas and Klinkenberg permeability on an
unspecified number of Devonian shale core samples under this contract. These
measurements were to be made using the CORAL after upgrading the equipment to

the degree necessary to achieve the required resolution.

We are aware of several situations where Devonian shale permeabilities
have been repogted from runs in equipment designed for tight sands. However,
we doubt whether any previously measured values are truly representative of
in-situ conditions. Reasons for this are as follows:

e Resolution of the lab hardware has seldom, if ever, been clearly
defined. 1In some cases it is only as low as 10 to 100 nanodarcies.

® We are not aware of any attempts to measure the stress dependence of
permeability in Devonian shales, especially since realistic in-situ net
confining stresses have never been adequately defined for these rocks.

L] In at least some cases, samples were dried in vacuum ovens before
testing. This guarantees measured porosity and permeabilities will be
higher than in-situ values.

We emphasize that porosity and permeability are not single numbers to be
measured and reported for each sample analyzed in the laboratory. Rather,
these are coefficients that appear in the differential equations used to
calculate fluid content and movement in porous media. For some high-porosity,
high permeability formations, adequate descriptions of well and reservoir
performance has been achieved by assuming that these coefficients are
constants. This is definitely not a valid assumption for tight sands or for

shale.

Our approach to Devonian shale core analysis has been from the
perspective of pioneers such as Muskat, Buckley, Leverett, and Klinkenberg.
Specifically, our objective was to define the physical phenomena that occur
during production and to measure the constants required to include the
mathematical describtions of those phenomena in production calculations. This
approach uses laboratory procedures designed to maximize the possibility that

the results obtained are truly descriptive of in-situ reservoir rock.
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2.1 Sample Selection and Background

Between 1975 and 1981, the U.S. government cut and retriéved nearly
17,000 feet of Devonian shale drill core under the Eastern Gas Shales Project
(EGSP). Oriented core was recovered from the Devonian shale section
throughout a variety of localities in the Appalachian Basin, Michigan Basin,
and Illinois Basin. This large supply of oriented Devonian Shale core
provided the raw material for selection of a 1imited number of samples to be

run in the CORAL.

Twenty~eight zones of interest from 13 wells in five states (New York,
Pennsylvania, Ohio, West Virginia, and Kentucky) were sampled. These zones

represent 10 stratigraphic horizons within the eastern gas shales sequence

(Middle and Upper Devonian).

The 13 EGSP cores sampled by ICT were selected from a prioritized list
suggested by DOE. It was understood that the shale samples ultimately
selected would depend on the condition and availability of the cores. Before
sampling trips were undertaken, certain core footage was identified as zones
of interest based on a review of well reports, core descriptions, well logs,
production reports, and other data supplied to IGT by DOE and others. Each of
the zones of interest preselected by IGT covered 10 to 30 vertical feet and

appeared to possess one Or more of the following desirable characteristics:
® Known gas production

® Reported gas "shows"

® Wireline log indication# of gas

L4 Wireline log indications of fairly high organic content

® A history of stimulation treatment

L] Correlation with gas ijndications in another well

e Uniform lithology within a zone

® Lack of physical damage.

The selection of zones of interest was based heavily on the evidence from
the wireline logs available; other data sources tended to be used in an
important but supportive role. Because organic matter has an affinity for

radioactive elements, the background levels of radiation from organic-lean
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shales can be subtracted from the gamma ray logs to roughly estimate the
organic content of black shales (Leventhal, 1981) . This technique was
employed along with analysis of the density logs to isolate cored intervals
containing shales of high organic content for sampling. Since organics are
less dense than minerals, lower density generally corresponds to higher

organic content (Schmoker, 1978).

One of the major problems encountered when choosing core samples and
basing that selection process on wireline log evidence is the lack of
agreement between core &epths and log depths. The driller and the logger
sometimes use different zero points; for example, in the WV-5 well, the log
heading shows that the zero point for the log was ground level, whereas
drilling depths were measured from the Kelly bushing, 10 feet above ground on
the drilling platform. Thus the depth to the casing seat was 1890 feet
according to the driller, but is shown on the log at 1880 feet. A depth
correction of 10 feet must be considered in working from one record to the
other. Core depths normally relate to the driller's reference point; however,
errors in assigning depth to a core can result for a variety of reasons, and

appropriate depth corrections can vary throughout the drilling of a well.

The large number of zones targeted for sampling was thought to be
advisable to ensure the collection of a sufficient volume of core in light of
reports of excessive deterioration during storage — an unknown factor in
October 1983. Numerous zones of interest also allowed samples to cover
several stratigraphic units over a wide geographic area. The shale samples
actually removed from the EGSP cores and shipped to IGT consisted of uniform,
unfractured, full-diameter core segments of 3 to 4 inches minimum length.
Intervals containing natural fractures, margin-to-margin disk fractures, large
pyrite nodules and/or carbonate concretions were avoided. Strong emphasis was
placed on selecting homogenous, undamaged rock samples representative of the

actual shale gas reservoirs.

The depths and stratigraphic intervals that were sampled are listed in
Table 1. A cross section of the stratigraphy of the Devonian shale sequence

in the Appalachian Basin is shown in Figure 1.

Although a rather large amount of shale core footage was collected, it
was recognized early on that only one or two runs of four samples each would

be possible in the CORAL due to time limitations under the contract. As such,
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samples were selected according to a priority list supplied by DOE. This list
was based upon formations of interest in geographic areas identified by DOE as
having current or future research potential. Eight samples were eventually
selected from the EGSP core collected by IGT and were analyzed in the CORAL.
Seven of these cores consist of the lower Huron Member of the Ohio Shale. One
of these was recovered from southeastern Kentucky, and the other six were
obtained from wells along the Ohio-West Virginia border. The Huron in this
area has been the subject of a number of field tests funded by both DOE and
the Gas Research Institute (GRI). The eighth core consists of Marcellus Shale
from a well drilled in Morgantown, West Virginia. The samples used in each

CORAL run are listed below:

First Shale Run (CORAL Run No. 51)

Holder Well Depth, ft Formation Date Cored
1 EGSP WvV-5 3028 L. Huron Jan. 1978
2 Moore #1 (KY) 2904 L. Huron Jun. 1983
3 EGSP OH-6/4 2771 L. Huron Oct. 1979
4 EGSP OH-9 3245 L. Huron Feb. 1981

Second Shale Run (CORAL Run No. 52)

Holder Well Depth, ft Formation Date Cored
1 EGSP WV-6 7448 .5 Marcellus Apr. 1978
2 EGSP OH-6/4 2770.8 L. Huron Oct. 1979
3 EGSP OH-6/5 2441.4 L. Huron Dec. 1979
4 EGSP OH-8 3325 L. Huron Mar. 1980

The locations of each well are shown on the map (Figure 2). Background
information on the individual shale zones sampled and tested is given in more
detail below.
® Somerset Gas Co., City of Somerset, E. J. Moore No. 1 Well, Leslie Co.,

Ky., - lower® Huron Member of Ohio Shale, Sampled: 2896-2910 ft (log
depths), CORAL plug: 2904 ft (core depth)

This zone of interest at the top of the "lower™ Huron has a very high
gamma log’signal (~461 API units) with a maximum count in excess of 500 API
units (see Figure 3). The density curves all indicate a lower value (2.5
g/cm3) than shale units above or below this interval. The temperature log
shows a cooling trend below 2895 feet suggesting gas entry into the well
bore. Samples consisted of several long, unbroken, unfractured, uniform core
segments, composed of organic-rich shale, brownish black (5YR 2/1), thin

bedded, with thin calcareous and pyritic laminae.
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During the time this contract was being negotiated, METC called to our
attention the fact that the state government of Kentucky, with DOE support,
was drilling and coring a well through the Devonian shale sequence in Leslie
County, Kentucky. Since the majority of the EGSP core is 5 to 10 years old,
we were enthusiastic about the prospect of sampling fresh shale core. The
Leslie County core was cut in June 1983 and sampled by IGT in December 1983.
Core descriptions and stratigraphic contracts omn the Leslie County core were
provided by the Institute of Mining and Minerals Research (IMMR) in Lexington,
Kentucky.

® EGSP OH-6 CORES

Cores that were obtained under the Eastern Gas Shales Project were
classified by the U.S. Department of Energy by state and drill hole order.
For example, the designation "EGSP KY-2" refers to the second shale core cut

in Kentucky under the Eastern Gas Shales Project.

The only exception to this rule is a series of cores cut in Gallia County
in southeastern Ohio. Five wells were drilled in a circle approiimately 1
mile in diameter, thought to be centered on the flanks of a dome-like
structure in the limestone underlying the Devonian shale. The cores in this
series were designated as EGSP OH-6, and the individual wells were labeled OH-
6/1, OH-6/2, oH-6/3, OH-6/4, and OH-6/5 (Cliffs Minerals Report, June 1980) .
The stratigraphic intervals from which cores were taken from these wells are
shown in Figure 4. IGT plugs that were run in the CORAL were taken from the
OH-6/4 and OH-6/5 cores. The stratigraphic positions of these are also shown
in Figure 4. The sampled intervals from which the plugs were obtained are
described in more detail below:

e EGSP OH-6/4, Mitchell Energy Corp., #1-8 Straight-Wisemandle Unit, Gallia
County, Ohio, “lower"” Huron Member of Ohio Shale, Sampled 2765-75 £t (log
depths), CORAL Plugs: 2770.8 ft, 2771.0 ft (core depths)

This zone of interest near the base of the Huron Member has high gamma
intensity (~241 API units) and a density of about 2.47 g/cm3. it is slightly
below a foam fractured interval (2512 to 2752 feet) in the well which produced
8 MCF/d of gas. This zone in EGSP OH-6/4 correlates with a highly radioactive
shale bed associated with gas production in EGSP OH-9 some 30 miles
northeast. This same interval in the Huron Member was sampled by IGT from the
EGSP WV-5 well, about 15 miles to the northeast. The core samples collected
from EGSP OH-6/4 consist of several 3 to 5-inch long segments of
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inter—laminated olive gray (5Y 4/1) and olive black (5Y 2/1) shale, with the

black shale predominating. Individual laminae range from less than a

millimeter to nearly a centimeter in thickness, and small pyrite nodules and

carbonaceous plant fragments occur throughout. No bedding plane cracks or
natural fractures were visible between or within the gray and black laminae on
the fresh core.

