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EXECUTIVE SUMMARY

This report is intended to be a reference on the mechanical
properties of Devonian shales for people conducting stimulation research
as part of the Eastern Gas Shales Project. The research involves development
~of novel stimulation techniques, such as tailored-pulse-loading, achieved by
using combinations of explosives and/or propellants, as well as refinement of
conventional stimulation techniques by varying treating materials and pro-
cedures. Evaluation of these techniques is being accomplished through a
combination of numerical simulations, laboratory experiments, and full-scale
field tests. Each of these approaches requires that the mechanical behavior
of Devonian shales be characterized. Thus, numerical data on mechanical
properties is presented herein, along with specific information on the
tectonic setting so that mechanical behavior can be interpreted in the
appropriate context.

Prior to this study, mechanical property data existed only for a
few specific localities.Attempts to develop and refine stimulation techniques
* for more general use in Devoniam shales were hampered by a lack of generic
mechanical property data. Thus, a prime objective of the current study has
been to establish wherever possible regional or stratigraphic trends in the
various properties required by stimulation research. Lithologically Devonian
shales tend to fall into two categories: gray shales and organic-rich black
shales. Two black/gray pairs, Huron/Hanover and Marcellus/Mahantango, were
selected from four localities in Pennsylvania and Ohio for comprehensive
testing. Over 130 experiments were run on these zones to determine elasticity,
fracture properties, yield and ultimate strength, and ductility. The results
of these tests and previous tests run on core from West Virginia and Kentucky
provide a basis for the following conclusions about Devonian shale mechanical
properties and their applications in stimulation research:

e FElasticity of Devonian shale matrix material showed no
strong trends with fespect to either 1ithology, locality,
or confining pressure. Gray shales tended to have a
s1ightly higher Young's modulus than black shales, but
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the difference between the averages was less than the
standard deviation of each average. More important in
determining the contrast in elasticity between black
and gray shales may be the tendency of the black shales

‘to be more highly fractured, which woild tend to lower

the modulus of black shales as a rock mass.

Ultimate strength, yield strength, and ductility all
increase with increasing confining pressure, which is
typical for most rocks. Ultimate strength and yield
strength tend to be higher for gray shales, whereas black
shales tend to be more ductile. In developing dynamic
stimulation techniques so that the peak compressive stress
stays below the yield strength, one should use a true
yield envelope and not an envelope for ultimate strength
which may be higher at higher confining pressures.

Tensile strength showed no particular trends either
regionally or lithologically, whereas fracture energy
seemed to have the most consistent trends of any material
property measured. Black shales tended to have a higher
fracture energy, and fracture energy for both black and
gray shales tended to increase with depth of burial. In
performing calculations for stimulation research, formu-
lations employing fracture energy as a measure of strength
rather than tensile strength may be more desirable.

Two promising topics for continued study are the effect
of confining pressure on fracture energy and the effect
of deformation rate on material properties.



SECTION 1. INTRODUCTION

1.1. Purpose and Scope of Study

The objective of this study has been to determine whether some
gefieric trends, efther régional or stratigraphi¢, could be“established
for mechanical propertiés of Devonian shales, or if Devonian shales were
so heterogeneous mechanically that site-specific measurements would
have to be made each time mechanical property data was required. In fact
" some trends have been found and are presented in SECTION 2 and discussed
in SECTION 3 of this report.

The present study was undertaken partly as a result of conclusions
made in an SAI report entitled "Material Properties of Devonian Shale for
StimuTlation Technology Development", (Blanton et al., 1980). The latter
report presents new data on dynamic mechanical properties needed for the
development of novel stimulation techniques,and also contains a survey
of existing material properties, including physical properties such as
density, porosity and permeability, and mechanical properties such as
static and dynamic measurements of elasticity and strength. From the sur-
vey it was found that, while the several labs working on various aspects
of Devonian shale material properties had generated a large volume of data,
with the exception of density measurements most of it was so site-specific
that regional or generic trends could not be established.

The one exception, density, was what gave some indication that in
fact trends could be established. Samples for density measurements had'
been taken from enough localities to allow correlation between density and
lithology on a regional basis. Black and brown organic-rich shales were
found to have Tower densities than gray shales on the average. This was
an important correlation because it suggested a relation between something
measurable from logs, i.e. density, and the thing ultimately being sought,
hydrocarbons. This has been a definite aid in locating potential producers,
but getting the organic-rich zones to actually produce often requires
stimulation and this is where mechanical properties begin to play an
important role.

In selecting and designing stimulation treatments for Devonian
shales, one is currently faced with the choice of making site-specific
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measurements of the properties required by the design equations, or relying
on past experience, or simply quessing. If a set of mechanical pro-
perties could be established for black and gray shales at various down-
hole conditions, this would eliminate the need for making measurements

- for each treatment design.: Mechanical properties are also important to ==~

research and development of novel stimulation techniques. In order to
optimize these techniques they must be tailored to a particular set of
mechanical properties. If that set of mechanical properties represented

the sort of generic trend discussed above™ then' the novel techniques would - - °

have regional application.

This report is intended to be a self-contained reference on
mechanical properties of Devonian shales and therefore parts of the pre-
vious repbrt on material properties must be repeated here for purposes of
completeness and comparison. However, the main focus of this report is
mechanical properties, and thus physical properties such as density,
porosity and permeability will be mentioned only in so far as they concern
mechanical properties.

