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A STUDY OF STEADY-STATE STEAM-WATER COUNTERFLOW
IN POROUS MEDIA

By
C. Satik, M. Parlar, and Y.C. Yortsos

ABSTRACT

Vapor-liquid counterflow in porous media arises in processes such as heat pipes,
oil recovery and geothermal systems. Previous studies analysed these phenomena
in separate contexts. This paper presents a unified description from which previous
models result as limiting cases. The analysis includes capillarity, heat conduction,
and Kelvin effects. The importance of each term to various processes is examined.
Significantly, it is found that the critical heat flux is not constant but increases with
decreasing permeability. A threshold permeability is identified below which steady
states may not exist. Analogous conclusions are reached regarding liquid-dominated

geothermal systems.



INTRODUCTION

The steady-state counterflow of a liquid and its vapor in porous media arises in
many processes driven by temperature gradients. Large scale applications involve
geothermal systems [1-4], thermal oil recovery [5], and nuclear waste disposal [6,7]
‘among others. Investigations on the laboratory scale have emphasized porous heat
pipes [8,9] and boiling processes [10-12]. All these studies share common aspects,
principally the phase change and its interplay with fluid flow, heat transfer and cap-
illarity.

Although change of fluid phase in porous media is fundamental to such routine
applications as drying [13], a precise description of the process is not presently avail-
able. Issues of nucleation, stability of equilibrium states, supersaturation and heat
and mass transfer are yet to be fully explored. Instead, the traditional approach is
taken that vapor and liquid phases individually obey Darcy’s law with saturation-

dependent permeabilities.

Steady-state vapor-liquid flows in porous media have been modeled with such
methodology for several decades [14]. Notable recent applications to steam-water
counterflow include the works by Martin et al. [15], Schubert and Straus [16], Bau
and Torrance [17], and Udell [18, 19]. The first two studies analyze the problem
in the geothermal context, by neglecting capillarity, but including heat conduction.
Udell [18, 19] considers the heat pipe version, in which capillarity predominates, but
conduction is neglected. Finally, Bau and Torrance [17] present a simplified analysis

where both conduction and capillarity are assumed negligible.

While previous studies have been instrumental in enhancing our understanding

of the counterflow process, several areas are still obscure and in need of further in-



vestigation. In the context of a heat pipe, unresolved is the role of heat conduction,
particularly as it regards the critical heat flux in bottom heating [17, 19]. The charac-
terization of the flow regime for heat fluxes lower than the critical is also incomplete.
The tacit, and unrealistic, assumption of an infinite, two-phase zone of constant sat-
uration has not been questionned. Finally, unclear is the role and the importance of
Kelvin effects in the process description. In the context of geothermal systems, the
possible existence of two systems (vapor- and liquid-dominated) has long been pro-
posed [15]. However, the question of selection of the particular regime also remains

open.

The difficulty in obtaining answers to these questions is due to the approxima-
tions inherent to the various models, and the fact that they become singular in the
region of interest. To alleviate this problem, a more detailed study is necessary. In
recognition of the fact that all the above applications represent essentially the same
problem (although temperature gradients, thus flow directions, may be of opposite
sign), a common formalism should be possible. Specific cases should then arise in the
appropriate limits. This forms the main objective of this paper. We shall consider
a complete formulation that includes capillarity, heat conduction, phase change and

vapor pressure lowering.

The flow model follows an extension of Darcy’s law using relative permeabilities,
and allows for vapor pressure lowering due to Kelvin effects. Both representations
are based on the premise of capillary control at the pore level, usually enforced for
low values of capillary and Bond numbers, and when temperature gradients are rela-
tively low. Implicit is also the assumption that pore wall curvature stabilizes vapor-
liquid interfaces. Such conditions are necessary for a process description in terms of
saturation-dependent relative permeabilties and capillary pressure functions. Precise
criteria for their validity are currently under development, paralleling recent advances

in the related problem of bubble growth in porous media by diffusion [20], where such



and other issues have been addressed.

We proceed by deriving a dimensionless representation applicable to a general
steady-state, vapor-liquid counterflow. The heat pipe and geothermal problems are
subsequently analysed in separate sections. We investigate boundary layers due to
vapor pressure lowering and heat conduction in the first case, and due to capillarity
in the latter. The nature of the critical heat flux for bottom heating in a heat pipe
problem, and its dependence on process parameters are examined in detail. Finally,
for both heat pipe and geothermal problems we identify regimes, where steady-state

counterflow may not exist.

FORMULATION

We consider the steady state, countercurrent flow of a single component, two-
phase, liquid-vapor (e.g. steam-water) system. As a result of an externally imposed
heat flux g, three regions develop [18]: Two no-flow regions (I or III in Fig. 1)
containing mostly vapor or liquid, respectively, and an intermediate two- phase region
(II), where counterflow occurs. In our notation, the space coordinate x increases in
the direction from the liquid to the vapor. The system is inclined at an angle § with
respect to the horizontal, such that when 0 < 8 < 7 vapor is at the top, while the

vapor zone is at the bottom in the other case (7 < § < 27) .

Application of a momentum balance to the fluid phases gives

k OP;, .
= e -_— 6
-k 0Py . ,
We = —#—Vk,.v (?:c— + pygsin 0) | (2)

where the relative permeabilities k,z and kv depénd on the liquid saturation, S. This
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formulation ignores viscous coupling between the two phases [21]. The two pressures

are related via the capillary pressure function

=

where the typical representation in terms of a Leverett J function was introduced.

