
 i

 

 

 

 

 

 

History Matching In Parallel Computational Environments 

 
Annual Report 

 

 

Reporting period start date: 1 Oct. 2004 

Reporting period end date: 30 Sept. 2005 

 

 

Authors: Dr. Steven Bryant, Dr. Sanjay Srinivasan, Alvaro Barrera and 

Sharad Yadav 

 

Date Issued:  October 2005 

 

DOE Award Number:  DE-FC26-03NT15410 

 

Submitting organization: Center for Petroleum  

 and Geosystems Engineering 

 The University of Texas at Austin 

 Austin, Texas  78712-0228 
 
 
 
 
 
 
 
 
 
 
 
 



 ii

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United 

States Government. Neither the United States Government nor any agency thereof, nor 

any of their employees, makes any warranty, express or implied, or assumes any legal 

liability or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not 

infringe privately owned rights.  Reference herein to any specific commercial product, 

process, or service by trade name, trademark, or manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the 

United States Government or any agency thereof. The view and opinions of authors 

expressed herein do not necessarily state or reflect those of the United States Government 

or any agency thereof. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iii

ABSTRACT 

A novel methodology for delineating multiple reservoir domains for the purpose of 

history matching in a distributed computing environment has been proposed. A fully 

probabilistic approach to perturb permeability within the delineated zones is 

implemented. The combination of robust schemes for identifying reservoir zones and 

distributed computing significantly increase the accuracy and efficiency of the 

probabilistic approach.  

 

The information pertaining to the permeability variations in the reservoir that is contained 

in dynamic data is calibrated in terms of a deformation parameter rD. This information is 

merged with the prior geologic information in order to generate permeability models 

consistent with the observed dynamic data as well as the prior geology. The relationship 

between dynamic response data and reservoir attributes may vary in different regions of 

the reservoir due to spatial variations in reservoir attributes, well configuration, flow 

constrains etc. The probabilistic approach then has to account for multiple rD values in 

different regions of the reservoir. 

         

In order to delineate reservoir domains that can be characterized with different rD 

parameters, principal component analysis (PCA) of the Hessian matrix has been done. 

The Hessian matrix summarizes the sensitivity of the objective function at a given step of 

the history matching to model parameters. It also measures the interaction of the 

parameters in affecting the objective function. The basic premise of PC analysis is to 

isolate the most sensitive and least correlated regions. The eigenvectors obtained during 

the PCA are suitably scaled and appropriate grid block volume cut-offs are defined such 

that the resultant domains are neither too large (which increases interactions between 

domains) nor too small (implying ineffective history matching).  

 

The delineation of domains requires calculation of Hessian, which could be 

computationally costly and as well as restricts the current approach to some specific 
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simulators. Therefore a robust technique to evaluate a covariance matrix, which is 

analogous to ‘Hessian matrix’, from a set of equi-probable realizations has also been 

developed. This technique is easy to implement and provides the domains, which could 

be intuitively justified. 

 

Since the domain delineation process yields zones that are least correlated with each 

other, each rD parameter can be optimized independently and simultaneously using 

individual nodes of a cluster of computers. Further least correlation criteria help in 

retaining the simplicity of 1-D optimization during the history matching. Upon 

convergence, the perturbed regions are put together and the history match is verified. The 

proposed approach results in a set of independent tasks of equal magnitude and thus is 

particularly suited for distributed computing. The methodology has been successfully 

tested on various synthetic cases. 
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EXECUTIVE SUMMARY 

The objective of history matching is to modify a prior model for the reservoir such that 
the updated model reflects the available production data and the uncertainties in 
production forecasts are reduced. This project approaches the problem of developing a 
robust scheme for history matching with two guiding ideas.  First, the reservoir model 
that results from the scheme should be geologically plausible.  The motivation for this 
condition is that the inverse problem represented by history matching – choosing a large 
set of parameters (local values of permeability) so that a small set of data (flow rates at 
wells as a function of time) is matched – is under-constrained.  A solution to this inverse 
problem that makes geological sense is more likely to provide reliable forecasts.  The 
second guiding idea is that it must be possible to obtain insight from a computer 
implementation of the history matching in a practical length of time (e.g. overnight).  The 
time scale for decision-making in many industrial applications does not allow for lengthy 
calculations.  
 
We have implementing these ideas in this project by taking advantage of two 
technologies: a probabilistic approach for integrating production data into the reservoir 
model which maintains geological consistency and distributed computing for making the 
algorithm computationally efficient. 
 
Our probabilistic approach to dynamic data integration is based on conditional 
probability distributions that account for the uncertainty in permeability at any given 
location in the reservoir. At the beginning of the history matching process, these 
distributions embody the statistical properties of the reservoir heterogeneity as inferred 
from well logs, core samples, etc. The key idea being tested in this project is that the 
conditional probability distributions are iteratively updated during the history matching 
procedure to account for the additional information contained in the dynamic response 
data (the production histories). We have implemented this update with a perturbation 
parameter rD, that controls the magnitude of the deformation applied to the values of 
permeability in the model.  Scheme for this perturbation has been developed, yielding an 
approach that ensures a gradual deformation of the model.  This has proved to be a good 
way to maintain consistency between the model and the geological reality. To date we 
have validated this scheme on some test cases. 
  