To provide a statistical base for establishing trends, a certain
number of tests are required. If one considers how this number is
increased by the various permutations of Tithology, environmental pa-
rameters, regional variations, and different mechanical properties, then
one quickly realizes that some limitations and exclusions must be made
if the project is to be completed in a reasonable time. First the region
has been lTimited to the producing part of the Appalachian Basin. Devonian
shales produce gas in the I11inois and Michigan Basin, too, but this study
will be limited to the larger Appalachian Basin. Mechanical property
measurements have been limited to static measurements. Dynamic measure-
ments are useful to research on explosive stimulation treatments, and
some have already been made on Devonian shales, (Carter and 0linger, 1977,
and Blanton et al., 1980), but the results proved to be difficult to
interpret in the intermediate strain-rate range because of the anisotropic
failure of the test specimens. Also, there is some evidence that dynamic
behavior can be characterized by properties measured in static tests as
long as inertial effects are taken into account (Brace and Jones, 1971,
Young and Powell, 1979, and Blanton, 1981). Static tests have a broader



application and so this study has been limited to them. - Three types of
static mechanical tests have been run: compression tests under confining
pressure, direct-pull tensile tests, and fracture energy tests. Limits
placed on lithology, environmental parameters and regional distribution
are discussed in the following two- subsections. R

1.2. Character and Setting of Devonian Shales

Mechanical properties of rocks vary with both composition and
‘environment, and therefore in interpreting and applying the data pre-
sented in this report it is necessary to have an idea of the character
and setting of Devonian shales. Gas-bearing Devonian shales underlie a
major portion of the Appalachian Basin, as can be seen in Figure 1, and
within this region both Tithology and tectonics can be duite heterogéneous.
Nevertheless, there are regional trends that provide a framework in which
to consider mechanical properties, and these trends are the topic of this
. subsection.

" =

Shales of the Devonian occur primarily in the Middle and Upper
series with the Lower Devonian being composed primarily of Timestone. The
stratigraphic nomenclature of Devonian shales and their bounding units is
shown in Figure 2. In general the shale section is composed of gray shales

“interbedded with organic-rich brown and black shale sequences. These are
interbedded with occasional sandy and silty layers and a few thin Time-
stones. Regionally the Middle and Upper Devonian tend to be thicker in
the east where sandy deltaic wedges interfinger with the shales. The
brown and black shales occur more frequently in the central and western
portions and represent an organic mud facies that accumulated on the
western side of an epicontinental sea. The location of these organic
shales is reflected by the areas of production delineated in Figure 1.

As mentioned earlier, a correlation has already been found
between density and organic content, the black shales having a lower
density (~2.5 gm/cm3) than the gray shales (~2.6 gm/cm3), (Kalyoncu
et al., 1977, 1979, and Schmoker, 1977). If a similar correlation could
be found for mechanical properties, the task of selecting mechanical
properties pertinent to shale stimulation would be greatly simplified.
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Figure 1. Devonian shale gas production in the Appalachian Basin.
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Therefore, rather than attempt to sample all the formations shown in
Figure 2, sampling has been done on the basis of organic- content, i.e.
units have been selected that are distinctly black or gray. The
selection process is discussed in more detail in the following subsection.

Another characteristic of Devonian shales that tends to follow
the black/gray contrast is the natural fracture system. Evans (1980)
found that natural fracture frequencies show a distinct relationship to
certain stratigraphic units, specifically the Marcellus Shale, Tully
Limestone, Genesso Shale, West Falls Formation and the Lower Huron
Member. Except for the Tully Limestone these units tend to be black
and brown organic shales. When these units are capped by a
sealing unit, they are usually gas producers. The importance of the
natural fracture system in(providing the perheébi]ity necessary for pro-
duction has been discussed in numerous reports, e.g. Shumaker et al.
(1978) and Ford (1979). Natural fractures also effect the strength and
elasticity of rocks and should be taken into consideration in app]ying
Taboratory generated mechanicé] properties.

Five environmental parameters considered to have a primary
influence on mechanical properties are stress, pore pressure, temperature,
strain rate and pore fluid chemistry. For the applications being con-
sidered here, only the first three are part of the natural setting and
therefore discussion in this subsection will focus on these. The last
two are imposed in the process of drilling, completing and producing
the well.

0f the first three parameters, stress has the greatest degree
of variability in the Appalachian Basin. To specify the state of stress,
both orientation and magnitude of the mutually perpendicular principal
stresses must be given. The orientation of the principal stresses can
vary locally, particularly near faults or in areas of intense folding,
but there seems to be fairly good agreement about the regional
orientation in the Appalachian Basin (Overbey, 1976, and Sbar and Sykes,
1973). The maximum principal stress trends slightly north of east
except in the Rome trough where it trends N 459F to N 50°E (see Figure 3).
The orientation of the intermediate and minimum principal stresses are
subperpendicular and subparallel respectively to the surface at shallow
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depths since the surface is a plane of no shear stress. At greater
depths they may tend to vary more, especially near faults and folds.

Magnitudes tend to increase with depth due to the increasing
weight of the overburden which effects the vertical stress directly and
the horizontal stresses indirectly through a Poisson effect. The
principal stress magnitudes will thus be given in terms of stress gra-
dients. Thg simplest stress to determine is the vertical stress which is
given by thé well known formula for overburden:

o, = pgh

where

density
acceleration due to graviiy
depth of burial

h

Using an average density of 2.6 gm/cm3 for Devonian shales, one obtains
a vertical stress gradient of 25.5 kPa/m (1.13 psi/ft).

Theoretically the horizontal principal stresses can be determined
from pressure measurements made during hydraulic fracturing treatments, if
the created fracture is vertical. Hydraulic fractures tend to propagate
perpendicular to the least principal stress, and it is reasoned that the
pressure required to hold the fracture open is equal to the least principal
stress. During a treatment as fluid is being pumped the pressure measured
at the surface includes pressure due to friction in the pipe, perforations,
and fracture. When pumping stops the friction pressure goes to zero. The
pressure measured at this time, while the fracture is supposedly still
open, is called the instantaneous shut-in pressure (ISIP). When the ISIP
is added to the hydraulic head in the wellbore, a bottom-hole pressure is
obtained which should be equal to the pressure in the fracture. This
bottom hole pressure divided by the depth of the zone being treated is
called fracture gradient and is taken as a measure of the minimum
horizontal in situ stress, assuming the fracture is vertical. If the
fracture gradient is equal to or greater than the overburden gradient,
then it is likely that a horizontal fracture has been created. In this
case the overburden stress would be the least principal stress.