Py — Py = P,(8) = —=J(5) | (3)

Permeability and capillary pressure functions are controlled by pore space geome-
try and topology. Typical schematics are shown in Figure 2. The residual saturation
values (St,, Sv+), below which flow of the respective phases ceases, should be noted.
Significantly, and contrary to non-condensing phases, however, the capillary pressure
is not singular at the residual values. Salient features of such properties for vapor-
liquid systems are discussed elsewhere, following a percolation approach [20], [22]. In

the ensuing use will be made of simple, although ad hoc, numerical expressions.

For the vapor pressure we take

Py = Py (T)ezp (— %PJS)) (4)

to describe pressure lowering, and use the Clausius-Clapeyron formula

Pro(@) = ProTJeas (228 (- 7)) ©

for phase equilibria. Mass and thermal energy balances complete the formulation -

pLVie + pvWwe=0 (6)
oT
pvIvWy, + qn = /\B—w (7)

To avoid unnecessary complications, all fluid properties are taken independent of P

and T. Due to different flow behavior the various regimes are examined separately.



(i) No-Flow Regions

Region I is a no-flow, mostly vapor-occupied zone, where
0<8< 85, (8)

thus k,z(S) = 0, Vi, = 0 and, from (6), Vyr, = 0 . At the residual value Sy,
bulk liquid in the pore space becomes disconnected, and bulk flow ceases. The liquid
being strongly wetting keeps hydraulic continuity in the form of thin film flow, even
for § < Si, . These rates are quite low, however, and will not be considered here.
Thus, the pressure of the vapor phase is hydrostatic and the temperature distribution

linear
Py = Pr— pygzsind (9)
T =T+ Aiqnz (10)

where Pr, Tt are constants. A saturation profile results

J(S) — i];'ln (PVO(TI + AI‘Ih""z)) (11)

Pr — pygzsind

where the dimensionless group b = ovy/RTvk parametrizes Kelvin effects. For
media of practical interest (b < 1) , the liquid is at low saturation (J(S) > 1) in
most of region i, and exists in a pendular state. Recent works [23] have thoroughly
elucidated the capillary pressure- saturation relationship in this regime. The extent
(z1) of the vapor zone I is demarkated by setting S = Sg, in (11). For b < 1, one

may approximate

Pyo(Tr + Argrzy) =~ Pr — pygz,sind (12)

which is the condition for vapor saturation, and determines the boundary of the two
regions I, II. The sharp saturation rise to the residual value S, near the boundary

(where the logarithm in (11) becomes of order b) should be noted.



Likewise, region IIl is a no-ﬂow,’mostly liquid-occupied zone, where
1-8,<5<1 - (13)

thus, kv (S) =0, szz = 0, and, from (7) , V. = 0 . Pressure and temperature
profiles are linear

PL = PIII — PLGT sin @ (14)

T = Tur + Arrgne (15)

with Prrr, Tirr appropriate constants. In contrast to region I, where a saturation
profile exists due to wettability, the bulk of region III (IIIb in Figure 1) is at S = 1.
Saturation changes are confined within a narrow sub-domain (IIla), the boundary of

which (z3) is the solution of P, = 0

Pyo(Trrr + Arrrgns) = Prir — prgessin 6 (16)

To the left lies boundary z, , obtained by taking S = 1 — Sy, , and by neglecting the
Kelvin effect

Pyo(Trrr + Arr1gnez) = Prrr — prgza sinf + _;f J(1 - Sy,) (17)

(ii) Flow Region

The region of two-phase, countercurrent flow is the most interesting. It is here,
where condensation and evaporation occur, and where the interplay between phase
change, heat transfer and capillarity is most pronounced. Saturation and temperature
profiles are descg‘ibed by two coupled equations obtained by combining (1)-(7). After
considerable algebra the following system is obtained

dr _ H(t,S)
%i— F(T,S) (18)




ds  G(7,5)

dé F(r, S)% (19)

where

H = k,z[(1 + bR,A)Ry, + sin0k,y(bRmA — R R,)] + bk,vBR,RLA  (20)
A
F = k[l + bRy A + koy K R 5] + bhey PR, A (21)

G = k,r[sin0R; + KRPR;,% + sinbk,v KR, ;_—t—] + Bk,v[sindR, + KR,,R;,%] (22)

Dimensionless notation has been used, with £ denoting distance normalized by
o/ VEkgAp, to reflect competition between gravity and capillarity, and 7 denoting
temperature normalized by a suitably chosen temperature T,. Variable A is a vapor

pressure normalized by the saturation pressure at T, and includes Kelvin effects
1
A=ezp (K(l -3)- bJ(S)) (23)

The various dimensionless groups are defined in the Nomenclature and they are func-

tions of the fluid and rock properties, with the exception of R,

qnho
Ry = —— 24
h AT, VkgAp 29

which is a measure of the imposed heat flux, and is simply related to the parameters
w or I' [18], [16]

w R, Ry _ Al py
Rn  kLvgAppy

The above constitute an initial value problem to be solved subject to appropriate

(25)

initial conditions. For the heat pipe problem [18] we shall take

'r=§-1— i S=81, at (=& (26)



where Ty = T, + Aignz1, the reference temperature T, corresponds to the (dry) end
of the vapor zone, and the integration is in the direction of decreasing ¢. For the

geothermal problem [16] we shall consider
r=1 ;3 S=1 at =0 (27)

where T, corresponds to the boundary of regions I1Ia-IIIb, and the integration is in
the direction of increasing £. Forward integration of (18) and (19) subject to (26)

and (27) uniquely determines saturation and temperature profiles.