We have extended the notion of a single perturbation parameter rD to consider a set of 
such parameters for a given reservoir.  Each parameter applies to a particular domain in 
the reservoir; the domains are non-overlapping.  This extension provides a basis for 
decomposing the flow simulation onto distributed computing platforms as well as for 
increasing the effectiveness of the perturbation scheme.  For the latter, we have used a 
sensitivity analysis.  The influence of the value of permeability at any given location 
upon the production data predicted from the forward model can be extracted from the 
simulator. We have applied a principal components analysis on these sensitivities to 
identify domains on the basis of sensitivity and least correlation. Sensitive regions 



 xvi

manner increases the effectiveness of the history matching process. The least correlation 
criterion makes the problem amenable to distributed computing and hence imparting 
efficiency in terms of computational time. Least correlation also helps in retaining the 
simplicity of 1-D optimization. The full algorithm has been successfully tested on 2D 
reservoirs.  
 
The delineation of domains requires calculation of Sensitivities, which could be 
computationally costly and as well as restricts the current approach to some specific 
simulators. Therefore we have developed a robust technique to evaluate sensitivities from 
a set of equi-probable initial realizations. This technique is easy to implement and 
provides the domains, which could be intuitively justified. 
 
We have successfully implemented an integration of all these ideas into a single history-
matching algorithm. The next phase of the research would concentrate on testing the full 
algorithm on complex 3D reservoirs within a practical length of computational time. 
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1. INTRODUCTION 

The objective of history matching is to modify a prior model for the reservoir such that 

the updated model reflects the available production data and the uncertainties in 

production forecasts are reduced. The resultant geological model must therefore not only 

reproduce production data by numerical simulation but it must also be consistent with the 

geological knowledge of the reservoir. 

 

The history matching process mainly consists of: 

1) Identifying model parameters that could be modified to effect history match. 

2) Defining a suitable objective function for the optimization procedure. 

3) Proper selection and design of an optimization technique for reducing the 

objective function to a minimum. 

4) Tracking computational cost associated with the flow simulations used within the 

selected optimization technique. 

 

Many sets of parameter estimates may yield nearly identical matches of the data. A 

decision therefore has to be taken during the history matching procedure to determine the 

set of parameters estimates that are most appropriate given prior knowledge about the 

geology. 

 

The data obtained from the field can be classified as static data or dynamic data. The 

static data do not vary with time e.g. permeability, porosity etc. while the dynamic data 

do vary with time e.g. production rates, well bore flowing pressures etc. The reservoir 

model is developed based on the available static data using geostatistical simulation or a 

geological model. History matching techniques attempt to constrain the reservoir models 

to the dynamic data. The goal of the history matching is to minimize the objective 

function that measures difference between simulator response and the observed field data. 

The objective function may be defined as follows 



 2

Q  =  (½)∑
i

∑
j

∑
k

2

2)(

ijk

simulated

ijk

observed

ijk zz

σ

−
                                                           (1.1) 

Z obs is the measured value of a flow response such as bottom-hole pressure, gas oil ratio, 

oil production rates etc. Z simulated  is the corresponding value obtained by performing a 

flow simulation on the reservoir model synthesized using the available data. ijkσ  is the 

measurement error. The index k means the type of observation data, j is the index for the 

number of wells, i is the index of the measurements dates for each well. The quantity 

ijk
2/1 σ  can be viewed as the weight assigned to the response Zijk – the larger the 

measurement error, the less the contribution of the mismatch to the overall objective 

function. In the cases studied in this report, the measurement error is assumed to be the 

same for all the observations used in the calculation of the objective function. Despite 

this simplification, the behavior of the objective function is strongly non-linear and small 

perturbation to model parameters can result in large fluctuations of the objective function.  

 

Some authors have advocated that a prior information term (or regularization) should be 

added to the objective function formulation so that geological consistency is maintained 

during history matching process. Recently it has been proposed to add a 4D seismic data 

mismatch term in the objective function (Gosselin et al. 2000). 

 

The combined objective function can then be written as: 

Q  = a* (½)∑
i

∑
j

∑
k

2

2)(

ijk

simulated

ijk

observed

ijk zz

σ

−
 + 

        b* ½ )()( 1 mean

kkp

tmean

kk yyCyy −− −
     +     ½ ))(())(( emsWems s

t −−     (1.2) 

Where  

a, b are the user’s defined weight constants, sW  is the weight matrix assigned to seismic 

data. ky  is the history matching parameter (e.g. Permeability at a given grid cell), 
mean

ky  
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is the mean of the parameter. 
1−

pC  is the inverse of the covariance matrix of permeability 

and s(m) is the seismic derived predicted values and ‘e’ are the observed seismic values. 