10



A wide range of fracture gradients have been reported for
Devonian shales. McKetta (1980) collected 67 measurements from Kentucky,
West Virginia, and Ohio. The maximum was 23.8 kPa/m (1.05 psi/ft), and
the minimum was 5.0 kPa/m (0.22 psi/ft) with an average of about 11 kPa/m
(0.5 psi/ft). The lower values are less than a hydrostatic head, which
is 9.8 kPa/m (0.433-p§i[ft),&so that these formations could not support
a wellbore full of watef. Three fracture gradients measured in the
Devonian shales of Gallia, Ohio, are 12.2 kPa/m (0.541 psi/ft), 14.0 kPa/m
(0.619 psi/ft), and 17.2 kPa/m (0.760 psi/ft) (Hennington, 1980) A value
of 19.5 kPa/m (0.860 psi/ft) was measured by Terra Tek for the upper gray
shale of the Huron in Lincoln County, West Virginia (Jones et al., 1977).
Calculated in situ horizontal stress gradients for six lower zones in the
same well ranged from 10.8 kPa/m (0. 475 psi/ft) to 17 9 kPa/m (0.793 ps1/ft)_
w1th an average of 15.1 kPa/m (0.665 ps1/ft) The ca]cu]ated stresses in
the organic rich brown shales were consistently lower than in the gray
shale units. The range of all the fracture gradients given above is similar
to the range for other regions, but the Devonian shales tend to have more
low values than other regions.

The'maximdm hor%zonta] b%incipa] stréséhié mbré d{ffftu1t to
determine from hydraulic fracturing because it requires a knowledge of the
in situ tensile strength of the rock, which is difficult to measure, and an
accurate measure of the breakdown pressure duking a fracturing treatment.
Uncertainties are introduced in the breakdown pressure by the fact that the
pumps are running, and so there is some friction pressure, and also by the
fact that the formation may have already been broken down in the process of
drilling and completing the well. Nevertheless Terra Tek has attempted to
measure the maximum horizontal principal stress from the breakdown pressure
in WV3 in Lincoln County, West Virginia (Abou-Sayed et al., 1978). Two
methods of calculating the stress from the breakdown pressure were used, one
using a simple tensile strength for the rock and the other employing fracture
mechanics theory. The first gave a stress of 38.1 MPa, or a gradient of.
45.5 kPa/m, and the second gave 30.3 MPa or a gradient of 36.2 kPa/m. This
was the maximum principal stress in the case where the overburden was
22.1 MPa and the minimum horizontal principa] stress was 16.3 MPa.

11.



In summary, the maximum horizontal principal stress tends
east-northeast, and at least in Lincoln County, West Virginia it is
approximately 35 to 45 kPa/m (1.5 to 2.0 psi/ft). This magnitude
has the most uncertainty associated with it because of the different
theories about how it should be calculated and because each theory
depends on accurate kn6w1edge of an in situ value of strength (tensile
strength or fracture energy) which is difficult to obtain. The other
two gradients are based on more direct and more numerous measurements
and thus are more reliable. They are 25. 5ykPa/m (1.13 psi/ft) for the
vertical intermediate stress and 10 to 15 kPa/m (O 5 to 0.7 psi/ft) for
the horizontal least principal stress.

Pore fluid pressure also influences mechanical .behavior. The.
properties of many porous rocks have been found to be a function of
effective stress as defined by the following equation:

o = S -P

where o is the effective stress, S is the total stress, and P is the pore
fluid pressure. Handin et al. (1963) stated that this effective stress
law holds as long as the interstitial fluid is inert at least with respect
to the matrix material and that the porosity distribution and permeability
are sufficient to allow pervasion of the pore pressure. The dependence

of porosity and permeability of Devonian shales on the heterogeneous

“fracture system is such that the second condition is probab]y'not met in

many cases. The magnitude of in situ pore pressure is usually very low
in Devonian shales (1.5 to 3.5 MPa or 200 to 300 psi) and thus not quite
so important in its influence as total stress. However in situations
where the pressure is raised artificially, such as during a fracturing
treatment, it should definitely be taken into account.

In order for temperature to have a strong effect on mechanical
properties it usually must vary a few hundred degrees centigrade.
Bottom-hole temperatures in Devonian shale wells 900 to 1200 m (3,000 to
4,000 ft) deep are on the order of 40°c (100°F), so tests at room temper-
ature are probably adequate to characterize shale behavior.

12
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1.3. Choice of Core for Testing

In order to meet the objectives discussed in the first subsection
it was necessary to obtain an areal and stratigraphic distribution of core
representative of Devonian shales in the Appalachian Basin. Several

" thousand feet of core were available for sampling. The problem was to

select core that would meet the distribution requirements and at the same
time be 1imited enough to allow adequate testing of each zone within the
time and budget constraints of the project.

Regionally it was desirable to have core from wells along the
trend of the Appalachian Basin as well as across it. Figure 4 shows the
location of wells from which core was obtained and one well, WV3, which
has been the subject of material property testing.in earlier reports
(Hanson et al., 1976a, 1976b, -Jones et al., 1977). Together these wells
form- two sections across the basin (B6H7-PA2 and OH9-WV3) and one along
the basin (OH7-0H8-0H9).

Stratigraphically, the most common target for Devoniah shale
wells is the Lower Huron Member or its stratigraphic equivalent. It
is a black shale with a relatively high organic content and radioactivity
as seen on gamma-ray logs. For purposes of comparison, core from an
adjacent gray shale was needed. The Huron shale is overlain by the
Chagrin shale which is predominantly a gray shale; however, locally it
interfingers with black Huron-1ike shales and cannot be counted on to
have a consistently low organic content. The Hanover shale, which
underlies the Huron did show a consistently low radioactivity on the
gamma-ray logs indicating a Tow organic content. Thus, the Lower Huron/
Hanover was selected as a black/gray péir for mechanical property testing.
The Lower Huron pinches out on the eastern side of the basin and was not
encountered in PA2. A black shale that was encountered in PA2 in addition
to several others, was the Marcellus shale. This is overlain by the gray
Mahantango shale, and so the Marcellus/Mahantango was selected as a
second black/gray pair for study. Figure 5 shows depth and stratigraphic
relationships among the selected wells.

13



OH7 o |
. PA
oH " ? -
j( o PA2
OH8 © / L_______I_._;‘\:_:./‘-{___
OH9 o y
Ny oo~

VA

KY \\_ }l

Figure 4. Location of wells from which core was obtained for
mechanical property testing.