For future reference the dimensionless vapor flow velocity Vi, normalized by

kApg/uv, is also derived

kivkoo[sinfR, — bR, A + KR Ry 4]

We = - F(r,5) (28)

It must be remarked that, for all practical purposes (b < 1), the magnitude, but not

the sign, of the angle § can be scaled out in (18), (19), and(28), by rescaling the space
variable ¢ by | sinf | and the heat flux term Ry, (or w ) by 1/ | sin8 |. Thus, it only
suffices to study the generic cases § = 7/2, 37/2.

Contrasted to the above, and excluding field-scale numerical simulators, present
models are quite simpler. The most advanced belongs to Udell [18, 19], for the heat
pipe and to Schubert and Straus [16], for the geothermal problem. These models arise
as limiting cases of the above formulation as will be shown below. To facilitate the

presentation, however, the two cases are examined separately.
I. HEAT PIPE PROBLEM

In the context of the heat pipe problem we shall investigate Kelvin and heat

conduction effects, and will explore the critical heat flux curve. For this purpose,

9



we will frequently refer to the model in [18], [19], the corresponding temperature,
satura.fion and vapor flux of which will be denoted by ©, X, and ¥, respectively. In
our notation, the analysis in [18], [19] is tantamount to taking b < 1, and KR, > 1
with Ry/R,, fixed, the latter condition corresponding to negligible heat conduction.
Indeed, at these limits, the vapor flow rate (28) reduces to

We— V¥ =w (29)

“and the saturation eqn (19) becomes uncoupled from temperature

¥ ) 1 B8 '
I___= —_—
J T sinf + w (krV + er) (30)

The above two limits delineate the validity of the previous results. The condition for
negligible Kelvin effects, b <« 1, is generally well satisfied for most porous media of
practical interest (e.g. permeabilities exceeding O(md)). Neglecting heat conduction,
on the other hand, requires K R,, >> 1 at fixed Rj/R,,, a significantly tighter restric-
tion (e.g. k> O(100 md) for the experiment in [18]). Substantial changes may result

when this condition is not satisfied, as shown in the next section.

Boundary Layer Analysis

As a consequence of the conditions b < 1, 1/ K R,, < 1 two boundary layers arise
at the ends of region II. This is evident from (29) which requires a step change in the
vapor flux, thus infinitely large evaporation-condensation rates at the boundaries. In
actuality, however, the vapor flux vanishes smoothly at the two boundaries (where

the two relative permeabilities also vanish), as can be seen from an expansion of the

full expression (28)

_ki KRy . 8§ 55
bBr?
Ve ~ (31)
a krVKﬁpRhA 3 S 1= S

10



We analyse the solution in the two regions by considering the more general case b < 1,

finite K R,,, which is widely applicable to a large class of ‘porous media.
(i) Case b < 1, Finite KR,

Here, the outer solution outside the boundary layer (superscript (o)) is obtained

by neglecting Kelvin effects in (18), (19) and (28)

~dr® Ry —kwvR,R.
d¢ KR, A
1+ krvw

(32)

ds(e) B G(—r("), S(o))
d¢ KR,A, _, s
$ O hp(lthy TEEE)

(33)

sin 0 k.y[R, + KR,,R;.%]
() _ (r02)

KR,,A
1 -+ krV (7(0))2

Near Si, the saturation (although not the temperature) gradient diverges, thus a
saturation rescaling is needed. We take the typical expansion, k,; ~ L(S — S..)",

where L > 0 is constant and n > 1, and rescale
S = Si, +b%(2) (35)

£=¢ — bz (36)

with @,x > 0 to be determined. Substitution into the full equations (18) and (19),

subsequent expansion and use of dominant balance [24], results into

a= ‘ (37)

k=1+— (38)

11



One immediately concludes that the (evaporation) boundary lajrer is of the order

1
plta, The corresponding vapor flux in the boundary layer is obtained from (28)

Vigt;)(SLr)
W= Ticon (39)
It correctly predicts the vanishing of V4, at the one end (o = 0) and the asymptotic
approach to the outer value, Vé';)(S Lr), at the other (¢ — oo) (Figure 3a). In turn,

the saturation profile can be also constructed

a.n+1
—_— = 40
o+ mri)e ez (40)
thus, the dimensionless evaporation rate m = dzz can be evaluated
f a.n-l

_— (41)
BHE[L 4+ ] |
c

where c, e and f are process constants (Appendix). A normalized plot is shown in
Figure 3b. It is noted that all evaporation takes place within the boundary layer,
_ ™n increasing from zero to a maximum value, before rapidly decaying to zero at the
end of the boundary layer (2 — +00) . The local rates intensify for smaller values of
b, for example when the permeability increases, such that the total evaporation rate
over the layer remains finite

+o0 1
1= B+ T de = —1° (42)
0

en

Of course, the latter equals the jump in the outer value V‘(,‘;)(S rr), which is discontin-

uous at Sy,.