The first two terms in the objective function measure the production mismatch and the 

deviation from the prior geological model while the last term quantifies the deviation 

from the seismic information. During this course of study only the production mismatch 

term was used in the objective function. 

 

Multiple approaches have been considered for conditioning reservoir models to dynamic 

flow data. Trial and error optimization algorithms follow an iterative process to update 

the reservoir model applying a perturbation scheme for converging to a set of model 

parameters that yield a match to the observed flow response. Some of the most popular 

methods include gradient based methods (Yeh, 1986; Anterion, F. et al., 1989), pilot 

point methods (La Venue el al., 1992; de Marsily et al., 1995), sequential self-calibration 

methods (Gomez-Hernandez et al., 1997), Markov chain Monte Carlo methods (Omre 

and Tjelmeland, 1996) and gradual deformation methods (Roggero and Hu, 1998).  There 

are other geostatistical methods that presuppose that the permeability fields could be 

conditioned to both hard data as well as dynamic data in a probabilistic sense by using a 

Bayesian formulation for the integration. 

 

Optimization approaches upon convergence yield a deterministic reservoir model. In 

contrast, a probabilistic approach was proposed by Kashib and Srinivasan (CIM paper 

2002-125, Kashib, T. and Srinivasan, S) and was applied successfully to history-match 

several 2-D and 3-D reservoir examples. A conditional distribution representing the local 

uncertainty in permeability at a location is derived on the basis of available static and 

geologic information. The uncertainty in permeability value at the same location as 

indicated by the dynamic data is calibrated using an update parameter rD.  These 

conditional probability distributions are merged using an approach proposed by Journel 

(Mathematical Geology, V.34, N.5: 573-596, 2002 ). An updated value of permeability is 



 4

obtained by sampling from the merged probability distribution and the process is repeated 

at all locations.       

 

A methodology is developed that increases the accuracy of the probabilistic approach by 

using multiple deformation parameters in different domains of the reservoir. Since the 

deformation parameter contains the dynamic information, the definition of domains is 

based on the flow sensitivities. Furthermore, domains are defined in such a way that 

makes the probabilistic approach amenable to distributed computing resulting in 

significant savings in computational cost. The evaluation of sensitivity coefficients is 

computationally expensive. In order to make the algorithm efficient, sensitivities are 

calculated only at a few locations and interpolated to all remaining locations in the 

reservoir.  The proposed algorithm is demonstrated on a synthetic example. 
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2. VALIDATING PROBABILISTIC APPROACH FOR DYNAMIC 

DATA INTEGRATION 

  

Reservoir models are generally constructed considering subsurface geological data 

obtained from different sources (such as seismic, well logging, well tests, sequence 

stratigraphy, etc), and a geological model of heterogeneity. The prior geological model 

for heterogeneity is commonly represented in the form of a variogram model that is 

inferred from the same conditional subsurface information. These two components are 

combined within a simulation/interpolation framework to generate geological models 

conditioned to static information. 

 

Geostatistics as a geological modeling technique and its two original basis: i) the 

variogram model and ii) the kriging interpolation methodology, were initiated by the 

work of Daniel Krige (1951) and later developed by Georges Matheron (1962-1963, 

1965), with the purpose of providing locally accurate grade estimates of mining blocks; 

however, its application has extended from the mining industry to many other related 

disciplines, including the oil industry.  

 

The simple kriging (SK) estimator *

SKk  at each location ju  of the target geological model 

( )k u  (such permeability or porosity field) is the best linear unbiased estimator and can be 

written as:  

                                    [ ]*

1

( ) ( ) ( ) ( )
N

SK j i j i i

i

k m k mλ
=

− = −∑u u u u                                       (2.1) 

where, { }( ) ( ) , 1,...,j jm E k j J= =u u , are the known stationary means of the random 

function ( )jk u  at the locations ju ; J is the size of the model; ( ), 1,...,ik i N=u  are the 

conditional data; and ( )i jλ u  are the kriging weights for each conditional data at each 

location for the estimation at location ju . The weights are calculated from the following 

system of equations: 
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                                       ( ) ( )
1

( ) , 1,...,
N

k j ik ij

k

C C i Nλ
=

= ∀ =∑ u h h                                    (2.2) 

where ( )ijC h  or ( )i jC −u u  is the covariance at the lag ik i j= −h u u , considering 

stationarity; and is related to the variogram by: ( ) ( ) ( )0ij ijC Cγ = −h h  and 

( ) { })0 ( iC Var k= u  .The corresponding minimum estimation (error) variance 2

SKσ  is: 

                                    ( ) ( )2

1

( ) 0 ( )
N

SK j i j ij

i

C Cσ λ
=

= −∑u u h                                               (2.3) 

Stochastic simulation was introduced by Matheron (1973) and Journel (1974) to correct 

for the smoothing effects and other artifacts of kriging (See Figure 1a.), and to enable the 

reproduction of the spatial variance predicted by the variogram model. Different 

algorithms have been developed including sequential simulation (Journel, 1983, Isaaks, 

1990; Srivastava, 1992; Goovaerts, 1997; Chiles and Delfiner, 1999), which has become 

the workhorse for many current geostatistical applications.  