@ EGSP OH-6/5, Mitchell Energy Corp., #1-9 M. Carter, Gallia County, Ohio,
"{ower” Huron Member of the Ohio Shale, Sampled: 2440-46 £t (log
depths), CORAL Plug: 2441.4 ft (core depth)

This basal, highly radioactive bed in the "lower"” Huron Member,
immediately overlying the organic-lean Olentangy Shale, was sampled because it
correlates with indications of a gas pay zone at the Huron/Olentangy contact
in nearby Meigs County, Ohio. On the reduced-scale gamma ray log of EGSP OH-
6/5, the interval shows gamma counts in excess of 300 API units. This footage
was included in a larger zone that received a massive foam fracture
stimulation (2231 to 2446 feet). That treatment resulted in water problems.
geveral 4 to 6-inch long core segments were collected from this interval.

Many of the samples had a coring-induced petal fracture running vertically

down the length of the core; however, the bulk of the core was undisturbed.

The samples consist of organic-rich shale, olive black (5Y 2/1), thin bedded

with thinrpyritic laminae throughout.

e EGSP OH-8, Donohue, Anstey and Morrill, #1 Shockling, Noble County, Ohio,
Huron Member of the Ohio Shale, Sampled: 3320-33 £t (log depths), CORAL

Plug: 3325 ft (core depth)

This zone in the Huron Shale (cliffs Minerals Report, October 1980)
correlates with the "lower™ Hurom Member in Ohio and the Dunkirk Member of the
Perrysburg Formation in New York. It shows a relatively high gamma ray count
(~166 API units) and a density of 2.62 g/cm3. Gas shows were visible in the
core. The selected zone of interest is within a foam fractured interval (3138
to 3465 feet), which produced gas at a rate of 52 MCF/d after stimulatiom.
Core samples from this zone consist of one 12 inch long segment of inter-
laminated olive black (5Y 2/1) and olive gray (5Y 4/1) shale and a few 3 to 4
inch pieces of olive black core. The CORAL plug sample was cut from one of
the small pieces of olive black (5Y 2/1) core and consists of thin bedded,

organic-rich shale with a few small pyrite nodules.
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Another zone in this well in the Chagrin Member of the Ohio Shale was
stimulated and tested at 510 MCF/d, but no core was cut in the pay zone. The
stratigraphic location of the IGT core sample is shown in Figure 5.

e EGSP OH-9, Columbia Gas, #10056-A, Meigs County, Ohio, "lower™ Huron

Member of Ohio Shale, Sampled: 3247-57 ft (log depths), CORAL Plug:

3245 ft (core depth)

This zone was selected for the high gamma ray count (~251 API units) and
relatively low-density (2.47 g/cm3) indications on the full-scale log of well:
"B." The log features in well "B" in this interval appeared to be about 6
feet different in depth from identical features in well "A" noted in the
Cliffs Minerals Report of May 1981. A 6-foot log to core depth correction was
deemed appropriate (3253-foot log, well "B" = 3247-foot core, well "A"). The
stratigraphic location of the IGT core sample is shown in Figure 6. The core
sampled from this zone consists of 4 or 5 short segments (~3 inches long) of
uniform, organic-rich shale, brownish black (5YR 2/1), and thick bedded with a
few thin pyrite lenses. A sweet hydrocarbon aroma was noticeable on freshly
broken surfaces and on the freshly-cut plug. The core had a petal centerline
fracture running the length of the segment, but closer to the margin than to
the center. The CORAL plug was cut from the larger core section and contained

no visible fractures.

EGSP OH-9 NOTE: The EGSP Ohio-9 cores were recovered from the Devonian
Shale Offset Well site in Meigs County, Ohio. The original well on this site
is designated Columbia Gas #10056. The #10056-A well, from which the IGT core
samples were recovered, was drilled 124 feet southwest of the original well,
The wireline logs used by IGT were from the 10056-B well, which was drilled
118 feet southeast of the original well. Several other wells have also been
drilled on this site more recently.
® EGSP WV-5, Reel Drilling Co., D/K Farm #3, Mason County, West Virginia,

Huron Member of Ohio Shale, Sampled: 3036-46 ft (log depths), CORAL

Plug: 3028 ft (core depth)

This section near the base of the Huron Member contains beds of high
gamma ray count (up to 300 API units) and low demsity (2.45 g/cm3), which are
indicative of high organic content. The basal contact of the Huron Member
with the underlying Hanover Member of the Java Formation (equals "upper”
Olentangy Shale in Ohio usage) occurs on the log at 3049 feet. This contact
is described in the core description (Cliffs Minerals Report, October 1979) by
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color and other changes at 3036 feet and a 13-foot log to core correction was
considered applicable (3049 ft log = 3036 ft core).

This zone correlates by gamma ray log with a gassy interval in the EGSP
OH-9 well in Meigs County, Ohio, and with gas shows in the EGSP OH-6 series of
wells in Gallia County, Ohio. The stratigraphic location of the IGT core
sample is shown in Figure 7. The samples recovered from this zone consist of
three 4-inch long pieces of shale core. The shale is olive black (5Y 2/1),
thick bedded;!and contains a few thin gray shale laminae and scattered pyrite

lenses,

All of the samples noted above were taken from the Upper Devonian Huron
Member of the Ohio Shale out of the western portion of the Appalachian
Basin. The sample below was taken from the Middle Devonian Marcellus Shale in
a deeper, more central portion of the Appalachian Basin with higher thermal

maturity.

L EGSP WV-6, U.S. Department of Energy, M.E.R.C. #1, Monongalia Co., West
Virginia, Marcellus Shale, Sampled: 7446-60 ft (log depths), CORAL plug,
7448.5 ft (core depth)

The Marcellus Shale in this interval contains several feet of section
with gamma ray counts greater than 300 API units (341 average). The density
averages less than 2.46 g/cm3 and reaches a low of 2.42 g/cm3. These
indications of high organic content were thought worthy of investigation. The
Cliffs Minerals core report describes the shales as "thinly laminated" and
"friable" in a section where the sonic log showed large deflections (Cliffs
Minerals Report, March 1980). The selected zone of interest is also within an
interval perforated (7320 to 7480 feet) and stimulated. The stratigraphic
location of the IGT core sample is shown in Figure 8. The core recovered from
this zone consists of several short (~2 inch) pieces of friable, fissile,
organic-rich shale, grayish black (N2), thin bedded and pyritic. A calcite-
filled, near-vertical joint was present near the margin of the core, but was

avoided in the plug sample cut for CORAL analysis.

2.2 Sample Preparation

All of the EGSP Devonian shale samples received at IGT consist of
oriented core. The Leslie County, Kentucky, core is unoriented, Oriented
core is obtained by using a special coring apparatus that cuts three unequally

spaced scribe lines on the sides of the core during drilling. One of the
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scribe lines is widely separated from the other two; this is referred to as
the "reference groove.” The core barrel is connected to the rest of the drill
string with a nonmagnetic drill collar, usually made out of monel or some
other nonferrous alloy. A magnetic compass and a camera are mounted in the
core barrel below the monel collar. While the core is being cut, the camera
records the orientation of the reference groove in the core with respect to
the compass direction of magnetic north at intervals of 2 feet. After
magnetic north is corrected to geographic north, the true horizontal
orientation of the reference groove is given at 2-foot intervals in a core

orientation log by the coring contractor.

A plastic ring inscribed from O to 360 degrees was placed over the core
in the lab as part of the Cliffs Minerals, Inc., EGSP core processing
procedure. The ring was rotated until the reference groove was aligned in the
direction given in the core orientation log for the sample depth. The
positions of north, south, east, and west were then drawn on the core with

permanent marker.

Each core selected for analysis was placed in the drill press and plugs
were cut as shown in Figure 9. Several cutting attempts were sometimes
required to obtain a plug of good integrity. The plugs were generally not
drilled in any particular orientationm, although orientation of the plug axis
was recorded after cutting. The plugs were cut with a 1-1/2 inch ID diamond
coring bit. Tap water flows through the bit and out of the drill hole during
the plugging operation to cool the diamonds and flush away the cuttings. A
fairly low-speed bit with coarse diamonds was found to be necessary to obtain
acceptable plugs out of the shale. High-speed bits with fine diamonds tended
to "mud-up” during cutting, causing loss of water circulation and sample

damage.

After the plugs were cut on the drill press, they were mounted in a small
metallurgical saw and trimmed with a thin diamond blade. The disks sliced
from the ﬁlug ends were saved to provide additional sample material identical
to the plug. The plug ends were then lightly sanded to square them off, and
the plug length and diameter were carefully measured with a caliper. Six
diameters and four lengths were determined for each plug, and averaged values
were used in order to minimize the effects of minor surface irregularities on

volumes calculated for the samples. The plugs were then weighed on an
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electronic balance and placed into a controlled, relative-humidity oven to

dry.

The decision to use tap water instead of synthetic brine during plugging

and trimming was consciously made after considering the following:
e At the time of plugging, formation brine content of the core was unknown.

@ Samples of reservoir brine have not been obtained, as far as could be
determined,. from any of the EGSP wells cored or from any other Devonian

shale source.

L X-ray diffraction results obtained by the U.S. Geological Survey
(Hosterman, personal communication, 1980) indicate that the clay
mineralogy of these shales consists primarily of illite and kaolinite,
with minor amounts of chlorite and water-sensitive smectite or mixed-
layer clays.

e The rapid plugging allows little time for water imbibition

e Plugs are placed in a controlled humidity oven soon after plugging so
that any imbibed tap water will soon evaporate.

The plugs remained in the relative humidity oven at 60°C and 457% relative
humidity until the weights became stable. This condition of "baseline water
saturation” removes all free water from the pores, but rétains one to two
molecular layers of water of hydration on swelling (smectite) clays in the
rock. This condition is thought to closely approximate the natural hydration

of "dry"” rocks in the ground (Bush and Jenkins, 1970) .