14



*Sauoz pa|dues 404 suoiiedd yzdsp pue orydeuabLieals °g aunbi

(34 96%L) w 5822

By

(33 2e€L) w 5622

4

(34 pPTL) W 2412

SN| L2948y

obuejueyey

wg

(34 80£2)

(33 2292)

(24 6852)

(24 ¥822)

(34 2512)

(34 62L1)

w 28
w 418

w 68/

w 969 (34 009g) w £60T

J9A0URH
w 969 (34 £/¥€) w 0901 (34 16€€) W HE0T
uouny
w /25 (34 2¥82) W 998 (34 £962) W 406

£uno) Aueyba| |y
¢ ¥d

A3uno) |[hqunaj
L HO

A3uno) a|qopN
8 HO

A3uno) sbHLay
6 HO

15



SECTION 2.  RESULTS OF MECHANICAL PROPERTIES TESTS

_ 2.1 Compression Tests: Elasticity and Strength

>The.h1an for this set of experiments was to run compression
tests at confining pressures:of 0, 20, 40, ‘and 60 MPa (0, 2900°, 5800, -
and 8700 psi) for each zone in each well shown in Figure 5. In some
cases enough core was available to allow replication at some or all
confining pressures; however, some of the core was so friable that
four test quality specimens could not be prepared.” OnTy three specimens
could be prepared from the Marcellus of OH7 and the black Huron of OH9,
and no specimens could be prepared from the Mahantango of OH7. Only
Huron core was available from OH9, but this contained distinct gray
layers in a normally black unit, so test specimens were prepared from
both black and gray layers in order to get a comparison.

The test specimens were cylindrical with diameters of 2.54 cm
(1 in) and lengths of approximately 6.35 cm (2.5 in). Bedding ran paka]le]
to the axis of the specimens. The ends were lapped to within 0.003 cm
(~0.001 in) of parallel. Tests were run by first jacketing a specimen,
then placing it under the desired confining pressure in the radial
direction, and finally compressing it in the axial direction until failure
occurred. Axial load and axial displacement were recorded in analog and
digital form. The tests were run by a closed-loop servo-controlled system in
which the controlled variable was axial displacement. A ramp-generator was
used in the system to produce a constant displacement rate. This rate was
adjusted in each test to the specimen length so that the resulting strain
rate was always 107%s™1,

Examples of typical stress-strain curves are shown in Figures
6 and 7, which also serve to illustrate the data reduction process. The
plotted stress is differential stress, which is the axial stress minus the
confining pressure. Strain is calculated by dividing axial displacement,
corrected for shortening of the loading piston, by specimen length. After
plotting differential stress vs. strain from the digital data, a computer
calculates, records, and prints Young's modulus, yield strength, and
ultimate strength. Stress-strain curves for all the tests are contained
in Appendix A. The numerical results are presented in Tables 1 and 2.

16



*BuLpatA INOYILM dunite) BULILQLYXD SAUND ULRBUAIS-SSBJUIS © JO d|dwex]

NIB&LS

Bdl 8°BY1
BN
edd £°62

W g*gss
NO¥NH
¢HO

oes/ $p-39°]
edi B2
2620

an ax e s se uw

4y o8 oe

(X% A%

(°) HLONZMLS ILBWILTN
(+) HLONIMLS O73IA
(-) SMINTON S,9NNOA

Hld3a
NOILlbEWa04
¥ 773M

318y NIBMLS
JUNSSTId ONINIANOD
# 1531

*Q 9unbl4

Bs

Bo1

BG1

vBe

Bce

(BdW) 55315 THILINIJFALIA

17

£



NIHHLS
A%

Bdl B°GeE
Bdl 8°E@e
edD 8°0F

W 2°@s8
NO¥NH
¢HO

ves/ yp-30°1
®dl B9
8EJD

o
o ey aw . en uw

L L L ¥ — L4 L L]

€03 HLIONINLS ILHWILN
(+) HIONINLS 13IA
(=) SNINGOW S,ONNOA

Hld3a
NOILHWOJ
¥ T1aM

316y NIBd1S
JANSS3dd ONINIANOD
¥ 1531

0O

8s

a1

BST

vee

Bse

*autod pLaLtAk 9yl BULMOYS SAUND ULEAIS-SSBULS © 40 ajduex3y °/ a4nbL4

(BdW) SS31S THILININF 4410

18



e

l"!l!ll.ll:llIl.ll..l.llI.I.I.l.l.l.ll.-ul-l".llnlll.ll..l.ll.l-l.l-lll'-l|l.ll.l-l.ll.l’.Il.l.ll.ll..l.ll.l!.l.ll-l..lulll.l.'lI.I.I.l.ll.l-.ll-.!.l.l‘l-l-l.l.lll.l!-lI-Il..ll.l||||lllll’l

s

6°6S1 4181 w.mw 09 §°992¢ CHRNERN L ¥d £¢33

8°8ci UN 1*S2 114 £°46822 CHNRENE DL cYd ¥¥33
2'96 . UN AT 02 8 9422 SAT1334vN vd S+33
9°CE VN 9°81 0 L E92T SNI13JYVN ivd cvnd
64602 3 114 LA} 09 9°¢c01 - NOYNH 8HO £822
9°081 UN 1*9g 117 LAY X NOYNH 8HO 9633
9901 UN £°0¢ 0z 12501 NOYNH 8HO SEJD
0°L6 UN 8 tg 0 6°2801 NOY¥NH 8HO 9¥N3
£ v8l1 L°L8) beee 09 8°£201 NOXNH 4HO 4820
G621 62t - 0°L2 02 §°£20l NOYNH 6HO 8632
(AL 74 UN g 0°se 0 8°g£eol NOYNH KO Lvna
2:002 3 1: 1 N 0°&f ) C09 9°418 SNT324WH {HO 6933
£ g1l UN v [ 3 0¢ £°/18 SN71324v4 ZHO 993
0°09 UN [ 2l 3 0 8?18 SNT130UVN ZHO 141N
A 0°802 i°5¢ 09 0059 NOYNH ZHO 8+33
8'Gee 9°£02 8°'0¢g 09 47059 NOYNH ZHO 6233
8 612 6°%961 (798 114 1*089 NO¥NH ZHO 6¥33
8°cee ¢ 961 . 0°£f 11 0°05% NOYNH LHO £¥3d
£°602 ?°£0C {°82 11 8°8b9 NOYNH {HO %33
1°291 - UN bo9e 0t 8°059 NOdNH ZHO 8£22
£UL61 £°481 L 243 0¢ 0°059 NOYNH {HO 0833
0'8vi VN £°62 0¢ G 0s9 NOYNH ZHO ££33
6°611 UN 0°8¢ 0 0°0S9 . NOY¥MH £H0 £vno
6°9¢1 Ui 6°Ef 0 6°C8% NOYNH ZHO ornd
(BdN) HLON3YLS (edH) H19NIY¥LS (2d49) SNINGOM (edH) 34NSS53¥d (¥) H1d3d NOILVWY0J 1130 1831
JIVHILN 31 S-ONNOA ONINIANDD