 

The stochastic simulation approach is based on the calculation of probability distributions 

at individual locations, considering the conditional information and the spatial 

heterogeneity model. There are different methods for the construction of the local 

probability distributions, including the Gaussian approach where the kriging estimation 

and the estimation variance are used as the mean and the variance of the local normal 

conditional distribution. In another approach, the use of indicator transforms allows 

modeling multivariate distributions without relying on Gaussian assumption, to generate 

models that exhibit more connected and well-defined geological bodies. Figure 1 

compares the results of the original kriging interpolation technique with the Gaussian and 

the Indicator Sequential Simulations, considering the same conditional information. 
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a                    b      c 

 

Fig 2.1: Spatial interpolation obtained by: a) Kriging; b) Sequential 

Gaussian simulation and c) Sequential indicator simulation. 

 

Stochastic simulation also provides the capability to generate multiple equiprobable 

realizations, giving birth to the idea of assessing spatial uncertainty (Journel and 

Huijbregts, 1978) on reservoir models. 

 

Sequential Indicator Simulation 

Spatial distributions can be modeled following a non-parametric approach, where the 

local probability distributions ( ; )iF zu  can be calculated from the available conditional 

information, by defining a set of thresholds , 1,...,iz i NT=  to discretize the range of 

variability of the spatial variable, and subsequently performing indicator kriging using the 

indicator transformed variables. 

 

The indicator transform of a random variable is simply a binary transform: the value one 

is assigned if the value at a location is less than the threshold and zero if not. The 

expected value of an indicator random variable is therefore equivalent to the probability 

of that particular threshold. Hence, the probability distribution can be calculated by 

sequentially calculating the expected value of the indicator random variable 
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corresponding to different thresholds. A multi-valued indicator variable can be defined 

as: 

                                   
( ) 1,...,

( , )
1 ( )

i

i

i

i if k z i NT
I z

NT if k z

≤ ∀ =
= 

+ >

u
u

u
                                    (2.4) 

Hence the indicator transform discretizes a continuous variable (such as permeability) 

into classes or categories. The expected value of the indicator corresponding to a 

particular category is: 

                                  { }( , iE I z =u Prob{ }( ) ( )i k ik z F z≤ =u                                         (2.5) 

The indicator coded data is used to infer the experimental variogram at each threshold, 

allowing the usage of different heterogeneity models (variograms) for different 

thresholds. Then, at a particular location, the conditional expectation of the indicator 

random function for each threshold is determined by applying indicator kriging with the 

available indicator coded conditional information. 

                               ( ) ( )* *

1

; ( ) ( ) ( ). ( ; )
n

i k i i

i

I z n F z n i zα α αλ
=

= =∑u u u                             (2.6) 

where ( ; )ii zαu  is the indicator coded data at location αu , with n  conditional data; and 

the weights ( )αλ u  are obtained by solving a kriging system that utilizes indicator 

covariances: 

                               ( ) ( )
1

( , ) ; ; , 1,...,
n

i I i I o iz C h z C h z nβ αβ α
β

λ α
=

= ∀ =∑ u                         (2.7) 

The probabilities (conditional expectations) for the local conditional distributions are 

evaluated at a limited set of thresholds. Therefore, interpolation and extrapolation 

methods are required to obtain a continuous conditional cumulative distribution function. 

Interpolation between the thresholds and tail extrapolations can be obtained by applying 

different approaches such linear or hyperbolic interpolation/extrapolation or using 

tabulated values. 

 

Following the sequential simulation approach, a realization of the target reservoir model 

is generated by sequentially sampling from the local conditional distributions following a 
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random path, where the previously sampled values become conditional information for 

the construction of subsequent local conditional distributions. The process is repeated 

until all the uninformed locations in the model are populated. Monte Carlo or other 

sampling technique can be applied on the local conditional distributions. Multiple 

realizations of the target reservoir can be obtained by altering the random path and/or 

changing the random draw from the local conditional distributions.  

 

The application of the Indicator sequential simulation approach can be summarized by 

the following: 

1. Select appropriate thresholds consistent with the spatial phenomena. 

2. Indicator code the data corresponding to different thresholds 

3. Infer indicator variogram/covariance model(s) for different thresholds. 

4. Define a random path to visit all uninformed locations. On each subsequent 

location of the random path apply the following sub-procedure: 

4.1. Calculate the conditional expectation of the indicator random function for all the       

thresholds, applying indicator kriging with the available indicator coded 

conditional information. 

4.2. Correct for order relations (non-monotonicity of the distributions) on evaluated 

probabilities (conditional expectations). 