The use of a relative humidity oven to dry Rocky Mountain tight sand
samples in order to avoid the damage to pore clays caused by unhumidified
drying has been documented by Randolph and Soeder (1984). 1t is not known,
however, if the conditions used to achieve a "dry” sandstone are appropriate
to obtain a "dry" shale. The ages, depths, reservoir pressures, thermal
histories, organic contents, bulk compositions, and depositional environments
are so different between Rocky Mountain tight sands and Appalachian Devonian
shales that it was difficult to see how any set of laboratory procedures

developed for the one would apply to the other.

The drying conditions recommended by Bush and Jenkins were designed to
retain one to two layers of water of hydration on calcium and sodium
smectites. Through calculation of pressure and temperature gradients present

in the ground, Bush and Jenkins reached the conclusion that one to two layers
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of water of hydration retained on smectites was the natural condition in dry
tight sandstone reservoirs at depths of 3000 to 9000 feet. Eastern Devonian
shales, however, occur at shallower depths (mostly between 1000 and 5000 feet)
and have considerably lower reservoir pressures. Furthermore, eastern shales
are abnormally dry with no readily available well reports mentioning the
occurrence of measurable water production. These parameters are very
different from those found in western tight sand reservoirs, which usually
contain at least several tens of percent of immobile water saturation even in

"dry gas™ zones.

Work by Colten (1984), however, has indicated that two molecular layers
of water between silicate sheets is the "preferred” state of hydration for
both calcium and sodium smectites through a wide variety of pressure,
temperature and salinity conditions. Based on this work, and taking into
consideration the lack of published data documenting the natural hydration
state of clays in actual shale gas reservoirs, it was decided to dry the shale
samples under the conditions recommended by Bush and Jenkins: 60°C at 45%
relative humidity. Drying the samples in some form or another was necessary
because each plug had absorbed an unknown quantity of coolant water from the
drilling and cutting procedure. Without knowing exactlyAwhich oven settings
would be appropriate for Devonian shale, a compromise was made by drying the
shale at the sandstone settings. The reasoning behind this was that even if
the hydration state of clays in the shale was not "correct,” at least it was

known.

2.3 Shale Analysis in the CORAL

The Computer Operated Rock Analysis Lab at IGT deduces flow rates of gas
through a sample (and hence permeabilities) by measuring the buildup of gas
pressure in a small volume with respect to a reference pressure. An extremely
sensitive differential pressure transducer (0.7 psid full scale) is plumbed
into the line volume at the downstream end of each of the four coreholders
(Figure 10). The permeability sequence starts out with the gas pressure in
thé downstream line equal to the gas pressure in a 6-liter downstream
reference tank. The measurement begins by isolating the line pressure from
the tank pressure by closing a computer—activated solenoid valve. With the
valve closed, one side of each differential pressure transducer (DPT) is

connected to the downstream reference tank, while the other side is connected
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to the downstream line volume of its respective coreholder. As gas from a
higher pressure upstream supply tank flows through the core, pressure in the
downstream line volume begins to build and a differential pressure is created
across the sensitive DPT. When pressure reaches the full scale of the DPT,
the computer opens the solenoid valve for 10 seconds to allow the line volume
pressure to equilibriate with the downstream tank. After the pressures have
equalized, the valve is closed and another buildup sequence begins. By
knowing very accurately the volume of the downstream lines and by measuring
the pressure buildup in those lines over time, flow rates and permeabilities

can be calculated.

Since the maximum differential pressure between the sample pores and the
reference tank is never more than 0.7 psid out of a maximum absolute pore
pressure of 1500 psi, the CORAL can be considered a "steady state" flow
measuring device. Due to the small volumes and high pressures, however, it is
extremely sensitive to temperature fluctuations. For this reason, the entire
apparatus is enclosed in an isothermal chamber. Temperature control is
maintained by a microcomputer that senses the temperature and adjusts power
across a set of heating resistors accordingly. The computer also reads the
voltage output from the DPT's (first converted to digital signals via a

multiprogrammer) and records pressure buildup data on magnetic disk.

As originally constructed, the CORAL was capable of measuring actual gas
flow rates lower than 10~ cm3/second and has performed very well on 0.1 to 10
microdarcy tight sand plugs 1 inch in diameter by about 2 inches in length.
Measurements of ultra low flow rates in the CORAL are limited by several
factors, however, the most important of which are temperature stability and
digitizing resolution. The following modifications and improvements were made

to increase the sensitivity of the equipment for shale analysis,

a. Temperature Control. Temperature stability in the CORAL is maintained by
forced air circulation across a set of resistance heating elements. The
warm air is ducted throughout the system to maintain constant
temperatures on all components. Two changes have been made in the
temperature control system to increase stability. The air circulation
patterns were altered (as shown in Figure 11) to more evenly distribute
heat throughout the enclosure, and modifications were made to the
temperature control algorithm used by the computer to power the heating
coils. The new circulation system has increased the temperature
stability considerably and also reduced the amount of time needed by the
CORAL to eliminate temperature transients caused by changing gas
pressures or opening doors. The modifications to the control algorithm

26
I NS T I TUTE O F G A S TECHNOLOG Y

it

T




CORAL

AIR CIRCULATION

->' <

| @ [r=

4

« F

e J

[c.,

REFERENCE TANK>
REFERENCE TANK)

I N § T

I T UTE

CIRCULATION PATTERNS

27

t ’ + | ’ ’ '
< F F >
ORIGINAL
CH= coreholder DPT= differential pressure transducer  F= fan
| |
<« F F =~
= : [=
¢ ' ' _qm_ ' V '
> Fl 2 || 2 =
% $ Q = = 4 4 )
Ll [*F ]
2| || @
cH o ] @ [cu
o o
e b
! ' N e || & |L— y
’ <« F E_=>
I
MODIFIED
Figure 11. SCHEMATIC DIAGRAM OF CORAL BEFORE AND AFTER CHANGE IN AIR

TECHMNOLOGY




now permit the computer to deduce and predict temperature trends inside

the system and adjust heating power levels before trends reach maxima or
minima. 1In effect, this new control flattens out the peaks and valleys

between temperature swings.

b. Digitizing Resolution. Data output from the CORAL temperature sSensors
and pressure transducers is in DC volts. For the computer to read this
information, it must be converted into digital signals. This is the
function of the multiprogrammer and multiprogrammer interface, which are
wired into the signal path between the CORAL and the computer. The
number of digital steps into which the entire voltage range output of the
transducers can be divided determines the pressure and the temperature
resolution of each digitizing step. More digitizing steps per volt means
that each of these steps correspond to a smaller fraction of this volt.
To achieve greater digital resolution with the CORAL, the multiprogrammer
and multiprogrammer interface were replaced with a digital data logger.
This data logger utilizes about 25 times the number of digitizing steps
used by the multiprogrammer and increased the CORAL's digitizing
resolution accordingly.

Co Flow Rates. A relatively simple method of enhancing the permeability
measurement resolution in extremely tight rocks is to increase the flow

rates of gas through the samples. This can be done by increasing the
differential pressure across the core plug and/or cutting the plugs to a
larger diameter and shorter length. IGT utilized both of these
approaches on the shale. New end caps, 1-1/2 inches in daimeter,
replaced the original l-inch-diameter end caps and allowed use of larger-
diameter shale plugs with a corresponding increase in flow rates. Higher

differential pressures up to 100 psid were applied to the shale plugs to

force measurable amounts of gas through the samples. Differential
pressures on the sandstone plugs were held at 20 psid or less to prevent
mobile pore water from moving around during relative permeability
measurements. Because the shales were thought to be dry, there were no
1imits imposed on the AP necessary to flow gas through the core plug.

2.4 Procedures for Shale Core Analysis

After the plugs reached stable weights in the relative humidity chamber,
each set was removed and placed in warm, capped bottles. This was done to
prevent the plugs from either absorbing additional water out of the room air
or losing water by condensation on the bottle. Each plug was removed from its
bottle and weighed on the electronic balance under a tared, inverted glass
beaker. The plug was then inserted into a Viton sleeve and loaded into one of
the CORAL coreholders. Air pressure at 50 psi was applied initially to
confine the plug and check for sleeve leaks. Pressurized water is used for
confining fluid only after we are assured of no leaks to keep from wetting the

sample.
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Measurements on all of the lower Huron cores were made at net confining
stress values of 1750 and 3000 psia. Measurements on the Marcellus sample
were made at 3000 and 6000 psia net confining stress. These values were
picked on the assumption that they would bracket the actual in-situ net
confining stress. Confining pressure is imposed vertically by the weight of
rocks above a particular sample depth and horizontally by tectonic forces
around a sample in the ground. Net confining stress 1s the value of this
confining pressure squeezing inward on the rock offset to some degree by fluid
or gas pressure within the pores pushing back. Running porosity and
permeability measurements under conditions duplicating reservoir net confining
pressure is important because the size and shape of the pores in the rock are
influenced by this stress. To reproduce the reservoir pore geometry, one must

reproduce the reservoir net confining stress.

Our efforts to impose realistic in-situ values of net confining stress on
the Devonian shale cores were hampered considerably by the absence of valid
and reliable well test pressure data. To determine a representative value of
net stress to use on a core, it 1s necessary to know the reservoir pressure
from the depth at which the core was cut, along with some reasonable average
value of the three confining stresses imposed on the roék (lithostatic,

horizontal minimum, and horizontal maximum).

As far as we can determine, actual reservoir pressure measurements for
Devonian shale are extremely rare, although what little data do exist seem to
suggest that shale pores are underpressured. For tight sands, we had
calculated the pore pressure from the mud weight data when available;
otherwise, we had assumed hydrostatic. This mud weight information was not
available for any of the shale cores, but we were reluctant to assume
hydrostatic pressure gradients due to the apparent lack of a water phase in
the shale pore systems. We were also frustrated in our efforts to determine
representative confining pressures for Devonian shale. 1In our tight sands
work, we had estimated uniform triaxial confining stress at a value of about
0.925 psi per foot of depth. This figure was picked as a reasonable average
between lithostatic, horizontal minimum, and horizontal maximum based on many
years worth of tight sandstone fracture gradient measurements. There are not
very many of these in-situ measurements for Devonian shale, but the few

figures that are available indicate that the 0.925 psi/ft value used on tight
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sands is not appropriate for eastern gas shale. Unfortunately, these limited

data do not suggest which values are appropriate.