*53TVHS HJ¥14 ¥0J S1531L NOISS3INIWOD 40 510834  *1 314wl

19



lll'l.lll.ll.-l.lll!nll..lI'l.!l.ll.l.llclll.l_,."l..ll.ll.l.!ll..l!!l.l.lll.l"ll(..ll.!lll..Il.l.lI.l!ll.ll.l.!.ll.ll.l.l.ll.ll.ll.l..lll..ll.l.l..ll|I.l.l.l-l.ll.l.l.l.|l.ll-.l||l.l'llll

[} 44
A 4 YA
8 801
§*8f

6°052
t'gle
A A4
(U161
6°EEC
0°¥51
§°2gl
£°48
6°8%

b eee
Go6b1
9 tot
6691
t°£s1
6611

e
1°91¢
6°661
¥°521
6°951
0°kiLl
£°011
969

0°0v

UN
UN
UN
UN

A $ 14
t0le
A 3 X4
UN
6°£fe
UN
UN
UN
Ui

6°gic
UN
9°£0¢
Ui
UN
UN

8:8s8l

b Bél
AN Y1

N

UN

UN

UN

UN

Ui

4

Nomman
s =2 = = = »
N O 0
MM

o000 N OO
- -
Oy M SO

EPD MMM D

942
£°8¢F
9°ct
LAR 4

.
-
M

™
.
iry
o}

D OQOWINIO N O oM
-

NS U™ OO O

NI NN M NN

09
0%
02
0

09
09
09
0t
ov
0¢
02

0
0
09
ov
117
0¢

0z
0

09
09
0¥
oY
114
0¢
02
0

0

v'6zie
9 geee
g°szee
preiee

0°Z%901
0°zZ901
£°0901
0°2%01
S°0%01
1*2%01
£*1901
0°2901
£°1901

?2°veol
?°veol
S veol
b 2ol
M A
§'veol

0°869
0°869
0°8S%
6°489
8°489
£°£99
£°v99
1*889
6°£S9

DONVINVHUN
OINVINVHUN
DONVINVHUN
DONULINGHYN

Y3NONVH
43INONYH
Y3NONVH
YINONVH
Y3NDNYH
Y3A0NVH
Y3INONVH
Y3IADNVH
Y3IAONYH

(AYYO)NOYNH
(AVUO)NOY¥NH

(AVNOINOYNH

(AVYD)INOYNH
(AVYO)INOUNH
(AVUG) NOUNH

Y3INONVH
43NONVH
YINONYVH
Y3NONVH
Y3NONVH
¥3AONYH
Y3AONYH
Y3NONYH
YINONYH

AL
AL
ivd
cvd

8HO
8HO
8HO
8HO
8HO
8HO
8HO
8HO
8HO

&HO
éHO
6HO
6HO
4HO
610

ZHO
LHO
ZHO
ZHO
ZHO
ZHD
£HO
ZHO
4,1

A NN
1¥3]
0%32
(3 41R]

8933
£933
8233
6933
6223
0433
1£33
0snJ
6£NJ

2932
¥932
1933
£933
0922
8¥na

LA NN
£632
6633
€833
1633
££33
(AN
S¥n3
rend

'l-‘l'l’l‘l.ll-ll-l.l..lll.l.l'lI.'.ll.l.ll-l.‘l.ll.l.l.ll..ll'-ll]-l-.ll-'.l'.l.lIlc'l.Il.l.'llll..ll-l'l:ll..ll_l.ll.l-llll.I.l.l.l'l..l.l||llll.‘l.ll-'l'lll"'l-'lll'llll

(BdW) HION3¥LS
J1VHILON

(BdN) H19N3¥LS
41312

o

(849) SAINAON
5-9NNOA

(8dH) 3¥NS534d

ONINIANDOD

(%) H1d3d

NOILYHYO4

173

"837VHS AVYO Y04 51531 NOISSIN4WOI 40 S1NS3IM

1831

AR L

20

o



g

Young's modulus is ideally the slope of the part of the
stress-strain curve representing linear elastic behavior. The computer
calculates Young's modulus as the slope of a Tinear least-squares fit
to digital points between certain limits marked by a "-" in Figures 6
and 7. These limits are picked by the computer as bounding the maximum
positive slope attained before ultimate strength is reached.

Ideally yield stress is the stress at which plastic-strain

‘begins. In rocks, plastic strain usually begins on a microscopic scale

around grain boundaries and microcracks, and its onset is difficult to
detect. In order to define yield stress for rocks, a somewhat arbitrary
definition must be adopted. In the past, (e.g. Handin, 1966) yield has
been defined as the stress at some arbitrary small strain like 0.02.
This has a defect in that is does not take into account the effect in
change of moduli for different rocks. A rock with a Tow modulus could
still be deforming elastically at 0.02 strain. Defining yield at 0.02
strain would give a deceptively low yield stress. Conversely,.a rock
with a high modulus may have already undergone significant plastic strain
by the time 0.02 strain is reached. If work-hardening were occurring, a
deceptively high yield stress would be given. To avoid this problem a
definition has been borrowed from materials science (McClintock and
Argon, 1966), as folioWs: yield strength is the stress at which a
deviation from linear elastic behavior of 0.002 strain occurs. The
computer calculates yield strength as the intersection of the stress-
strain curve and a straight line representing the least-squares fit used
to calculate Young's modulus shifted by a strain of 0.002. If this inter-
section occurs after the ultimaté strength, then NA (not applicable) is
printed for yield strength as in Figure 6. If the intersection occurs
before the ultimate strength, then the straight line representing a
shifted elastic s]opé is plotted as a dashed line, the intersection is
marked by a "+", and the value for yield strength is printed as in
Figure 7.