The above analysis shows that the evaporation region is a thin layer of order

1

81T % at the interface between dry and two-phase zones, and is principally con-
trolled by vapor pressure lowering. Outside this layer in region II, Kelvin effects

are insignificant, regardless of the value of KR,,, and the process is well described

12



by the outer solutions (18), (32) and (34). In particular, the latter shows that the
vapor flux magnitude | Vy, | continuously decreases, as S increases, suggesting that
condensation occurs over the entire two-phase zone, and not strictly at the end as
normally assumed. On the other hand, local condensation rates depend on the value
of KR,,. For large values of the latter, as implicitly taken in [18, 19], condensation is
restricted on a boundary layer at the interface between liquid and two-phase zones.

This boundary layer is due to heat conduction alone.

(ii) Case bk 1, KR,, > 1, Ry/R,, Finite

In this limit, the outer solutions (@,% and ¥) are given by expressions (29) and
(30) and

d® w-—kvR,
“E "KL, )
@T rV

Under the tacit, and sufficient, assumption b < § = 1/ K R,,,, the previous analysis is
valid, and only the boundary layer near 1 — Sy, needs be considered. Now, however,
the temperature gradient also diverges. To proceed, we first note that to first-order
the boundary temperature at £; is given by the outer solution by combining (33) and

(43) and integrating across the two-phase zone

1-Sy, J'(S)dS
R =)= [ A (44)
k.y[sind + w(m + % )]

Here A = exp[K (1 — )] and it was implied that the denominator does not vanish

(see also below). Next, we rescale saturation, spatial distance and temperature as

before
§=1- Sy, —§%(2) (45)
E— & =68%2 (46)
0 =0, + §™y(2) (47)

13



to obtain with the use of dominant balance

1
a=y=— ; (48)
. _
n-l—i—;n— (49)

where m is the exponent in the permeability expansion kv ~ M(1— S — Sy,)™. The

rescaled saturation satisfies the equation

do wG
dz ~ J(1—Sv,)[1 + MGo™] : (50)

where G = A;/©2% . An analysis similar to the previous applies, and identical results
can be reached regarding condensation rates. For example, the vapor flux inside the

boundary‘ layer has the form

V) =——

— (51)

LG
which correctly predicts that V-, vanishes at 1 — Sy, (o = 0) and approaches the
asymptotic value —w in the outer limit (¢ — o00). We omit further details and
only mention that both the boundary location and the boundary temperature are
accurately approximated at large K R,, from the outer solutions. At such conditions,
vapor condensation is restricted in a boundary layer of width §'*= at the end of the

two-phase zone, and the temperature drop across the two-phase region is given by

(44), which reflects solely the interaction between capillarity and phase change.

We conclude that in the general case of practical binterest, evaporation occurs
only within a boundary layer in the vicinity of the vapor:zone, outside of which
vapor pressure lowering due to Kelvin effects can be sa.fel-y. neglected. By contrast,
condensation is driven by heat conduction and, unless § = 1/KR,, < 1, it may
not be neglected in the bulk of the two-phase zone. It is expected that in several

practical applications K R,, is not necessarily large, thus previous results [17-19] may

14



be inapplicable. The effect is most significant in the estimation of the critical heat

flux.
Critical Heat Flux

To proceed, a numerical scheme based on stiff ODE solvers was used, the inte-
gration starting from region I and consecutively marching through regions II and III.
Standard runs were carried out at the conditions of Table 1. An illustration of the
applicability of the scheme is shown in Figure 4, where temperature and saturation
profiles corresponding to the experiment in [18] (§ = x/2, b = 0.0001346,KR,, =
5184.033) are plotted. An excellent match is obtained between experimental and
theoretical predictions for the temperature profile. Lack of data for saturation does
not permit an assesment of the functional forms used for relative permeabilities and
capillary pressure. However, the plot exhibits the expected salient boundary layer
features (it must be noted that P,(0) is finite in the present model).

| Subsequently, a systematic numerical study was undertaken. In general, results
consistent with [18, 19] were obtained in the limit of large K R,,. For example, in the
more interesting case of bottom heating [19], critical heat flux values w,, were found,
such that for w/(—sinf) > w, a two-phase zone exists of a length that decreases as
w increases. This beha.vior was thoroughly analysed previously [19]. Unexplored in
past investigations, however, were the effects of KR,, and the nature of the solution

for w < w,,.

While at large KR,, (or k) the critical flux was indeed found to approach the

asymptote [19]

k.pk.v }
——— —— 52
(s + ) (52)

which is largely independent of process parameters, it was also found that w,, slowly

Wer = (—sin 6) mg,x{

15



increases with decreasing K R,, (or k), and rapidly diverges when a critical perme-
ability value k, is approached (Figure 5). This singular behavior was verified for a
host of parameter values, the standard case yielding the estimate k, = 144 md, well

within the range of natural reservoir rocks.

This interestiﬁg feature has not been noted before and may lead to significant
implications. Given a process, a critical value k; can be demarkated such that steady-
state solutions are possible for k > ks, in which case a minimum heat flux is required
(region A in Fig. 5). The magnitude of the latter is not constant, although it
approaches at large k the no-conduction asymptote (52). In the opposite case, w < we,
or k < ky, saturation and temperature profiles are ill-behaved, in a manner to be
precisely specified below, and the existence of steady-state solutions must be seriously

questionned.