In a compromise based on a lack of data, it was finally decided to run
the shale cores at two values of net confining stress that would bracket the
true reservoir pressures. Based on the average density of sedimentary rocks,
a vertical lithostatic pressure gradient of about 1 psi per foot can be
assumed. This pressure will be offset to some degree by tectonically imposed
horizontal streés. The hydrostatic pressure gradient is about 0.43 psi per
foot, so a fair assumption regarding a value for a uniformly imposed triaxial
stress is to locate it between straight lithostatic stress (~1 psi/ft) and
straight hydrostatic stress (~0.43 psi/ft). For an initial experiment,
pressures bracketed in this manner are acceptable, but future work will
definitely require more reliable reservoir pressure and in-situ stress
determinations in order to provide results that more accurately describe

naturee.

The laboratory procedure used for shale analysis in the CORAL is

described below:

1. After the plugs were loaded in the CORAL coreholders and the system was

leak tested, pressures were taken to 1000 psia net confining stress (1200 .

psia confining, 200 psia pore) and allowed to stabilize.

2. Pore volume compressibility was measured in steps from 1000 psia net
stress to the low value of reservoir net stress (1750 psia for the Huron
samples, 3000 psia for the Marcellus core).

3. Permeabilities to gas were run at the low value of net confining stress
with pore pressures of 75, 200, 500, and 1000 psia. Pprosity was’
measured at the low net stress using 1000 psia gas pressure.

4o Pore volume compressibility was measured in steps from the low net stress
(1750 psia Huron, 3000 psia Marcellus) to the high net stress values
(3000 psia Huron, 6000 psia Marcellus).

5. Permeabilities to gas were run at the high value of net confining stress
with pore pressures of 75, 200, 500, and 1000 psia. Porosity was
measured at the high net stress using 1000 psia gas pressure.

6. Because gas permeability measurements of the Huron cores were behaving as
if a mobile liquid phase was present in the pores, additional
permeability work was performed on these samples in the second CORAL run
to determine permeability to gas as a function of differential pressure
and to try to measure the capillary pressure of the liquid in the
pores. These measurements were made at both high (3000 psia) and low
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(1750 psia) values of net stress with pore pressures of 1000, 500, 200,
and 50 psia. .

Porosity measurements on the Marcellus core had been made with nitrogen
at gas pressures of 1000 psia and 200 psia, and the results differed by
over 6 porosity percent. This nonlinear behavior of gas-filled pore
volume varying with pressure was indicative of some sort of adsorption
phenomenon taking place inside the rock pores. Consequently, the CORAL
was changed over to methane, and a series of gas-filled porosities were
measured on the Marcellus core at methane pressures of 45 psia to 1500
psia. The Marcellus sample was maintained at a net confining stress of
6000 psia during these methane porosity measurements.
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3.0 RESULTS

The results of the Devonian shale core analysis work performed under this
contract are displayed in Table 2. Each of the eight samples occupies a
vertical column in the table. The individual lines on the table display
specific data for eachkcore plug horizontally. These lines are discussed in
detail below.

Lines 1 through 4: These lines are used to identify the state, county, lease

and drill hole from which each core was recovered. The well identification
line (Line 1) denotes the core's classification under the DOE Eastern Gas

Shales Project.

Line 5: Depth in feet of the plug sample cut from the core and analyzed in
the CORAL. The value reported is "drillers” depth — measured on the
geolograph while cutting the core and marked on the core itself in permanent
ink during the core recovery procedure. Depths listed on this line were taken

directly off the core.

Line 6: Rock formation from which the plug sample was taken. Two are

1istea: the "lower” Huron Member of the Ohio Shale, which is Upper Devonian
in age, and the Marcellus Shale member of the Hamilton Group, which is Middle
Devonian in age. Refer back to Figure 1 for a cross section of Appalachian

Basin stratigraphy to locate these formations relative to one another.

Line 7: Although DOE did not specify a direction from which to cut the plugs,
horizontal orientations of the plug axes were recorded anyway from oriented
core., - These were recorded as standard azimuthal directions; for example, N
15° W means the plug axis lies 15 degrees to the west of a line pointing due

north.

Line 8: Rock colors were identified in accordance with procedures used by DOE
and the EGSP field team. The rocks were dampened with a wet sponge to
eliminate color errors caused by dirt, dust, scratches, or rough surfaces on
the core. Colors were identified by comparison with paint chips on the
standard Rock Color Chart of the Geological Society of America (1979), which
incorporates the widely accepted Munsell color system. The Munsell system
uses a unique alphanumeric designation to precisely describe each color
according to “hue” (tint), "value" (lightness), and "chroma” (intensity). For
example, 5Y 2/1 designates a middle yellow or olive (5Y), very dark and low
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intensity color (2/1). Thus, the shale colors listed on Line 8 range in hue

from olive (5Y) to brown (5YR) to neutral gray (N); in value }rom medium dark
(4) to nearly black (2), and all are low in chroma or color intensity. These
colors are very typical for eastern Devonian shales, and because these
particular samples are rich in organic matter, the colors are quite dark.

Organic-lean shales tend to be lighter in color.

Lines 9 and 10: These lines contain data picked from wireline logs in the

vicinity of plué depths. The gamnma intensity is given in API units over and
above the normal gamma intensity for organic-lean shales in the well. Because
organic matter has an affinity for radioactive elements, subtracting out the
gray-shale background radiation permits a rough estimation of the amount of
organics present in a black shale (Leventhal, 1981). Density logs are also a
useful measurement for estimating organic content in black shales ( Schmoker,
1978). Since organics are less dense than minerals, lower density generally

corresponds to higher organic content. Log densities are given on Line 10.

Line 11: The month and year in which each respective core was cut and
recovered are recorded on this line. The age of the core does not appear to
be important to the results of the analysis, as long as the samples chosen for
analysis consist of intact, well-preserved core segments. It is our
observation that shale core tends to develop fissility (parallel horizontal
cracks) when exposed to air. Older cores generally showed a greater degree of
deterioration than fresher cores. Cores kept sealed in cans or carefully
wrapped in plastic sheeting, however, were often freshly preserved after 5

years' time. (See Line 27 explanation below.)

Lines 12 and 13: Cores were analyzed in two runs of four plugs each. CORAL

Run No. 51 began on July 16, 1984, with the four plugs listed on Page 34.
Plugs listed on Page 35 were analyzed in CORAL Run No. 52, which began on
August 24, 1984. The run numbers are unique to each set of plugs and permit

IGT to file the raw data in an efficient and retrievable manner.

Line 14: This line lists the particular coreholder out of the four in the

CORAL which contained the plug during analysis.

Line 15: Dry bulk density of the plug was derived simply by dividing the

measured dry weight by the measured volume. This value is useful for
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screening out siderite concretions, pyrite nodules, and other unusual core

features not representative of the formation. -

Lines 16, 17, and 18: Results of the CORAL analysis made under conditions of

low net stress. Net stress values are listed in Line 16. Permeability to gas
at the Klinkenberg intercept (X,) is listed on Line 17. The values are given
in microdarcies (ud) equivalent to 1073 millidarcy, or in nanodarcies (nd)
equivalent to 1076 millidarcy. 1In cases where the Klinkenberg plot was too
scattered to accurately determine a slope and an intercept, the permeability
value listed consists of a single measurement taken at the highest pore
pressure (1000 psia). Porosity to gas listed on Line 18 was measured using a
Boyle's Law method and a pressure step from 1000 to 1100 psia. Nitrogen gas
was used for both the porosity and permeability measurements. Gas porosity of
the Huron cores was extremely low, making the pore volume compressibility

measurements, where given, very questionable.

lLines 19, 20, and 21: Results of the same CORAL measurements described above,

but performed under conditions of high net stress values listed on Line 19.

Line 22: Presence or absence of carbonate minerals was determined by placing

a drop of 10% hydrochloric acid on a fresh surface and watching for
effervescence., Rapid fizzing indicates the presence of calcite or siderite;

slow effervescence is indicative of dolomite.

Lines 23, 24, and 25: Results of elemental analysis performed by IGT

Analytical Chemistry Lab on chip samples from all cores except OH~-6/5 and OH-
9, Chips were, in most cases, taken from the cores fairly close (within 1 to
2 ft) of the plug location. Chips were analyzed by flash pyrolysis at 1000°C
in a Carlo-ERBA Analyzer Model 1106. This device combusts the sample in a
helium atmosphere with a limited amount of oxygen. The combustion products
are then separated and identified in a gas chromatography column. Although
this technique is a relatively inexpensive method of determining total carbon

content, it does not discriminate between inorganic and organic carbon.

Line 26: The presence of petroleum in the shale cores was noted by a)

permeability behavior suggestive of a mobile liquid phase in samples that had
been dried of all free pore waters and/or b) results of chromatographic
analysis indicating the presence of a paraffinic petroleum in the rock. Low

porosity to gas is another clue to the presence of oil in the pores.
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Lines 27 and 28: Numbers of horizontal, bedding plane cracks counted on one

sawed face of each plug. Full width cracks span the entire faee and sometimes
also run the entire length of the plug. Short cracks terminate within the
plug face. These cracks were counted after the plugs had been run in CORAL
and do not appear to correlate with permeability. Cores with one full-length
crack, for example, have permeabilities ranging from 5 nanodarcies (Moore No.
1) to about 5 microdarcies (both OH-6/4 plugs). One of the tighter rocks was
the OH-6/5 plug, which contains 19 short cracks. The most permeable core (WV-
6) contains more cracks overall than the others, but this core differs also in
depth, age, formation, and thermal maturity. One of us (D. Soeder) observed
this core fresh in 1979 at Cliffs Minerals, Inc., and it contained the same
large number of cracks that it does now. The question as to whether the age
of shale core affects the results of analysis when macroscopically non-fissile
segments are sampled is best demonstrated by comparison of the oldest EGSP
core (WV-5) with the freshest (Moore No. 1). Both cores have about the same
composition, bulk density, color, and number of plug cracks. Both have
roughly similar porosities, permeabilities, and stress dependences of
permeability. Comparison of the WV-5 core with other cores of about the same
age (WV-6 and the OH-6 samples) shows that gas permeability and the stress
dependence of this value are controlled by factors_ggggz‘than core age and

macroscopic fissility.
Line 29: Some of the remarks on this line are expanded below:

® OH-6/4: The first plug from this core contained a large horizontal crack
when removed from the CORAL; in fact, the plug was actually split in two
lengthwise. We were unsure of the contribution that this crack may have
made to the permeability measurements, SO a second OH-6/4 plug was cut
for the secod CORAL shale run; it gave very similar results.