The ultimate strength is defined simply as the maximum
stress reached during a test. In some instances, for example when
work-hardening is still occurring at the end of a test, this may be an
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arbitrary value, but in this study all ultimate strengths were unique.
The computer picks these values, marks them with a "o", and prints them
as shown in both Figures 6 and 7.

The values obtained for Young's modulus are plotted vs.
confining pressure for.each of the nine zones tested in Figures 8A through-
8I. With the exception of the Huron from OH7 and the Huron (gray) from
OH9 there is a tendency for Young's modulus to increase with increasing
confining pressure, but only very slightly and by an amount that is of
the order of the standard deviation for all the values. There is also a
tendency for Young's modulus to be slightly lower for the black shales
than for the gray shales. The average t standard deviation (number of
values) for the black shales is 30.9 * 5.4 (24) GPa and for the gray
shales is 32.4 * 3.9 (28) GPa. This trend is not particularly strong
and locally can be reversed, as is the case in OH7 where the black Huron
averages higher than the gray Hanover.

If there are any regional trends, they are extremely weak. As
mentioned in the introduction, the basin deepens to the southeast and the
shales tend to become less organic, however this does not appear to have
any strong influence on elasticity. When Young's modulus is plotted
against depth for each confining pressure, as in Figures 9A through 9D,
no apparent trends emerge. What stands out in these figures is that
there is a relatively strong grouping independent of depth and Tithology
at Teast between 600 and 1100 m (2000 and 3600 ft). Also along the basin
there are no apparent trends, although in this direction there is no
special reason to expect any. For example consider the Huron from wells
OH7, OH8, and OH9, which are in a 1ine along the trend of the basin from
northeast to southwest. Average values of Young's modulus first increase
from 32.8 GPa to 34.8 GPa then decrease to 28.8 GPa. The standard
deviations are 3 to 4 GPa, so the only conclusion seems to be that
Young's modulus does not vary much in any direction. This conclusion
is supported by tests run in other labs on core from WV3. Table 3 shows
values generated by Terra Tek, three of which fall within the values
found in our study. The one high value of 55.2 GPa cannot be said to
represent any trend. It is simply anomalous. The only other source for
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i

elastic constants found is a study by Cremean et al., (1979) of three
wells in Lincoln County, Wesf Virginia. The average value of Young's
modulus for Devonian shale from these wells is 34.1 GPa, again within
the range of values already given.

Compressive strengths show some trends with respect to a con-
trast in black and gray shale behavior. Both ultimate and yield
strengths are plotted as a function of confining pressure in Figures 10A
through 10I. With the exception of the last figure, they are arranged
in black/gray pairs from each of four wells.

First, for three of the four pairs gray shales tend to be
stronger (Figures 10C, 10D, 10E, 10F, 10G, and 10H) with the Hanover/
Huron pairs from OH7 being the one exception (Figures 10A and 10B). This
is also apparent in the average ultimate strengths plotted in Figure 11.
The tendency for gray shales to be stronger than black shales is supported
by earlier tests run on core from WV3 (Hanson et al., 1976a, 1976b). As"

seen in Figures 12 and-13 the one gray zone tested was stronger than the
two black zones.

Second, for three of four pairs yielding begins at a Tower
confining pressure for black shales than for gray shales (Figures 10A,
10B, 10E, 10F, 10G, and 10H). The one exception is the Huron/Hanover pair
(Figures 10C and 10D), and even here the Hanover exhibits only very
slight yielding at 40 MPa confining pressure in one of two tests
(Figure 10D) whereas the Huron shows no yielding at 40 MPa (Figure 10C).

Yielding as defined in this report is an indication of
relative ductility because ductility is the ability to undergo permanent
deformation without fracture. The more permanent deformation before a
rock breaks, the more ductile it is. The fact that yielding tends to
occur at lower confining pressures in black shales suggests that the
black shales pass through a brittle-ductile transition at a lower mean
stress. Ductility also seems to increase with increasing confining

pressure. This is reflected by the divergence of ultimate strength,

which for these tests is the same as breaking strength, and yield strength
at higher confining pressures (e.g., Figure 10A). This trend is again
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corroborated by tests on core from WV3 as shown in Figure 14 (Hanson
et al., 1976a, 1976b).

2.2 Tensile Tests

Direct«bul} tensile tests were run on specimens 3.8 cm (1.5 in)
in diameter and approximately 7.6 cm (3.0 in) long. Loading was parallel
to the bedding plane. Peak loads were measured for each test, and tensile
strengths were calculated and recorded. The results are presented in Tables’
4 and 5 and plotted in Figure 15. There are no obvious trends. One might
say that there is a slight tendency for the gray shales to be stronger, but
this is reversed for the core from OH7. It is also reversed for measure-
ments made in a previous study (Hanson et al., 1976a, 1976b) on core from
WV3, as shown in Table 6 where the gray shales tend to be weaker. Another
generalization that can be made from this data is that tensile strength is
lower when tension is applied perpendicular to the bedding planes.
Additional tensile strength data from a previous study is Shown in Table 7
(Miller and Johnson, 1979). Here tensile strength was measured at different
orientations in the bedding plane, and there appears to be a slight but
consistent variation of strength with orientation.

2.3 Fracture Energy Tests

Fracture energy tests were run on rods 1.27 cm (0.5 in) in
diameter and 8 cm (~3 in) or more long. Stress to fracture the rock is
applied by a four-point bending frame, and the fracture propagates
perpendicular to the axis of the rod. To get stable crack growth the rod
is cut so that the cross-section where the fracture propagates is wedge
shaped. The crack starts at the point of the wedge and stably propagates
across it. Stable fracture propagation allows direct correlation between
the load-displacement curve for the machine and energy of fracture
(Young and Smith, 1979). These curves are contained in Appendix B. The
results of the tests are presented in Tables 8 and 9 and plotted in
Figure 16.
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Table 6.