4.3. Randomly sample a value from the local conditional distribution. In the 

sampling process, use interpolation/extrapolation methods to model a continuous 

ccdf from the discrete probabilities evaluated at the thresholds.  

4.4. Include the sampled value in the list of conditional information for subsequent 

estimations. 

5. A single realization of the target reservoir is obtained after all the uninformed 

locations have been visited following the random path. To generate multiple 

realization repeat step 4 with different random paths. 
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An indicator sequential simulator has been implemented on C++ language, and validated 

with other algorithms available on public domain. This algorithm is the base code for the 

probability updating method utilized in the research project. In subsequent sections, 

additions including modules for gradual deformation of geological models, interface with 

flow simulators, and optimization schemes are also developed.  

 

Gradual deformation of geological models using dynamic data 

Honoring the geological model is an important objective during the generation of static 

geological models; however, it is commonly forgotten during the integration of dynamic 

information. During the final stages of reservoir modeling, the history matching process, 

the perturbations or modification in the model should be performed to ensure a match to 

the flow history, while preserving the geological model of heterogeneity. In this research, 

that goal is accomplished by applying a probabilistic approach for gradual deformation of 

geological models. The gradual deformation is obtained by systematically perturbing the 

local conditional distributions with a deformation parameter, rd that is calibrated using the 

available dynamic information.  

 

Perturbation of Local Conditional Distributions 

The gradual deformation starts with a particular realization of the target reservoir, such 

that all locations in the reservoir, cells or nodes have attribute values. In the case of 

continuous variables, the initial realization is transformed into an indicator random field 

such that the value at a particular location falls within an indicator category referred to as 

the initial class, Iz . The initial realization is obtained by following a particular random 

path through the reservoir model, sequentially generating the local conditional 

distribution at each location conditioned to the original data and previously simulated 

values and randomly sampling values from the constructed distributions. 

 

During the gradual deformation of the geological model, the local conditional 

distributions are perturbed using a deformation parameter rd. The optimum value of rd is 



 11

calibrated in such a fashion as to minimize the deviation from the observed production 

history. In addition, the random path along which the visited as well as the random draws 

from local conditional distributions are modified in order to search for a global optimum 

for rd. Different perturbation schemes for establishing the optimal rd have been evaluated 

in order to define the methodology that better fits the objectives of the research.  

 

 

In the first perturbation scheme, the deformation parameter, Dr  reduces the probabilities 

of all indicator categories in the local conditional distribution, except that of the initial 

class, Iz , which is proportionally increased. In this case the deformation parameter 

multiplies the probabilities of the off-class indicator categories and the probability of the 

initial class always increases (or remains the same for rd = 1). This perturbation can be 

written in terms of conditional probabilities as: 

                                     
1'

1

( ( ))

( ( ))
1 ( ( ))

D k i

NT

k i
D k j

j
j I

r F z n i I

F z n
r F z n i I

+

=
≠

 ⋅ ≠


=  − ⋅ =



∑                          (2.8) 

where ' ( ( ))k iF z n  is the perturbed local conditional probability. A deformation parameter 

of value zero will generate a distribution with probability 1 for the initial class, Iz , 

ensuring the reproduction of the initial realization. A deformation parameter of value one 

will recover the local distribution conditioned to geological information and hence an 

independent realization from the original conditional distribution ( ))(| nzF ik  is sampled. 

Since the deformation parameter only increases the probability of the initial class, the 

maximum deformation of the model is rather small, slowing the process of gradual 

deformation. This drawback encouraged the evaluation of other perturbation schemes. 

Figure 2 shows the effect of the deformation parameter on the geological model. 
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Fig 2.2: Example of gradual deformation of geological models by 

probability perturbation method – First scheme. A single 

parameter, rd determines the magnitude of the perturbation in this 

model.  

 

In the second perturbation scheme, the deformation parameter reduces the probability of 

the initial class in the local distributions, while the probabilities of the other indicator 

categories increase proportionally. In this case the probability of the initial class is always 

reduced (or remains the same for rd = 1). This perturbation scheme can be written as: 

                              
( )

'

1

1

( ( ))

( ( )) 1 ( ( ))
( ( ))

( ( ))

D k i

k i D k I

k i NT

k j

j
j I

r F z n i I

F z n r F z n
i IF z n

F z n
+

=
≠

 ⋅ =


− ⋅
≠= 





∑
                      (2.9) 

The perturbed conditional probability for Ii ≠ is written such that the perturbed 

probability for a particular class is scaled according to its initial value. A deformation 

parameter value of zero will generate a distribution with probability 0 for the initial class, 

producing a notable deformation of the geological model. A deformation parameter of 
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value one will recover the local distribution conditioned to geological information. Now, 

the deformation parameter only decreases the probability of the initial class, ensuring a 

large deformation of the geological model, speeding the process of gradual deformation. 

However, this perturbation scheme does not allow the reproduction of the initial 

realization and consequently the deformation process is no longer systematic and 

controlled.  