® OH-6/5, OH-8: Both of these plugs showed oily discolorations along
bedding plane cracks after removal from the CORAL. Both contained
sufficient quantities of mobile liquid to shut off gas flow.

L OH-9: This core contained a very distinct and quite strong kerosene-like
oily aroma on fresh broken surfaces that dissipated in a matter of
minutes.

® Wv-6: This core contained a pnear-vertical, calcite-filled natural

fracture that was close to, but not contained in, the horizontal plug
sample. This sample also exhibited the highest porosity and permeability
of any of .the eight shale cores analyzed. This is described in more
detail below. '
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3.1 Porosity of Devonian Shale

Pore volume available to gas was measured on all the samples using a
Boyle's Law method with nitrogen gas and a pressure step from 1100 to 1200
psia. The Huron Shale cores exhibited an extremely low porosity to gas, near
or below the measurement limits of the CORAL. Measured Huron shale gas
porosities ranged from 0.15% to less than 0.10%, the measurement cutoff point
for the CORAL. The WV-6 (Marcellus Shale) core gave a gas—filled porosity of
8.67% + 0.1% at 6000 psi net stress, and a value of 9.28% £ 0.3% at a net

stress of 3000 psi.

Because the Devonian black shales of the Appalachian Basin contain coaly
organic material, it has long been suspected that there is an "adsorption”
component to a portion of the gas contained in these rocks. Adsorption is a
phenomenon by which molecules of a gas or liquid attach themselves to the
surface of an electrochemically active solid, such as carbon in coal. To
determine whether or not adsorption was indeed an important part of the gas
entrainment mechanism in Devonian shale, it was decided to repeat the Boyle's
Law porosity measurement on the Marcellus core under the same net stress but
at a lower gas pressure. Because the net stress was identical to that used
during the previous measurement, the pore volumes should come out the same if
free pore space alone was being measured. If some of the gas was being

adsorbed onto carbonaceous surfaces, however, the pore volume would appear to

‘be larger at lower pressures. The reason for this is that only a finite

number of gas molecules can attach themselves to an attractive surface of
limited area. At lower pressures, a larger proportion of the gas molecules in

the pores adsorb, and the effect is more noticeable.

As mentioned above, the first Boyle's Law measurement on the Marcellus
Shale core using nitrogen gas at a mean pressure of 1150 psia gave a porosity
of 8.67%. When this measurement was repeated with nitrogen gas using a
pressure step from 200 to 300 psia, the porosity value under the same net
stress was 15.35%, an increase of almost 7 porosity percent. This result
indicated that gas was indeed going someplace other than just into the open
pore volume of the rock. To measure this phenomenon, the following experiment

was performed on the WV-6 (Marcellus Shale) core sample only.

The nitrogen tank was removed from the CORAL and gas pressure in the

system was bled down to 1 atmosphere. A cylinder of methane was then hooked
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up, and a vacuum pump was used to draw the CORAL gas lines down to less than 3
psia. Methane was then introduced into the system at a pressure of 3
atmospheres (45 psia), which was slowly bled back down to 1 atmosphere to
purge most of the remaining nitrogen. The WV-6 core was rigged for porosity
using the Boyle's Law method and methane gas. Porosities were measured
stepwise from a mean gas pressure of 30 psia (2 atmospheres) up to a mean
pressure of 1450 psia (100 atmospheres). Net confining stress at 6000 psia

was maintained on the WV-6 core throughout this series of measurements.

The results of the WV-6 porosity measurements using methane gas are
detailed in Table 3. The second column from the right on this table shows the
apparent porosity to gas at various pressures measured with methane using a
Boyle's Law method. The gas porosity values deduced from this measurement
technique are very high at low mean gas pressures, and decrease as gas
pressures get higher. This behavior is typical of adsorption-like phenomena
 and is perhaps detailed more clearly in the plot in Figure 12. The values
measured with methane are plotted as solid black circles, and the nitrogen
measurements are included as open triangles. Each one of the porosity points
shown in this figure represents roughly 2 days of CORAL running time. Long
stability times were necessary during each measurement ﬁo permit'the full
amount of gas to "adsorb.” In addition, small amounts of methane were
continually diffusing into the Viton synthetic rubber sleeve used to confine
the core and an additional waiting period was needed until this "background
slope" became stable. As such, the data points plotted along the dashed line
in Figure 12 took nearly 3 weeks to measure, and although we would have liked
to have made additional measurements of this type on some of the other shale

cores, we were restricted by time constraints under the contract.

Nevertheless, the data points plotted in Figure 12 do provide some new
insights into the potential of eastern Devonian shale as a natural gas
resource. To assess the potential gas content of the Marcellus Shale core
from WV-6, the apparent porosity values in Figure 12 were converted to volume
of methane at standard temperature and pressure (60°F and 14.7 psia) per
volume of rock per psi of gas pressure. This is plotted in Figure 13 on the
vertical axis as vol/vol/psi on a log-log scale against absolute methane
pressure on the horizontal axis. The diamonds on this graph represent the
actual points measured on the Marcellus Shale, while the solid line represents

the calculated function vol/vol/psi = (0.224)P1/2, where P is absolute methane
40
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pressure. As is obvious from the figure, the measured data points fit this
square root function quite closely. It should be stressed that this is not an
adsorption curve, but rather some unknown mechanism responsible for entraining
large amounts of gas in an adsorption-like manner. Adsorption of gas is
described in coal studies as a fractional function of pressure, not a square
root function. Integrating the function presented in Figure 13 over the
pressure points measured gives the gas content of the rock in volume/volume
versus pressure.’ This is plotted in Figure 14 and listed for each porosity
measurement in the right-hand column of Table 3.

Table 3. POROSITY OF MARCELLUS SHALE

(Measured by Boyle's Law Method Under 6000 psia Net Confining Stress Using
’ Methane Gas at 90°F)

Nominal Press. Mean Gas Press. Boyle's Law Gas Gas Content™
Step (psia) (psia) (atm) Porosity (%) (SCF/ft3)
25 - 35 30 2.0 54.62 2.45 vol/vol
35 - 50 43 2.9 50 .67 2.94
50 - 70 60 4.0 42 .40 3.47
70 - 100 85 548 36.95 4.13
100 - 150 125 8.5 30.83 5.01
150 - 250 200 13.6 23.89 6.34
250 - 350 300 20.4 18.73 ' 7.76
350 - 450 400 27 2 15.25 8.96
450 - 550 500 34.0 13.54 10.02
650 - 750 700 47 .6 11.11 11.85
900 - 1000 950 64.6 9.05 13.81

1150 - 1250 1200 8l.6 8.02 15.52

1400 - 1500 1450 98.6 7.13 17.06

*Gas content = volume of gas at standard temperature and pressure per volume
of rock given for each value of mean gas pressure: Calculated from vol/vol =
0.448 X P1/2,

The integrated function used to calculate these values is vol/vol = 0.448 X
Pl/2 where P is the mean absolute gas pressure. The gas content values in
Table 3 get quite impressive at pressures above 1000 psia. According to
Albert Yost, Eastern Gas Shales Program Manager at METC, the measured initial
reservoir pressure of the Marcellus Shale in WV-6 was 3500 psia, which is
close to the hydrostatic pressure gradient for the interval tested.
Unfortunately, the Marcellus Formation is no longer accessible in this well
due to caving problems and the plugback/recompletion treatment needed to solve
them. Using the initial reservoir pressure given in 1984 by Yost as the value
P in the above equation results in a potential in-situ gas content of the
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Marcellus Shale of 26.5 SCF of gas per cubic foot of rock. This is a large
amount of gas for a Devonian shale, over 10 times the average value assumed by
the National Petroleum Council in their 1980 shale gas resource base

estimate. 1In addition to the large potential gas content, the WV-6 core also
exhibited a fairly high permeability to gas. Although the gas permeability
shows a strong stress dependence (Figure 15), it is still better than 5
microdarcies at full reservoir drawdown. For a tight, unconventional gas
reservoir, this is exceptional and far more optimistic than previously

thought.

3.2 Permeability of Devonian Shale

Permeability to gas in tight rocks is commonly reported as the value K,
from the Klinkenberg (1941) equation:

K = K, (1 + B/P) (1)

where K is permeability to gas at mean pressure P, K, is the permeability to
an ideal gas at infinite pressure, and B is a constant derived from the slope
of the Klinkenberg plot. A Klinkenberg plot (as shown in Figure 15) is a
graph of gas permeability as a function of the reciprocal of gas pressure. In
these plots, low pressure points are to the right and infinite pressure is at

the y-axis. Thus, K, is the y-axis intercept of the sloping line.

The reason that permeability data from tight rocks are plotted in this
manner is due to the "Klinkenberg effect,"” which is also known as “gas
slippage.” This effect is visible as an increase in permeabili;y at reduced
pore pressures, when empirically one would expect the permeability to
decrease. The current idea used to explain this effect is that in rocks with
very small pores, the mean free path of a gas molecule is equal to or greater
than the size of a pore throat opening. Interactions between the gas
molecules and the pore walls actually help move the gas molecules forward in
the direction of flow. At lower gas pressures, the molecules collide less
with one another and the effect is enhanced. This effect is insignificant in
conventional reservoir rocks with large pores, but it is real and measurable
in low permeability porous media and must be accounted for when handling the
data. (Klinkenberg plots for all shale cores measured by IGT are located in
Appendix A of this report.)
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To measure and work with Klinkenberg permeability data from tight rocks,
one very important assumption must be made: All of the observed permeability
effects are a function of gas pressure and pore geometry only. Klinkenberg
plots are of almost no use in situations where a mobile liquid phase is
present in pores along with the gas phase. Mobile liquids are affected by
capillary forces and cause pore throat blockage, exerting a much stronger
influence on gas permeability as a function of pressure than does the
Klinkenberg effect. The unusual behavior of the lower Huron core samples,
observed when trying to measure Klinkenberg permeability, led to the suspicion
that a mobile liquid was present in the pores of these shales as described

below.