The sensitivity of k, was subsequently investigated. Thermal conductivity was
found to have no effect on kj, although it significantly influences the shape and mag-
nitude of the critical curve. A sensitivity, generally weak, was observed upon an
increase in the residual saturations (which lead to a decrease of the overall perme-
abilities in the model of Table 1), the trend being a somewhat higher threshold k; at

lower residual saturations.

Most significant were the effects of capillarity and the imposed pressure P, (Fig.
6). In both cases, the threshold value varied significantly, roughly in proportion to the
square of ¢/ P, . While substantial changes in o mainly require changes in the fluid
chemistry, large variations in P, can be accomplished with relative ease. Therefore,
a wide variation in kj is possible. For the typical conditions of previous laboratory
experiments, relatively high thresholds should be expected. By contrast, k; values of

O( pd) would be obtained in typical geothermal systems involving large pressures.
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An interpretation of the critical permeability value is offered in the following.
Prior to this, numerical results for top heating are also presented. As expected, no
constraint in the process parameters exists at large K R,,. At smaller permeability
values, however, a sensitivity similar to the previous was detected and a similar
(although not as sharp) threshold k, was identified. Now; 'Steady-states are possible
for any heat flux value, if & > k;, and for sufficiently low heat flux values, w < w,,
if k < k; (region A in Fig. 7). In the opposite case (B in Fig. 7), a steady-state
counterflow may not be sustained. Sensitivity studies revealed features similar to
the case of bottom heating. Capillarity and imposed pressure P, were found to be
the most important variables. In fact, the two thresholds k; and k, were found to

practically coincide.

A pictorial schematic of the above is shown in Fig. 8, where the composite of
the critical heat flux w.. near the critical region was constructed. For the case of
top heating (0 < 6 < ), steady-state solutions are possible within the “tunnel” at
the front-left, the cross section of which expands to an infinitely large value when
k > ky. Conversely, in the case of bottom heating (7 < 6 < 27), steady-states can be
sustained only outside the “tunnel” at the back-right, the cross-section of which also

diverges when k < k;.

To analyze the critical heat flux curve, the nature of the solution for w < w,, must
be examined. We consider a representative example of bottom heating, with k=1d
and parameter values Sz, = Sy, = 0. Here the critical heat flux is wer = 0.45, a
significantly larger value than 0.306348 obtained from the estimate (52). A sequence
of (7,5) and (¢, S) trajectories are shown in Figures 9-11 for the values w = 0.1,0.4,
and 0.5, respectively. Plotted also are the level curves when the numerator in (19)
vanishes, G(7,§) = 0, a condition necessary for the change of slope in the (7,9)

trajectory.
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The first case (Figure 9) is characteristic of one kind of ill-condition, namely
the domain G > 0 is disconnected and does not extend over the entire saturation
interval. As a result, the solution trajectory changes slope at some point (A in
Fig. 9), and further penetration into the two-phase region leads to progressively
higher steam saturation and unphysically low temperatures. Previous investigators
[17], [19] have speculated that a two-phase zone of “infinite” length would develop
under such conditions. While it is true that penetration depth for a given saturation
is significantly higher (Figure 9), and in fact it should increase even more as KR,
increases (both the trajectory and the G = 0 level curve becoming steeper in the latter
case), our results show that unrealistically low temperatures and vapor pressures are
eventually reached and the two-phase zone terminates at non-physical values. We

argue against the existence of a steady-state under such conditions.

The second case (Figure 10) is characteristic of a different kind of ill-condition.
Although the domain G > 0 spans the entire saturation interval (0, 1), the value of w is
not high enough, thus the (7, S) trajectory intersects the G = 0 curve before it reaches
the end of the two-phase zone. This condition is entirely due to the finite value in
KR,,, the no-conduction model predicting no pathological behavior for w > 0.306348,

as pointed out above. By contrast, at the point of intersection A, the saturation profile
 exhibits a turning point and the ill-condition of the previous case is encountered. For
‘sufficiently large values of w, however, the two curves are at large enough distance,
such that the solution trajectory terminates at the end of the two-phase zone before
intersection, and a true heat pipe is established (Fig. 11). Smaller values in k lead
to increasingly larger critical heat flux values and, at least within a certain range of

k away from k;, the above interpetation of the w,, vs k curve applies.

While the departure of w,, from the asymptote (52) was attributed primarily to
conduction, near the critical region (k ~ k) capillarity becomes predominant. The

condition determining w,, still remains the same, namely that a turning point in the
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saturation profile develops. It was numerically observed that here, the latter occurs
at the end of the two-phase zone, where § — 1 — Sy, and k.v — 0. Substitution in
G = 0, then yields

Wer 1 [
—sinGEK'Rm (_fi-)z»l A (53)
The novel feature, however, is that now w,, becomes infinitely large as k approaches
ky, which in view of the finite value of K R,, must be attributed to the vanishing of
the vapor pressure A;. An estimate of the latter can be obtained from (18) and (19)
by taking the large w limit |