 

In the third perturbation scheme, the two previous schemes were combined to ensure a 

more controlled, but at the same time fast gradual deformation of the geological model. 

In this case the probability of the initial class has a range of variation from 1 to 0 (for rd = 

0 to rd = 1), ensuring the reproduction of the initial realization for rd = 0.0, the recovery of 

the distribution conditioned to geological information for rd = 0.5, and rejecting the initial 

class, generating a new realization and corresponding large deformation for rd = 1.0. In 

this approach the range of variation of the deformation parameter, rd, is divided in two 

intervals, values below and above 0.5. For values of rd below 0.5 the first perturbation 

scheme is applied using a transformed value of rd, rd’ = 2 x rd. For rd values above 0.5, 

the second perturbation scheme is applied with the transformed value of rd, rd’ = (2 – 2 x 

rd). The perturbation scheme can be written as: 

'
2 0.5

2 2 0.5

D D

D

D D

r r
r

r r

≤
= 

− >
 

                                        

( )

'

1
'

1

' '

'

1

1

( ( )) ; 0.5

1 ( ( )) ; 0.5

( ( )) ( ( )) ; 0.5

( ( )) 1 ( ( ))
; 0.5

( ( ))

D k i D

NT

D k j D

j
j I

k i D k i D

k i D k I

DNT

k j

j
j I

r F z n i I r

r F z n i I r

F z n r F z n i I r

F z n r F z n
i I r

F z n

+

=
≠

+

=
≠

 ⋅ ≠ ≤

 − ⋅ = ≤



= ⋅ = >


− ⋅
≠ >





∑

∑

(2.10) 
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Consequently, the probability of the initial class is increased from the original value for rd 

values below 0.5; and decreased for rd values above 0.5, ensuring a wider but controlled 

range of variation in the perturbation of the local distribution. Figure 3 shows the effect 

of the deformation parameter Dr  on the local conditional distribution under the 

perturbation scheme 3.  

EFFECT OF CALIBRATING PARAMETER RD 

ON LOCAL DISTRIBUTION
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Fig 2.3: Effect of deformation parameter on local distribution for third 

perturbation scheme. For rd = 0.5, the local distribution conditioned 

to geological information is recovered.  

 

The above three perturbation schemes focus on gradually transitioning an initial 

realization to a new realization or proposal. Multiple equiprobable proposals can be 

generated using sequential indicator simulation, simply by modifying the random path 

and/or the set of random drawings for the local conditional distributions. However, in the 

three previous schemes, starting from an initial realization, the transition to only one new 

realization is evaluated at a time. This implies that only the range of variability between 

these two limiting realizations is searched for an optimal value of rd. This limits the range 

of variation during the gradual deformation of the geological model. A fourth 

perturbation scheme is proposed to circumvent this drawback.     
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In the fourth perturbation scheme the transition to two different new realizations are 

evaluated at the same time. In this case the perturbation introduced by the deformation 

parameter in the local distributions is controlled in order to generate a gradual transition 

between the initial realization and two different equiprobable realizations obtained with 

different random paths and different sampling draws. In this scheme the initial realization 

is reproduced for rd = 0.5 (probability of the initial class is 1), and the distributions 

conditioned to geological information corresponding to the two proposals are recovered 

for rd values of 0.0 and 1.0. Consequently, in this approach the range of variation of the 

deformation parameter, rd, is divided in two intervals, values below and above 0.5. The 

transitions between the initial realization and the first and second proposals are obtained 

with values of rd below and above 0.5 respectively. These transitions follow the first 

perturbation scheme using a transformed value of rd, rd’ = 1 - 2 rd, for  rd ≤ 0.5; and rd’ = 2 

rd  - 1,  for  rd > 0.5. The perturbation scheme can be written as: 

'
1 2 0.5

2 1 0.5

D D

D

D D

r r
r

r r

− ≤
= 

− >
 

                                        

'

1
'

1

'

'

1
'

1

( ( )) ; 0.5

1 ( ( )) ; 0.5

( ( ))
( ( )) ; 0.5

1 ( ( )) ; 0.5

a

D k i D

NT
a

D k j D

j
j I

k i b

D k i D

NT
b

D k j D

j
j I

r F z n i I r

r F z n i I r

F z n
r F z n i I r

r F z n i I r

+

=
≠

+

=
≠

 ⋅ ≠ ≤

 − ⋅ = ≤


= 
⋅ ≠ >


 − ⋅ = >



∑

∑

          (2.11) 

Where a

kF and  b

kF  are the probabilities corresponding to the two proposals a  and b .  

The fourth scheme compared to the first three, evaluates twice the number of proposals, 

increasing the rate of convergence and reducing the probability of getting trapped on 

local minima.   