To flow measurable amounts of gas through the lower Huron cores, a
variety of moderate to high pressure~differentials were employed. Although
permeability is normally independent of differential pressure, many of the
lower Huron cores exhibited a change in permeability with a change in AP. An
example of this odd behavior is shown for the lower Huron Shale core from EGSP
OH-8 in Figures 16 to 18. These graphs show the results of a measurement on
this core in which permeability data were taken continuously as differential
pressure across the core was gradually reduced from 87 pSid to less than 10

psid.

Figure 16 shows the permeability of the OH-8 core during the first 6
hours of the experiment. Differential pressure during'this time dropped from
an initial value of 87 psid down to about 50 psid. Permeability began at
essentially zero, but as mobile liquid was drained from the pores by the gas
pressure, permeability gradually increased under the continued high AP,
leveling off at about 0.1 microdarcy. The permeability increase was
undoubtedly due to liquids being displaced from the pores by the high gas
pressures. This "drainage stage” of liquid movement out of the core occurs
only when gas pressure exceeds the capillary pressures of the liquid and
continues to the point of irreducible fluid saturation where there is no
loﬁger a continuous mobile liquid phase in the pores. At this point, higher
and higher pressure drops will not displace any more liquid, and permeability
is independent of differential pressure. This appears to be the reason why

the curve in Figure 16 levels off at about 0.1 microdarcy.

Figure 17 shows the permeability of the OH-8 core as the differential
pressure continued to fall off. Zero time on the left is at 50 psid and marks
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the continuation from the right-hand edge of Figure 16. Permeability began at
about 0.1 microdarcy, but then gradually dropped to zero. It appears that the
previously displaced liquid was imbibed back into the pores and began blocking
gas flow paths in response to the continued lowering of differential

pressure. This "imbibition stage” of liquid movement into the core occurs
when gas pressure is less than the capillary pressure and cannot prevent the

capillary forces from drawing liquid into the pores.

Figure 18 ig another graph of the same data. In this case, permeability
is plotted against differential pressure. Permeability ranges from O to 0.12
microdarcies on the vertical axis, while differential pressure ranges from 0
to 90 psid on the horizontal axis. A net confining stress of 3000 psia was
maintained on the rock throughout this experiment. Mean gas pressure in the
rock pores was 1100 psia. The experiment began at 8:30 a.m. on September 13,
1984, as the differential pressure across the plug was gradually reduced from
87 to 8 psid over a period of 33 hours. The drainage phase of permeability is
represented in Figure 18 by the right leg of the arch-like curve, and the

imbibition phase is represented by the left leg of the arch.

Although only the OH-8 core was used for the example of odd permeability
behavior described above, all of the lower Huron Shale cores analyzed in the
CORAL showed this liqluid drainage—imbibition effect on gas permeability to a
greater or lesser degree (see Appendix B). The only phenomenon that
adequately explains this odd behavior is the presence of a mobile liquid in
the pores. If the rock samples had not been dried in a relative humidity oven
prior to analysis, we would surely have expected the mobile liquid to be
water. However, the shale cores were dried to constant weight at 60°C under
45% relative humidity. This removes all free pore water while retaining
proper clay hydration. 1In several thousand permeability measurements made on
tight sandstone cores dried to these conditions, we have never obtained any
data indicating the presence of mobile water in the pores. In addition, the
sparse drilling and production records available for Devonian shale gas wells
do not mention the occurrence of water flowing into the wells during
production. The onset of water production in low permeability Rocky Mountain
tight sand wells is a sign that gas production from the well will soon
ceases Recordsvof Devonian shale wells of similar permeability "watering out”

are, on the other hand, extremely rare, and indicate that these shales do not
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contain enough free water to form a mobile liquid phase. Despite this, our
1ab results show clearly that a mobile liquid in the pores is- interfering with

gas permeability in the Huron Shale.

Based on this evidence, we hypothesized that the mobile liquid in the
lower Huron Shale cores was not water, but petroleum. In addition to the
above observations suggesting a lack of water, there were several other pieces
of evidence to suggest the presence of oil:

@ Many of the lower Huron cores, particularly the OH-8 and OH-9 samples,
gave off a kerosene-like sweet hydrocarbon aroma on freshly broken
surfaces. The scent was quite ephemeral and disappeared in a matter of
minutes. Cores over 5 years old that had not been sealed in air-tight
containers still contained the oily aroma on fresh breaks.

® Although reports of water flowing into Devonian shale wells are quite
rare, reports of oil are not. 0il shows are common in Devonian shale
core, and commercial levels of oil production have been reported from

Devonian shale wells in West Virginia (Northeast 0il Reporter, February

1984).

To determine whether or not oll was actually present in the lower Huron
Shale cores, several tests were performed by IGT Analytical Chemistry
Laboratory. A ground-up sample of Huron Shale from EGSP OH-6/5, known to
contain a mobile liquid phase, was compared against a similar sample of
Marcellus Shale from EGSP WV-6. The Marcellus core showed classical
Klinkenberg permeability behavior in the CORAL and was considered to be free
of any significant liquid phase. Both ground samples were washed in methylene
chloride solvent that contained a "tag"” of 140 parts per million CysHgge
Chromatograms were then made of the solvent samples; the results for the OH-
6/5 sample are shown in Figure 19. The liquid extracted from the lower Huron
Shale consisted of light, paraffinic petroleum, similar in composition to most

Pennsylvania-grade Appalachian Basin crudes. The Marcellus Shale chromatogram

contained no peaks other than the solvent and tag.

As an additional check that this liquid was truly mobile, the downstream
end caps and gas lines on the CORAL coreholders were flushed with 10 ce's of
tagged methylene chloride at the end of the second Devonian shale run.
Chromatography of the flushed solvent revealed the presence of small but
measurable amounts of light paraffinic crude oil in the end caps and gas lines
downstream of the lower Huron plugs (OH-6/4, OH-6/5, and OH-8). No oil was
measured in the solvent flushed through the WV-6 (Marcellus) coreholder lines.
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Because of the mobile oil present in the pores of the lower Huron Shale
samples, matrix permeability to gas is extremely low in most cases.
Klinkenberg plots are not useful for these cores because the lines are a very
poor fit to the points due to the mobile liquid, and many times have negative
slopes (see Appendix A). The presence of oil in the pores also explains the
low porosity to gas measured in the lower Huron, and this discovery suggests
that the formation may well prove to be more useful as an oil shale than as a

marginal gas shale.

3.3 Pore Structure of Devonian Shale

The results obtained from the shale core analysis performed under this
contract provide some new insights into the pore geometry and microscopic
structure of eastern Devonian gas shales. Shale is made up of two primary
components: very tiny (<0.005 mm) quartz grains, more or less spherical in
shape, mixed in with and layered between discontinuous sheets of thin clay
flakes. The pore structure of sandstone may be represented by a jar full of
glass beads, but the pore geometry of Devonian shale is more analogous to a

pile of newspapers interleaved with ball bearings.

Eastern Devonian gas shales were laid down as muddy sediments on the
floors of inland seas over 350 million years ago and fall into two broad
categories based on color. Black shales were deposited in anoxic bottom water
containing some anerobic bacteria and little else. As a consequence, most of
the organic matter present at deposition was retained, giving these rocks
their characteristic brownish-black color. Gray shales, on the other hand,
were deposited in oxygen-rich bottom waters containing numerous organisms that
lived on or in the sediments and fed upon the organic matter in the mud.
Differences between the depositional environments of gray and black shales not
only affected the types and numbers of organisms living on and in the
sediment, but also had consequences with respect to pore geometry and
microscopic structure of the resulting lithified shale. As the clay settled
out of the water as sediment, the individual flakes tended to orient
themselves in a horizontal plane, coming to rest flat side down. In bottom
waters that were anoxic, the muddy sediments did not contain any burrowing or
browsing organisms, and the horizontal orientation of the clay flakes remained
undisturbed. T@e presence of oriented clays in organic-rich, black shales has

been reported by O'Brien and Demaris (1982) and is easily photographed at
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relatively low magnification with a scanning electron microscope

(Figure 20). Organic-lean gray shales, on the other hand, confained numerous
creatures of various sizes living on and in the soft mud. The daily
activities of these creatures churned up and disturbed the soft muddy

sediments, causing the clay flakes to pile together in a random orientation

_which is also visible under a scanning electron microscope, as shown in

Figure 21.

Some specific details about the pore structure in the Devonian shales
tested by IGT were derived from the core analysis data. The Klinkenberg “B,”
which is a constant derived from the slope of the Klinkenberg plot of measured
permeabilities (see Section 3.2) can be used to calculate the characteristic
dimensions of flow paths in the core samples (Randolph, Soeder, and Chowdiah,

1984).

In Figure 20, it is apparent that the pore structure of Devonian black
shale consists of narroﬁ slot-like openings between clay flakes, as opposed to
the rounded, triangular pores formed by spherical sand grains. Assuming that
an individual shale "slot pore” is shaped like a uniform, rectangular tunnel,
the following dimensions can be identified: length is the slot dimension
parallel to flow, height is the long dimension perpendicular to flow, and
width is the short dimension perpendicular to flow. The shortest dimension,
width, is likely to have the strongest control on gas flow, and a typical or
characteristic value for shale slot pore width can be calculated from the

Klinkenberg "B" using the equations below.