KAdr dJ kg (54)
* 12 dS ~ dS (kes + BRwy)

which is further integrated to

1-Sur k,pJ'(S)dS
R,(A; — A;) / J'(5) (55)

Sre (er + ,BkrV)
Expectedly, this is also the limit of (44) for the case of horizontal heating. Thus, the
critical threshold k, can be determined in the limit 4, < 1
o\ [ 15 dJ.  kgdS ]’ |
b (g) | (-GS 56

= (7)1 25 oz + oy (%6)
The above contains all essential features of the threshold value numerically obsefved,
notably the square dependence on the ratio /P, and the weaker effect of relative
permeabilities. The agreement between numerical and analytical results is excellent,
as illustrated in Figure 12. After additional algebra, an estimate of the critical curve
near k, may be also derived

Wer (const)

—sinf  KRn(k—ky)(In | & — Fp |)2

(57)

The latter contains through R,, the numerically observed effect of A. As noted,
conductivity does not affect the threshold value, although it influences the shape of

the critical curve.
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Identical considerations apply for the case of top heating. The onset of critical
behavior was numerically found to coincide with unphysically low temperatures, first
encountered at the end of the two-phase region. In the limit 1 € w < w,, it is easily

shown that the previous analysis holds identically.

To provide a more physical understanding, we first consider the horizontal case,
0 = 0. For negligible Kelvin and other secondary effects, the two-phase flow region
starts when the vapor becomes saturated, Py = P,. Counterflow in this region
is possible only because of capillarity. In fact, the changes in vapor pressure and

capillary pressure are interrelated

er

dPy = ————dP, 58
v er + ,BkrV ( )
As long as capillarity is not strong, the vapor pressure drop across the region is not
large 52
P.(SLr k L
Py=P,— / 5L gp, 59
v 0 ke + Bk.v (59)

and Py > 0. Problems arise when the permeability is low, such that capillarity is large
enough for the RHS to become negative. It is straightforward to show that the onset of
this condition occurs at the above threshold, k;. Below this value, capillarity imposes
large pressure drops, thus negative values for Py result with catastrophic consequences
on the temperature profile. Clearly, ky (or k:) also denotes the lowest permeability

value below which steady-state, horizontal counterflow cannot be sustained.

When the medium is inclined, gravity opposes or supplements capillary action,
depending on whether the vapor overlies or underlies the liquid. For instance, the

expression equivalent to (59) is

Py=P / PE) ke p in6 / " 14 60
V=S %r T By e+ prgsin 0 (60)
where
er + ,BRvkrV
[ T2 7T 61
er + ﬂkrV ( )
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When heating is from the top, capillary pressure is counterbalanced by adverse gravity
effects, and a two-phase region may exist even for k < k, , provided that the heat
flux is small enough. For this, it is recalled that the extent of the two-phase zone
increases as the heat flux decreases. Certainly, heat transfer is of importance here.
Opposite considerations apply for the case of bottom heating. At least near k;, gravity
~ would supplement capillarity in increasing pressure drops, with a contribution roughly
proportional to the extent of the two-phase zone. At low w < w,,, the latter is large

enough and a steady-state cannot be sustained.

One concludes that consideration of conduction and lower permeability values in
the heat pipe problem leads to unexpected, non-trivial corrections, particularly for
the case of bottom heating. The relevance of the threshold k, to heat pipe problems
cannot be discounted. A possible distinction from the geothermal problem to be
discussed in the following, is the emphasis on capillarity, a measure of which is the
parameter R,. For values of the latter of O(1) or less, the corresponding k; value
would be of the same order with the medium permeability (compare eq.(56)), and

the regimes analysed above are likely to be encountered in a heat pipe problem.
II GEOTHERMAL PROBLEM

The next part of this paper addresses the geothermal version of the steady-state,
vapor-liquid counterflow, specifically the problem considered by Martin et al. [15] and
Schubert and Straus [16] among others. Here 0 < 6 < , but the heating is from
the bottom, namely the imposed temperature gradient and heat flux are negative (in
the direction from the liquid to the vapor). As noted before, we shall take reference
values corresponding to the liquid- two-phase zone interface, where for simplicity the

value Sy, = 0 will be assumed. Integration proceeds in the positive ¢ direction, from
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the liquid towards the vapor. The condition derived in [16] is also recalled that the
underlying liquid is subcooled, hence the temperature gradient or the heat flux may

not exceed an upper limit. In our notation one obtains

R, 1

To obtain the geothermal problem from the original formulation (18)-(22), the fol-

lowing limit is considered in the absence of Kelvin effects
KR,>1 ~ (63)

With reference conditions corresponding to the top of the liquid zone the above reads

in dimensional notation
L,P,M, o

RT, ~ V&
Consistent with [15, 16] conditions (63) or (64) imply that capillarity is of secondary

- (64)

importance and sharply differentiate geothermal and heat pipe problems. To proceed
we utilize (63) in (18)-(22) and obtain

dr _ er[KRm(_'w) + KRmRvkrV]% (65
T G5 )
%? B o Sf)l a7 (66)
er[l + KRm;_TkrV]ES'
where we denoted e = 1/K R, and
A A A
G(7,S) = k.L[R + Kme;.—z' + KRmT_zk"V] + Bk.v[R, + KmeT—z] (67)

In general, G and KR,,w are of O(1) or less (compare with (62)). Thus, in the
geothermal limit ¢ < 1, solution trajectories (r,S) have constant temperature, in
regions where GG is not small, and closely follow the G = 0 curve, otherwise (Figure
13a). In the region of constant temperature, the saturation changes rapidly over an
interval of O(1) in length (which, as recalled, expresses a balance between gravity and

capillarity in the present notation). It is in this region, where capillarity influences
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the saturation profile, and which was considered a sharp interface in the previous
works [15, 16].