 16

0.1                  1.0                  10                  100                  1000

Gradual Deformation of the Geological Model

Initial Model

RD = 0.5 RD = 0.4 RD = 0.25 RD = 0.1

Proposal 1

RD = 0.0

Initial Model

RD = 0.5 RD = 0.6 RD = 0.75 RD = 0.9

Proposal 2

RD = 1.0

0.1                  1.0                  10                  100                  1000

Gradual Deformation of the Geological Model

Initial Model

RD = 0.5 RD = 0.4 RD = 0.25 RD = 0.1

Proposal 1

RD = 0.0

Initial Model

RD = 0.5 RD = 0.6 RD = 0.75 RD = 0.9

Proposal 2

RD = 1.0

 

Fig 2.4: Example of gradual deformation of geological models by 

probability perturbation scheme four. A single parameter, rd 

determines the transition between an initial realization and two 

proposals. The range of variation of the geological model is enlarged 

under this scheme.   

 

 

Conditioning of Local Distribution to Dynamic Information 

Now that the methodology for the perturbation of local conditional distributions in 

geological models has been defined, the next step is to calibrate the deformation 

parameter on the basis of the observed production history of the reservoir. A primary goal 

is to estimate the local probability distributions of the geological event A, (permeability, 

porosity, etc) conditioned to the dynamic information, C, i.e. P(A|C).  This requires the 

implementation of an optimization scheme to calibrate the deformation parameter, and 

the development of interfaces between the geological modeling algorithm and a flow 

simulator. Figure 5 shows the impact of the deformation parameter on the flow response 

of the perturbed geological model. 
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Fig 2.5: Effect of varying the rD parameter on: a) Oil production rate at 

Producer 1; b) Water cut at Producer 1; c) Oil production rate at 

Producer 2; d) Water cut at Producer 2. 
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Fig 2.6: Sensitivity of water saturation distribution in the reservoir at 

4000 days and 5200 days to rD parameter. 

 

The deformation parameter rD is calibrated using the Dekker-Brent iterative optimization 

procedure where the objective is to improve the fit between the flow response of the 

model (from the simulator) and the production history. The Dekker-Brent algorithm is an 

inverse parabolic interpolation method that has the advantage of being a non-gradient 

based approach that only requires the calculation of the objective function corresponding 

to different values of the deformation parameter. The algorithm yields an optimal value 

of the deformation parameter, *

Dr  (abscissa), corresponding to a minimum value of the 

objective function, *( )DO f r∆ =  (ordinate). Three abscissa values are required, a, b and c 

with the corresponding values of the objective function f(a), f(b) and f(c); and b chosen 

such that a < b < c and f(a) > f(b) < f(c). The estimated location of the abscissa ( *

Dr ) with 
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the apparent minimum ordinate (objective function) is calculated by fitting a parabola 

through these three points.  

( )
( ) ( )

( )
( )( )

( )
( ) ( )

( ) ( ) ( )( ) ( ) ( )

*

( ) ( ) ( )

( ) ( ) ( )
2

D

b c f a a c f b a b f c

a b a c b a b c c a c b
r

f a f b f c

a b a c b a b c c a c b

+ + +
+ +

− − − − − −
=

 
+ + 

− − − − − − 

 

The next figure illustrates the process of the inverse parabolic interpolation.  
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Fig 2.7: Example of convergence of an objective function for a single-

parameter problem using the Dekker-Brent inverse parabolic 

interpolation algorithm. 

 

 An inverse parabola (red) is fitted through the initial values of rd a, b and c and the 

correspondent objective functions for these values, f(a), f(b) and f(c), resulting in the first 

apparent optimal value of rd = x1. Then, the real objective function correspondent to x1, 

f(x1) is calculated and based on the result, the three points for the next parabolic 



 20

interpolation (green) are selected (points a, b and x1). This iterative procedure continues 

until a minimum in the objective function is reached 

In this case, the objective function to be minimized is a measurement of the deviation 

between the simulated production response and the production history. Different 

production variables can be included in the objective function, including field and well 

pressures, single phase rates, two phase ratios, and basically any other variable for which 

a historical record is available. The mismatches of individual variables are normalized in 

order to level their influence on the objective function. However, in some cases it might 

be useful to assign higher weights to some production variables in order to emphasize the 

relevance of their reproduction in the target model. The proposed objective function for N 

production variables over T time steps is:  

( )
( )

2

, ,

1 1

T N
i t i t

t i i

Sim Hist
Obj Fun

Var Hist= =

 −
 =
 
 

∑∑  

Where Simi,t represents the simulated value of the production variable i at time t, and 

Histi,t represents the correspondent historical value for the same variable at the same time. 

The square of the difference between the simulated and the historical values at a 

particular time is normalized by the variance of the historical values over time, in order to 

control the influence of each variable on the objective function. Other objective functions 

can be easily implemented applying different norms and normalization methods.  