The analysis starts with the assumption that mass flow through a slot
pore of uniform width can be described by adding laminar flow to an empirical
constant and multiplying by molecular flow with the mean free path of a gas
molecule greater than the size of the opening. For a single slot of unit
height, this yields:

wl M P 4, 2mM 172 y? 2)

6= TrRT M2rC3lggr) T 4

Assuming that the entire pore volume is in slot pores, the sum of the

heights of the slots is:

(3)

=n

]
€ le
Al
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Figure 20, SCANNING ELECTRON MICROGRAPH OF ORGANIC-RICH RHINESTREET SHALE
SHOWING STRONG CLAY FLAKE ORIENTATION PARALLEL TO BEDDING
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Figure 21. SCANNING ELECTRON MICROGRAPH OF ORGANIC-LEAN CHAGRIN SHALE,
SHOWING POOR CLAY FLAKE ORIENTATION
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Combining equations 2 and 3 plus the ideal gas law and Darcy's law, and

solving for permeability: - -

k= V2o dou (2RI, (4

12 2 we M %@E

Equation 4, although somewhat more complicated, has the same form as the :
Klinkenberg equation for permeability, given earlier as Equation l. This %%
similarity can be used to relate slot width to the empirical constant "B" in b
the Klinkenberg equation, and the flow path tortuosity can be calculated from 7

the Klinkenberg permeability and slot dimensions:

142
Slot width = W = 16B° M ("2 ﬁ Ty/ (5)
_ 1,2 )
o 5/ (6)

Tortuosity = T = W (—TE—E—
o

Nomenclature for Equations 1 through 6

= cross sectional area of cylindrical rock sample (in square meters)

= empirical constant in Klinkenberg equation

= Adzumi Constant (assumed to be 0.9)

= mass flow rate (in kg/sec)

= total height of all slot pores

= permeability to gas at mean pressure P

= permeability to an ideal gas at infinite pressure

- length of sample (meters) 7
molecular weight of the gas (in kg/kmole) : 7
= yiscosity of the gas
= mean gas pressure (Pa)
= pressure drop (Pa)

= porosity (fraction)

= 3.1416 |
= gas constant = 8314 Joule/(Kmole x T)
= temperature (Kelvin)

= tortuosity (in multiples of plug length)

slaaxﬁe%'ﬁtz:ﬂ?w:‘now>
i

= mean slot width (meters)

Note that the only measured parameter in the calculation of slot width
using Equation 5 is the value of the Klinkenberg "B," Although porosity was
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considered in the derivation, neither porosity nor permeability enter into the
calculation of slot width. Thus, the calculated flow path opening is
independent of the portion of total porosity that is contained in the slot
flow path. On the other hand, the flow path tortuosity calculated in
Equation 6 is dependent upon the porosity value measured on the core.
Tortuosity is defined as the distance a gas molecule travels through the core
plug expressed in multiples of plug length. Higher tortuosity values
generally indicate poorer pore-to-pore interconnections. Although the gas
porosity measured on the Huron Shale samples was too low to provide accurate
data for tortuosity calculations, the porosity and permeability values
measured on the Marcellus Shale were adequate enough to provide the results

discussed below.

Gas flow path dimensions were calculated on the WV-6 Marcellus Shale
core, because only this sample out of all the cores analyzed had good quality
Klinkenberg data. The characteristic width of gas flow paths in the Marcellus
core is 0.05 microns at a net stress of 3000 psi and 0.35 microns at a net
stress of 6000 psi. By contrast, flow paths in tight gas sand at stress
representative of 50% drawdown are typically 0.1 micron in width. Although it
at first appears surprising that the flow path width in the shale increases
rather than decreases as net stress goes up, this behavior suggests that a
bimodal pore size distribution is present in this rock with the smaller flow
paths being squeezed off at the higher net stress. Further evidence
supporting this conclusion is gained from the flow path tortuosity
calculations: gas flowpaths at 3000 psi net stress have a tortuosity of about
4 plug lengths, while at 6000 psi net stress the tortuosity is ‘over 50 plug
lengths. This indicates the closing of many small, interconnecting pores at
high net stress, resulting in fewer and less direct pore-to-pore
connections. There are apparently a few large flow paths and many tiny ones
that give the shale a fairly high permeability and low tortuosity at low net
stress (refer back to Figure 15) and a very steep Klinkenberg slope. At
higher net stress, only the few wider flow paths are available to carry gas,

greatly increasing the flowpath tortuosity and reducing the permeability.

The gas permeability data on the Huron Shale cores were too strongly
affected by the mobile liquid in the pores to provide useful Klinkenberg

plots; however, the oil saturation of these rocks permitted the measurement of
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capillary pressures and estimates of pore size distribution therefrom. As
shown previously in Figure 17, as the differential pressure was dropped and

oil began imbibing back into the Huron Shale pores, gas perméability was

reduced in stair-step increments. This phenomenon of short-term constant
permeability during an otherwise continuous permeability drop with pressure
was interpreted as an indication that oil imbibition into pores of one size

class was completed, and imbibition had not yet begun for the next larger size

class. Thus, the capillary entry pressure and the approximate pore size
distribution could be estimated by the pressures at which permeabilities .
remained constant. The gas permeability cutoffs for a varlety of gas

pressures and confining pressures are shown for the lower Huron Shale cores in

Appendix B.

A plot of capillary entry pressure versus pore size was constructed, as

shown in Figure 22, by making a guess about the viscosity and surface tension
of the oil in the Huron Shale based on its chemical composition (insufficient
quantities were collected to permit actual direct measurements of these

values). By comparing gas permeability cutoff pressures shown in Appendix B

with this graph, pore sizes in the Huron Shale cores can be estimated.

Although the Huron Shale differs considerably from the Marcellus Shale in
terms of core analysis results and reservoir properties, the Huron appears to
share the same type of bimodal pore-size distribution with the Marcellus. The -
gas permeability cutoffs due to 0il imbibition into the Huron, as shown in
Appendix B, tend to occur primarily at two distinct pressures under each set
of net confining stress conditions. This is suggestive of two pronounced
peaks in capillary entry pressures, which is further suggestivé of a bimodal

pore size distribution.

3.4 Natural Fractures in Devonian Shale

Open and mineralized fractures were commonly observed in Devonian shale
core recovered and analyzed by Cliffs Minerals under the EGSP. Also, offset ;
observation well data from the Meigs Co. Ohio Shale test revealed a strong
directional response that has been interpreted to be the result of natural
fractures (Alam et al., 1982). These and other observations make it

appropriate to focus upon the definition of the nature of natural fractures

significant to gas production in Devonian shales.
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For the idealized case of vertical cracks with uniform width and spacing,
the éqdivalent matrix permeability in the direction of the cracks 1is given
by —

_ 108 w3
k=135~ (N

where —

k = permeability (darcies)

w

S

crack aperture (cm)

crack spacing (cm)

Also, for this idealized model the crack porosity (¢.) expressed as a
fraction is simply the ratio of crack aperture to crack spacing. Thus, crack
porosity can be related to equivalent matrix permeability and crack spacing by

the equation —

1/3
12k 7/ (8)

o =1
108 s2

c
Using Equations 7 and 8 to get a feel for the character of natural fractures
yields relationships between equivalent matrix permeabiiity, fracture spacing,
fracture width, and fracture porosity as shown in Table 4. Note that the
units in the table differ from those given for the equations above.
Specifically, crack aperture is in microns (10'6meter) and porosity is in

percent in Table 4.

Table 4 clearly reveals that the natural fractures required to provide an
equivalent matrix permeability of the order of 100 microdarcies must have very
small in-situ apertures and a very small fracture porosity. For fracture
spacing in the range of 0.1 to 100 meters, apertures are in the range of only
5 to 50 microns (0.0002 to 0.002 inches). In other words, the opening in
ideal, planar, equally spaced natural fractures would only be as great as the
thickness of a sheet of paper if the fracture spacing was tens of meters or of

the order of 100 feet.

The fracture porosity clearly must be very small compared to matrix
porosity. Indeed, for the case of 100 microdarcy-equivalent matrix
permeability, the fracture porosity is in the range of only 0.002 to 0.,00002

percent for fracture spacings in the range of 0.1 to 100 meters. For crack
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aperture as wide as the thickness of a sheet of paper, the fracture porosity
would be only about 104 percent, and the spacing would have to be on the
order of 100 feet.

The above discussion strongly suggests that significant gas-productive
natural fractures are probably not macroscopically apparent features such as
the near-vertical, calcite-filled joints observed in much of the EGSP core.
Indeed, there are questions as to whether gas-producing fractures are
horizontal or verfical in orientation; whether their maximum dimensions are
measured in millimeters, meters, or tens of meters; or whether they have any

features at all that are visible without a microscope.

Table 4. PARAMETERS FOR PARALLEL, UNLFORMLY SPACED NATURAL FRACTURES

Equivalent
Matrix Crack Crack Fracture
Permeability Spacing Aperture Porosity
(ud) (m) (microns) (%)
1 0.1 1.06 0.00106
1 2.29 0.000229
10 4.93 0.000049
100 10.6 0.0000106
10 0.1 2.29 0.00229
1 4.93 0.00049
10 10.6 0.000106
100 22.9 0.0000229
100 0.1 4.93 0.00493
1 10.6 0.00106
10 22.9 0.000229
100 49,3 0.000049
1000 0.1 10.6 0.0106
1 22.9 0.00229
10 49.3 0.00049
100 106 0.000106
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4.0 DISCUSSION OF RESULTS

The results presented in the previous section do not suppi& all the data
needed to fully understand and solve the many problems associated with
Devonian shale gas production. Clearly, more analyses of this type would add
to the data base and permit broader generalizations to be made. Nevertheless,
the laboratory measurements made on these eight cores provided enough
information to draw some new conclusions about the nature of the shale gas
resource, and to éuestion some basic assumptions about Devonian shale that
have been accepted as "facts” for years. The results presented in this report
should be taken under consideration because these types of measurements have
never before been made with this degree of accuracy on Devonian shale, and the
data are now available for the first time. Some of the implications of this

work are detailed below.