Significant temperature changes start occuring when the solution trajectory ap-
proaches the curve G(7,5) = 0. For the conditions of Figure 13, the latter is precisely
the vapor-dominated limit analysed by Schubert and Straus [16] for a simpler model
with straight-line relative permeabilities. As is apparent from (66), the saturation
gradient is very small (G' < 1) in this domain, thus, the extent of the region is quite
large (Fig. 13b). In the limit € < 1, the region commences at saturation 5* satisfying
G(1,5*) = 0, a condition previously derived in different notation [16]. At larger values
of €, capillarity can become important and must be also considered (Fig. 14). Here,
although ultimately attracted to the curve G(r, §) = 0, the solution trajectory shows

substantial temperature variation before the vapor-dominated region is entered.

With an approximation that rapidly improves as € diminishes, the previous anal-
ysis [16] describes the behavior of steam-water counterflow in the geothermal context
with excellent accuracy. Considerations similar to [16] were also advanced by Martin
et al. in an earlier publication [15]. While identifying the vapor-dominated regime,
Martin et al. additionally proposed the existence of liquid-dominated regions. The
present formulation readily yieldé such solutions as well. For this, it is required that
the equation G(1, S*) = 0 admits two solutions, a condition demanding higher values

in w.

At such conditions, the (7, §) diagram is divided into three regions (two far regions
with G < 0 and a middle one with G > 0) by the two branches of the curve G = 0
(Figure 15). In the present context, the proposed theory [15] can then be interpreted
as follows: Vapor- or liquid- dominated regimes commence at points A or B, respec-
tively, where G(1,5*) - 0, and they subsequently follow the respective branches of
G(r,S) = 0 (paths AV, BL, respectively). Such behavior appears consistent with
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(65) and (66) in the limit € < 1, but it is doubtful that it actually materializes.

By definition, a solution trajectory must originate form the top of the liquid zone
(point C, where G < 0), other starting conditions being impossible in a steady-state
counterflow system. This trajectory has a negative slope and rapidly approaches the
G = 0 branch to which it becomes parallel (dashed line pathd CD in Figure 15).
Somewhat similar to the heat pipe problem (Figure 9), the solution trajectory crosses
over to the middle region (G > 0), thus acquires positive slope and parallels the
branch G = 0 from the other side (note that the two curves practically coincide in
Figure 15).

While being different than that previously proposed (path BL), this solution is
not acceptable either. An inspection of (66) reveals that £ must decrease along the
path CD, contradicting the requirement that, by convention, £ increases in the direc-
tion from the “liquid” to the “vapor”. The other alternative, namely the trajectory
extending from point C in the direction opposite to D, is also rejected as it leads to
saturation values larger than one. It becomes evident that under such heat flux con-
ditions a liquid-dominated regime is not realistic, while the vapor-dominated regime
is never reached, certainly not when the starting point is the top of the liquid zone,
as assumed throughout. One is led to conjecture that steady-state solutions are not
possible for such cases, which require that the heat flux exceeds a certain value. The
latter is easily determined to be the upper bound (62). The implied contradiction

serves to reinforce the above conclusion.

A final remark is also appropriate regarding the analysis presented by Bau and
Torrance [17]. These authors examine a configuration with § = 37/2 and bottom
hea.ting (steam at the bottom, temperature gradient in the direction from the va-
por to the liquid zone), a problem analyzed in the heat pipe section. In addition

to conduction, howewier, they also neglect capillarity. Because of the latter, some
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similarities with the geothérmal problem may exist. In our formulation, their anal-
ysis corresponds to the conditions KR, > 1, KR,, > 1. By simple rearrangement,
equations (18)-(22) read for this problem

- dr | er(w + krVRv)%g'

ar . 68
ds &(r,8) % )
dS _ G(r,5) dS
& " Trhy (69)
where e = 1/K R, and
G(r,S) = (er + Bk.v)w — ke Lk.v (70)

It readily follows that despite the small capillary effects, the problem is of the same
nature as that of the heat pipe thoroughly analysed before. Thus, identical conclusions
must be reached regarding solution trajectories and the critical heat flux value, w,,,
which is the necessary lower limit for the existence of a steady-state, steam-water
counterflow. Under the implied assumption of negligible conduction, KR,, 3> 1, this

critical value coincides with the asymptote (52).

CONCLUSIONS

In this paper we have attémpted to unify the description of a diverse set of prob-
lems arising in heat pipe and geothermal contexts that contain the common mech-
anism of steady-state, vapor-liquid counterflow. The formalism introduced encom-
passes several previous studies, which arise as special cases at various limits. In
particular, a quantitative assesment of the importance of gravity, capillarity, phase

equilibria, heat conduction and Kelvin effects becomes possible.