Shale

Gray
Gray
Gray
Brown

Black

Marcellus

Tensile strength for Devonian shale from WV3,
Lincoln County, West Virginia.

Depth
(m)

945
856
898

1066, 1089

1212, 1210

Mean Tensile Strength * Std. Dev.(no.tests)

Parallel

2.47

4.07

4.65

6.24

4.83

1+

1+

I+

0.53(10)
1.3b(10)
1.13 (5)

0.72 (9)

1.83(10)

Perpendicular

2.52

2.78

1.91

I+

-+

-+

0.23 (12)

0.56 (9)

0.26 (10)
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Table 7. Tensile strength of New Albany Shale, Christian.County,

Kentucky.
Number Average
Orientation of Tensile
Samples Strength (MPa)
-60° 16 . 7.52
-30° 12 7.28
0° 14 8.04
30° 9 8.19
60° 14 8.34
90° 11 8.43

56



:

l.l].l.!..l.'.lll.l-l.ll.].]l.l.l.lI.-l'.l-i.l'.'l|..|l.ll'l.l.ll.l-l.l.(.ll-.ll.l.l.ll.l!.ll.l.!.lclll.l-.ll!.l.l-\l.!'l.l.lll.lll‘ll..lll

S(0°2E) v ovl

8" 4Gt 9°¥92Z RRERLD 2vd 45-31
£° 181 94922 SN113JUYN V4 BS-41
L1zt 8°¥922Z CURRERELL] Zvd £5-41
166 0°59zZ URRER L) Z9d 95-11
(V*8F) 8011
T4 9+2801 NOYNH 8HO B¥-41
£° 48 8° 1501 NO¥NH 8HO (y=41
0°0<1 61501 NOYNH 8HO 9%-31
6591 42801 NO¥NH 8HO S¥-41
« §°801 42801 NO3NH 8HO by-di
(9°11) 1°2¥
9° v 8°£201 NOYNH 64O 69-41
& . 9°2¢ B°£201 NONNH 6HO 89-41
Legg L8201 NOYNH 6HO 99-41
2"y 8°£201 NOYNH 6HO 69-41
y L2z 8°£201 NDYNH &HO v9-41
f g°8g L8201 NOYNH 4HO £9-41
g8y 6°£201 NOYNNH 6HO 2941
10°C ) 21
0°29 £°028 RRERNLL ¢HO 68-41
7°8¢ £°228 SN1134YH LHO 62-41
689 2228 RRERI L] HO 82-41
(B°62) 2°¢9.
9°82 17  NOYNH MO 1-11
bgf be8b9 NOYNH HO Bi-41
9°6b £*849 NOYNH ¢HO L1-41
82t y° 849 NOYNH LHO 91-41
g* b £°8¢9 NOYNH LHD Gi-41
181 £°8b9 NOYNH HO £1-41
gecs £ zv9 NDYNH HD 04-41
2°89 6°8v9 NOYAN ¢HO 6 -4l
, { W/r) (W) |
("430 *01S) *9AY AONINT 3NNLIVYS HLd3a NOTLYHYO4 173n # 1531

"S3TVHS HIV14 ¥O0J SLS3L AO¥INI 3J¥NLIVYL 40 SLINSIY °8 31EV)

57



4 f
l-"l.‘l.l.l.ll.ll.l.lll.lnll.l.ll.l.lll.l.‘l.ll.ll.l.'I-Il.-.ll!..ll.l.'l‘l!.ll-.ll..lll'l.l.l.'lllt.ll-ll.l.l-.lll'.l.ll.l.l.ll.ll.l"

CL°EE) 4°¥8 , ;
9Ly geczee DONYLNYHYN Zvd

8 -4l
2°91 £°6222 DONYVINVHYN Zvd ¢ -4l
8°06 A T4 OINVINVHUN 2vd 9 -4l
0°68 8°8222 OONYLNYHUN Tvd § -4l
. . £hel 8°8222 OINVLNVHYN 2vd v -4l
9L 0°822Z 09NV LNVHYM zvd z -dL
(8'% ) 6°08
: , vU1e 670901 JINONVH 8HO £8-41
: £°6¥ 670901 Y3INONYH 8HO 1§-41
Loey 80901 JINONVH 8HO 68-41
9° Ly 87090} Y3INONYH 8HO BE-41
¥*0S 0°1901 YINONYH 8HO 9£-41
! 0°6¥ 0°1901 YINONVH 8HD §E-41
(£*01) 8°¥l
: & 6°¥201  (AVHO)NOYNH &HO £L-31
§-cf © o 67HZOL (AYYO)NOUNH 6HO 9¢-41
"9 6°¥Z01  (AVYI)INOYNH &HO ve-31
A 6°¥201  (AVYO)NOYNH 6HO ££-31
¥l 0°GZ0L  (AVND)INDNNH 6HO Te-41
(Z'vL) Lob .
L*69 ¥ 899 Y3NONYH ¢HO vS-41
9°ve o199 YINONYH ¢HO S2-41
_ §°£f 1299 43INDNVH ZHO £2-41
L 14 bT199 YINONYH ZHD, 2e-4l
, 048 ©1Teey YINONYH  ZHO 1Z-41
£ 1y 6" 899 ¥3INDNVH ¢HO 0z-41
) ( w/ry (¥) ,
("A30 "Qi5) "9V A9Y¥3NI 34N1IVYS Hld3Q NOILYHNO4 113n # 1831

"537WHS AVYO ¥0J S1S3L AON3INT IUNLIVNY 40 SLINSIW ‘6 34VL

- o, ~ o ™ ™ 2y

58



%1% ]% I

(W) Hld3a

@St

‘ydep jo uotjouny e se s9LBuduUd BunoRUY

obedsAy °9T1 dunblL4

¢ SITHHS AUMD
SITHS AHOuTH

8gs

— B8
- G2 -
- Al

r ] w
— B8
N |
N Al

+ . m
—1 G2 m VA
. o
- M
— QSH.A
o
- mmmd”nw
- >
| o
-] gG1
1 o1



Average values of fracture energy show trends with respect to
both 1ithology and depth. For each black/gray pair from a given well
the black shale has a higher fracture energy. Also, with the exception
of 0H7 there is a trend of 1ncreas1ng fracture enerqy w1th depth.