The resource base estimate of Devonian shale gas made by the National

.Petroleum Council (NPC) in 1980 used gas content values of 0.1 to 0.6 scf/cu

ft. in the calculations. These values are clearly far too low for the
Marcellus Shale. Refering back to Figure 14 in the previous chapter, even at
a pressure of only one atmosphere, for example, 1.7 scf of methane gas would
be contained in a cubic foot of Marcellus Shale, which is still more than
twice the NPC estimate. If the actual reservoir pressure in the shale is near
hydrostatic, as reported to us by A. Yost of METC (1984), the Marcellus is
capable of holding an enormous amount of gas. Even though the Marcellus is a
relatively thin unit (~104 feet thick in the MERC #1 Well, EGSP WV-6), there
are similar black shales tens or hundreds of feet thick above the Marcellus
stratigraphically in the central Appalachian Basin. If one acéepts that shale
units such as the Geneseo, Middlesex, or Rhinestreet have depositional and
diagenetic histories similar to the Marcellus, the possibility certainly
exists that these shales may contain far more gas than the NPC estimates. The
NPC Devonian shale resource base estimate was made with the best data
available in 1980, but these resource estimates should not be adhered to as if

they were gospel.

Geographic and stratigraphic emphasis of Devonian black shale research

should be shifted from the lower Huron Shale on the western edge of the
Appalachian Basin to the more thermally mature units towards the center. As
mentioned above, gas potential of shales near the center of the basin appears

to be far more promising than those on the western margin. Without exception,
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every lower Huron sample analyzed by IGT from the Ohio River area contained
mobile petroleum liquids in enough abundance to fill pores and “block gas flow -

paths through the rock. The highest gas porosity in the rock matrix of seven

lower Huron cores was 0.18%; most were below 0.10%. The lower Huron may well

be an oil shale resource in this area, but it is a very poor gas shale. EE

The age of the core samples does not appear to influence or bias the

results of the analysis, as long as the samples chosen for analysis consist of

intact, well—preéerved core segments. It is our observation that shale core

tends to develop fissility (parallel horizontal cracks) when exposed to air.

Older cores generally showed a greater degree of deterioration than fresher

cores. Cores kept sealed in cans or carefully wrapped in plastic sheeting, 1
however, were often freshly preserved after 5 years' time. The question as to

whether the age of shale core affects the results of analysis when : "
macroscopically non—fissile segments are sampled is best demonstrated by
comparison of the oldest EGSP core (WV-5) with the freshest (Moore No. 1).
Both cores have about the same composition, bulk demsity, color, and number of
plug cracks. Both have roughly similar porosities, permeabilities, and stress
dependence of permeability. Comparison of the WV-5 core with other cores
drilled at about the same time (WV-6 and the OH-6 samples) shows that gas
pefmeability and the stress dependence of this value are controlled by factors

other than core age and macroscopic fissility. ot

Our work has indicated that even though a proportion of the EGSP core has
deteriorated beyond use for porosity and permeability analysis due to improper
storage, intact plug samples can yet be obtained from a high enough percentage
of the total EGSP core footage to yield significant results. The occurrence
of pore-blocking oil in the lower Huron and the presence of the unusually high
gas potential of the Marcellus Shale were discovered after analysis of only ‘s

eight samples of EGSP core in the CORAL. No one knows what other important

discoveries remain to be made within the vast quantity of EGSP core. The

e
N

existing core, if properly analyzed, represents potential information that

could have a major impact on future gas exploration and production.

The relationship of gas productivity to shale type should be investigated

in more detail. The old EGSP notion that any black shale will produce
commercial amounts of gas provided there are plenty of natural fractures has
proven again and again to be an oversimplified view of a complex situation.

Our core analyses indicate that the black lower Huron Shale won't produce
66
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significant amounts of gas no matter how many fractures it has. The Marcellus
Shale, on the other hand, may well produce commercial quantities of gas with

no natural fractures at all.

While preparing a report on Devonian shale stratigraphy along the south

‘shore of Lake Erie, gas shows in shale wells were plotted against

stratigraphic units by Potter, Maynard and Pryor (1980). Their results
indicate that by a large margin, most of the gas shows occur in gray shales
and siltstones,_égg in the black units. A similar study by one of us
(Matthews) under GRI funding gave results comparable to, and supportive of

those found by Potter, Maynard, and Pryor.

Significant gas production from a gray shale was documented by DOE in the
ECSP OH-8 Well in Noble County, located in eastern Ohio (Cliffs Minerals
Report, 1980). A foam fracturing stimulation treatment of this well in 1980
resulted in an open gas flow of 510 Mcfd from the gray Chagrin Member of the
Ohio Shale (Horton, 1982). This production can be seen on the OH-8
temperature log feproduced in this report in Figure 5. In the black Huron and
Rhinestreet shales below the Chagrin, however, the same stimulation treatment
yielded a combined open gas flow rate of only 52 Mcfd. Analysis by IGT of a
core sample of lower Huron from this well indicated a gas permeability of only
0.194 pd at 1750 psi net stress and 0.078 ud at 3000 psi net stress. Gas-
filled porosity was less than 0.1%. With these results in hand, the low gas
productivity of the Huron Shale in EGSP OH-8 is understandable.

One of the strongest initial gas productons in any of the EGSP wells
occurred in southeastern Ohio immediately éfter coring in the OH-9 well in
Meigs County. Producton was not from the lower Huron Shale, but from just
below it in the upper Olentangy Shale (Cliffs Minerals Report, 1981). This
can be seen in the Cliffs well summary chart, reproduced in this report as
Figure 6. Unfortunately, coring was terminated 20 feet above the gas show,
although the stratigraphy, gamma and density logs indicate that the gas
occured in a gray shale, rather than a black unit. This information, combined
with IGT's discovery of mobile petroleum blocking the pores of the lower Huron
immediately above, leads to the speculation that the black Huron Shale is
acting as a caprock to trap gas in the underlying gray Olentangy Shale in
Meigs County. The notion of gas—impermeable, oily black shales acting as
stratigraphic traps for natural gas contained in intertongued gray shales

provides an explanation for observed cases of shale gas producton on basin
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margins based upon well-defined principles of geology and petroleum
engineering. If shown to be a workable concept, this idea could lead to a new
and useful exploration rationale for Devonian shale gas in the eastern United
States. The results of IGT's core analysis studies show unequivocally that
the eastern gas shale resource is considerably more complex than originally

thought in the early days of the EGSP program.

Monsanto results: The IGT shale core analyses provided no real surprises

when compared té geochemical assessments of the shale sequence performed by
the Mound Facility of Monsanto Research Corporation (Zielinski and Mclver,
1982). Figure 23 is a map by Monsanto of gas source potential in the
Marcellus Shale based on the Mound geochemical analyses. The EGSP WV-6 well
is in an area delineated as having a good source potential for natural gas;
combined with the strong gas containment abilities of the Marcellus as
measured by IGT, wells in this area ought to produce commercial amounts of

- shale gas. Figure 24 shows the potential for oil generation in the lower
Huron Shale as mapped by Monsanto from the Mound geochemical analyses.

Looking at this map, it is not at all surprising that IGT core analysis found
0il filled pores in the sample of lower Huron Shale from the EGSP 0H-8 well.
Based on our analyses from OH-6, OH-9 and WV-5, however, we feel that the
spearate contours in Ohio and West Virginia are probably connected across the
Ohio River. Although some parts of the Huron Shale presumably experienced
pressure and temperature conditions conductive to the generation of both gas
and oil, it should be kept in mind that these are very fined-grained rocks and
that any liquid in the pores, be it oil or water, will cause pore blockage and
shut off gas flow. Therefore, shales with high oil-generating potential
canmot be expected to flow marketable amounts of gas, despite the fact that
commercial quantities of gas may have been generated with the oil and may

reside also in the pores.
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5.0 CONCLUSIONS

Like most research projects, the work performed under this contract

answered a few of the long-standing questions about Devonian shales of the

eastern United States, but in the end generated even more questions. The

conclusions we reached upon completion of this project are summarized below.

1.

The lower Huron Member of the Ohio Shale from wells in southeastern
Ohio/northwestern West Virginia contains petroleum as a mobile liquid
phase in the pores. As a result, 1) matrix permeability to gas is very
low (in the tens of nanodarcies range) due to capillary blockage by the
oil, and 2) gas—filled porosity is less than 0.1% in nearly all cases.

Permeability to gas of the Marcellus Shale core at pressures bracketing
reservoir net stress was surprisingly high — ranging from 5 to 50
microdarcies but very strongly stress—dependent. Doubling the net stress
decreased the permeability by nearly 75%. Gas—-filled porosity was also
high, ranging around 10%, but with a very strong "adsorption” component.

Gas potential of the Marcellus Shale in the WV-6 core is very high. The
discovery that entrainment of methane gas in this rock varies as a square
root function of pressure appears to be responsible for the large
potential gas capacity of this rock. Initial gas contents as high as 26
SCF methane per cubic foot of rock may be possible in virgin Marcellus
Shale reservoirs.

The pore size distribution in both the Marcellus and Huron cores appears
to be bimodal in character. Typical pore sizes calculated from high-
quality Klinkenberg permeability data on the Marcellus are 0.05 microns
at a net stress of 3000 psia and 0.35 microns at a net stress of 6000
psia. This surprising result of larger characteristic pore size at
higher net stress in the Marcellus Shale is suggestive of a bimodal pore
size distribution, with small pores squeezed off at higher stress.
Capillary behavior of mobile liquid in the Huron cores suggests a similar
pore geometry.

Devonian gas shale in the Appalachian Basin is an enormously more complex
resource than previously thought. The old EGSP idea that any highly
fractured black shale will produce commercial quantities of natural gas
is overly generalized in two directions: All black shales will not
produce gas, and all shale gas 1s not produced from black shales.,
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- OH 6-4, GALLIA CO., OHIO
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i Lack of measurable gas flow through
the EGSP OH-9 core prevented construction
” of a Klinkenberg plot for this sample.
J As explained in the text, gas flow was
u blocked by o0il in the rock pores.
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. WV B, MONONGALIA CO.. W.V.

: 60.0L  7448.5 FT. DRIED @ 45% REL. HUM
v DP = 100
|+ DP = 50

3 sp.gj-< DP =20
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- L0 OP =5
-0 DP =2.5

40.0 NET Pc = 3080 PSI
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PERMEABILITY < MICROBARCIES )
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APPENDIX B. Capillary Pressure Measurements in
Lower Huron Shale )
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