In the context of the heat pipe problem, it was shown that Kelvin effects are

of significance only over a narrow boundary layer at the vapor-two phase boundary,
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and are otherwise negligible in the counterflow region. Heat conduction was found
to influence saturation and temperature profiles near the other end of the two-phase
region. It was conjectured that for the case of bottom heating, steady-state counter-
flow is not possible when the heat flux is below a critical value. Contrary to previous
results, the latter is constant only in the limit of large permeability. A permeability
threshold value k;, was identified, such that no steady-state counterflow can exist for
media of lower permeability. The treshold reflecis capillary effects and is mainly a

function of the imposed pressure.

The geothermal problem was similarly analysed. The results of Schubert and
Straus [16], where capillarity is neglected, were recovered as a limiting case of the
present formulation. The same limit is also applicable for the cases discussed by
Martin et al. [15]. However, the liquid-dominated regime suggested in the latter was
found to lead to non-physical predictions, and it was suggested that such a steady-
state may not be reached. It is hoped that the present analysis clarifies several of the
issues involved in steady-state, vapor-liquid counterflow, and that it may be useful as

a backbone for further studies in this area.
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NOMENCLATURE

A= Dimensionless vapor pressure.

b= Dimensionless Kelvin group.

g= Gravitional constant, [LT~2].

J= Dimensionless capillary pressure.

K= (L,M,)/(T,R), dimensionless.

k= Permeability, [L?].

L,= Latent heat, [L?T~2].

m= Dimensionlesss evaporation rate.

M= Molecular weight of water, [Mmole™).
n= Permeability exponent, dimensionless.
P= Pressure, [ML~1T-2],

gn= Heat flux, [MT"3].

R= Gas constant, [L2T~2mole *K].

R.= (kaLva)/(pV\/l;)\nTo), dimensionless.
Ri= (qno)/(AT,VkgAp), dimensionless.
Ri= p1/Ap, dimensionless.

Rp= (L, Pyo(To)pv)/(pvArrT,), dimensionless.
R,= (PV,,(T.,)\/E)/ (o), dimensionless.

R,= py/Ap, dimensionless.

S= Saturation, dimensionless.

T= Temperature, [K].

V= Volumetric flow rate, [LT!]

Greek letters :

e= 1/K R,, dimensionless.

0= Angle of inclination, degree.

A= Thermal conductivity, [MLT-3K~1],
p= Viscosity, [ML-1T?].

¢= Dimensionless distanca.

p= Density, [ML™?].

o= Surface tension, [MT 2.

7= Temperature, dimensionless.

vp= Liquid molar volume, [L%®mole~?].
w = Heat flux, dimensionless.

I'= Temperature gradient, [KL™!].
Ap = pr — pv, [ML7?].
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Subscripts :

b= Threshold
c= Capillary
cr= Critical
L= Liquid
o= Reference
r= Relative

V= Vapor
Vo= Saturation
I= Region I

II= Region II
ITI= Region III

Superscripts :

o= Quter solution
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APPENDIX

The dimensionless constants c, e, f are obtained by a straightforward analysis.
We obtain

c= ,BRpAlkrV(SLr)A (I)
1+ kv (Sp)KRn =
Ti
R,+ KR,,Rh%I—
1
®= TR, AJ(SL) (1)
f= -PBE J(S5y) € (111

where A; and 7, pertain to conditions at £;. For typical parameter values [18] and

k =1 d, we obtain the estimates

c=2469%10"% , e=280.5169 , f =3.0981x*10°
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Table 1: Typical Parameter Values

S = 0.20

Sy = 0.05

T, =171.1C

P, =15 psi

o = 58.91 dynes/cm

vy, = 18.76 cc/mole

pr = 0.9606 g/cm?®

pv = 0.0006 g/cm?®

pr = 2.824 1073 g/cm-sec
py = 1.260 10~* g/cm-sec
AI = 3.0 W/m—K

AIII =12 W/m—K

Ar—A

Arr = "i‘i_l'ﬂ(]-'—SVr"SLr)‘i”/\III
S"SLr 3

er—(l—SLr)
1-8y,—-8

ka_—( 1'—VSV )3

P, =2.24 — 2.755 + 1.352
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Figure 10. Solution Trajectories for Bottom Heating and w=0.4: Temperature vs.

Saturation (a) and-Saturation vs. Distance (b). The Solid Curves in (a) Correspond
to G = 0.
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Figure 11. Solution Trajectories for Bottom Heating and w=0.5: Temperature vs.
Saturation (a) and Saturation vs. Distance (b). The Solid Curves in (a) Correspond

to G = 0.
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Figure 12. Numerical (Dots) and Amnalytical (Line) Predictions of Threshold Per-
meabilities for Variable Pressure, Interfacial Tension, Residual Saturations and Ther-

mal Conductivities.
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Figure 13. Solution Trajectories for the Geothermal Problem and e= 0.0265275:
Temperature vs. Saturation (2) and Saturation vs. Distance (b). The Solid Curves

in (a) Correspond to G = 0.
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Figure 14. Solution Trajectories for the Geothermal Problem and e= 0.0838876:
Temperature vs. Saturation (a) and Saturation vs. Distance (b). The Solid Curves
in (a) Correspond to G = 0.
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Figure 15. Solution Trajectories for the Geothermal Problem, with Heat Flux

Exceeding the Limit (62): Temperature vs. Saturation. The Solid Curves Correspond
to G = 0.
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