Fracture energy for gray sha]es has been measured by Terra Tek
(Jones et al., 1977). The average value for two tests run on core from
1026 m and 1146 m is 28.7 J/m?. This falls between two averages for gray
shales at comparable depths shown in Figure 16.
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SECTION 3. CONCLUSION

3.1. Trends in Mechanical Properties of Devonian Shales

- ‘Eiaéfiéiéy of Devonian shales ghoﬁéa no ;t;dng trends with
respect to either lithology, locality, or confining pressure. Average
values of Yqung's modulus for gray shales was 32.4 GPa and for black
shales was 30.9 GPa. However it cannot be conc]uded}that gray shales
are stiffer than black shales in genefal becausé'the’féQerse was found
in several cases. For modeling purposes and many engineering applications,
the average values above may be used, but for situations that require
exact information, site-specific measurements should be made. For appli-
cations in which one is looking for a contrast in Young's modulus, it may
be safe to assume that there is not much since the above values are so
close. The difference is only 1.5 GPa whereas the standard deviations
~are 3.9 GPa and 5.4 GPa respectively.

“

Some shale units showed a slight tendency to have an increased
Young's modulus at higher confining pressures, while others remained
relatively unaffected. The lack of a strong confining pressure influence
on Youna's modulus is probably due to the low porosity (~1%, Blanton et
al., 1980) of Devonian shales. In more porous rocks, increases in con-
fining pressure raise Young's modulus. Confining pressure acts to de-
crease the porosity and increase the contact area of matrix material
which stiffens the rock. However, with low initial porosities this
effect is not strong.

The effect of natural fractures should be taken into account
when attempting to describe bulk behavior. As pointed out in the sub-
section on Devonian shale character, the black shales tend to be more
highly fractured. The presence of natural fractures tends to lower the
modulus of a rock mass. Thus, whereas the black shale matrix may be only
slightly less stiff than the. gray, fractured black shale as a mass may be
significantly less stiff. Such a contrast in moduli can affect the
design of stimulation treatments (e.g., Jones et al., 1977).
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Ultimate strength, yield strength, and ductility all increase
with increasing confining pressure, which is typical for most rocks
(Handin, 1966). Ultimate strength and yield strength tend to be higher
for grav shales, whereas black shales tend to be more ductile. This
is a relatively strong trend but may be reversed iocally. Knowledge of
the behavior of Devoniah shales under differential compressive stresses
has applications primarily in designing dynamic well stimulation treat-
ments. The ‘initial high compress1ve stresses produced by a dynamic
pulse may exceed the yield strenqth of the rock and cause p1ast1c -
deformation. Plastic deformation can reduce permeability in two ways:

first by closing fractures and second by causing a residual "stress cage"
around the borehole. In designing a dynamic treatment so that the peak
compressive stress stays below the yield strength, one would-want to:be sure
to use a true yield envelope and not an envelope for ultimate strengths,
which-may be somewhat higher especially at the higher confining pressures.

Tensile strength and fracture energy are required by the same
types of problems, although the formulation of the problems must be
different (e.g., see in situ stress determination in Abou-Sayed et al.,
1977). These parameters occur in both dynamic and static stimulation
calculations. Tensile strengths, however, have always presented a prob-
Tem in rock mechanics because they are highly variable and easily
influenced by specimen preparation and testing techniques. In this study
tensile strengths showed no consistent trends either regionally or
lithologically. Fracture energy on the other hand showed the most con-
sistent trends of any mechanical property measured in this study, both
with respect to lithology and depth of burial. Black shales tend to
have a higher fracture energy, and fracture energy tends to increase with
depth of burial. From this point of view formulations employing frac-
ture energy as a measure of the strength of a rock rather than tensile
strength may be more desirable. However, when using actual values one
may want to be careful that the effects of confining pressure are in-
cluded as an earlier study (Schmidt and Huddle, 1977) has shown that this
effect may be relatively strong.
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3.2. Future Work

One of the most promising topics for continued study is the
effect of confining pressure on fracture energy. Fracture energy data

- for Devonian shales presented in this and previous reports' trave been’

obtained at atmospheric conditions, but a superposed hydrostatic
pressure can have a strong effect on fracture toughness of rocks. In
Indiana Limestone, Schmidt and Huddle (1977) found that the critical
mode-I Stress intensity factor, Kfc;“was”found to increase 4-fould due ‘to
an increase in confining pressure from atmospheric pressure to 62 MPa
(9000 psi). Fracture energy as a material property enters into several
calculations associated with stimulation design, but if these calculations
are to be accurate they should take into account the effect of pressures
encountered in downhole situations. Compared to the other material pro-
perties of Devonian shales, fracture energy seems to have the most con-
sistent trends with respect of 1ithology and depth of burial. If these
generic trends could be extended fo include the effect of confining
pressure, they would be much more useful in stimulation research and
design.

Another area for further study that would have practical
applications is the effect of deformation rate. Experimental data on
the rate dependeﬁcy of material properties would be particularly helpful
in developing dynamic stimulation techniques. In order for these tech-
niques to be successful the stress pulse (rise time and peak load) must
be tailored to the material properties in such a way that maximum radial
fracture extension is obtained and damage due to excessive rubblization
is avoided. To be accurate this tailoring process should include the
effect of deformation rate on material properties. The most effective
way of characterizing rate-dependent behavior is by measuring linear
viscoelastic parameters such as creep compliance, C(t), or relaxation
modulus, E(t). Once one or the other of these functions is determined,
it can be used to describe stress or strain history dependence of
deformatijon, fracture mechanics (Schapery, 1975), and even plastic flow
(Schapery, 1968).
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APPENDIX A:

Stress-Strain Curves for Compression Tests
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