 

Merging the information from dynamic and static sources 

At this point, the methodology to estimate the local distribution conditioned to dynamic 

information, P(A|C), has been presented, i.e. perturbing the local conditional distributions 

with a parameter calibrated with the production history data. In order to ensure 

consistency with the geological model during all stages of the history matching 

procedure, the conditional distribution P(A|C) has to be merged with the distribution 

inferred from static information, P(A|B). Realizations sampled from the resultant merged 

distribution P(A|B,C) will honor both the static information (well data and geologic 

interpretation) as well as the historic production data. 
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The Permanence of Ratio Hypothesis (Journel, 2002) is the methodology applied to 

combine the individual distributions conditioned to dynamic and static information.  The 

following distance or information measures a, b, c and x are defined: 

1 ( ) 1 ( | ) 1 ( | )

( ) ( | ) ( | )

P A P A B P A C
a b c

P A P A B P A C

− − −
= = =    

1 ( | , )

( | , )

P A B C
x

P A B C

−
=  

The quantity a, for example, denotes the relative distance to the event A occurring given 

P(A). If P(A) is one, the relative distance a is zero. The relative distance a is infinity, if 

P(A) is zero. The measures b, c and x can be interpreted similarly.  

 

According to the permanence of ratios hypothesis, the relative updating of a simulation 

event (A) due to a dynamic event (C) remains the same irrespective of the presence of the 

static event (B). This can be written in terms of a,b,c and x as: 

x c

b a
=  

Consequently, the joint probability of the simulation event given the dynamic and static 

information can be calculated from the elemental probabilities – the prior probability for 

A : P(A),  the conditional probability of A given the dynamic information : P(A|C), and 

the conditional probability of A given the static information B : P(A|B).  

( | , )
a

P A B C
a bc

=
+

 

In this approach, the marginal probabilities of the static data P(B), and that of the 

dynamic data P(C), which are difficult to estimate in practice, are not required.  

 

Putting things together – a gradual updating procedure for history matching  

The calibration of the dynamic parameter rD and the subsequent merging of conditional 

probability distributions requires the implementation of an interface between the 

geological modeling algorithm and the flow simulator. In this project, the geological 

modeling algorithm (Sequential Indicator Simulation) is the main program that has been 

expanded to include all the tasks in the probabilistic approach for dynamic data 
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integration. The flow simulator (@Eclipse) is also executed within the program. The task 

of combining the conditional probability distributions P(A|B) and P(A|C) into a joint-

conditional distribution P(A|B,C) is also implemented within the main program.  The 

geological model used in the flow simulator to calibrate the deformation parameter rD is 

sampled from this jointly conditioned distribution, P(A|B,C). The complete probability 

updating procedure therefore consists of: 

 

− Performing indicator kriging and obtaining the conditional distributions P(A|B) at 

each unsampled location in the reservoir. Sample a realization from the P(A|B) by 

sequential simulation 

− Corresponding to that realization of the permeability field and making an initial guess 

for rD obtain the corresponding P(A|C) 

− Merge P(A|C) with P(A|B) to obtain P(A|B,C) and sample a realization from 

P(A|B,C) 

− Perform flow simulation and obtain objective function. Revise estimate of rD using 

Dekker-Brent approach and repeat until objective function is minimized. 

 

The reproduction of historical production data is a complex non-linear inverse problem. 

This implies that the probability updating cannot be accomplished in a single perturbation 

loop starting from an initial realization of the permeability field; calibrating an optimal rD 

value and obtaining an updated probability distribution reflecting the dynamic 

characteristics of the reservoir. Instead, a multi-loop iterative process is required to 

update the geological model using the dynamic data. 

 

A Markov-Chain is a stochastic updating procedure where the parameter state at any step 

of the procedure is assumed to be dependent only on the state immediately prior to that 

step.  Thus the proposed realization at any stage of the process depends only on the 

preceding realization in the sequence, and the convergence towards the desired target 

depends on carefully specifying the transition from one realization to the next one, i.e. the 
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methodology for the new proposed realization. In this case, the parameter rD controls the 

transition of the permeability value at a location from one category to the next.  

 

In the implemented Markov chain approach, at every updating step, from iteration step l  

to step 1l +  of an outer loop, the probability distributions conditioned to dynamic and 

static information, ( | , )lP A B C , is obtained by applying the permanence of ratio 

hypothesis to combine distributions conditioned to static and dynamic information. The 

distribution ( | )lP A B  is obtained from geological data and heterogeneity model and the 

distribution conditioned to dynamic information, ( | )lP A C  is estimated knowing the 

indicator category at each location from the realization sampled from l),|( CBAP , the 

prior distribution P(A) and the deformation parameter, Dr , calibrated using the Dekker-

Brent iterative optimization procedure. At the end of each inner Dekker-Brent loop the 

converged distribution ( | , )lP A B C  is used to sample the initial realization for the next 

outer loop, 1l + , until global match to the historic data is attained. The calibration of the 

deformation parameter rD to honor the available dynamic information thus represents the 

internal optimization scheme. The converged model and realization at the end of the inner 

loop is used as the starting realization for the next sequence of inner Dekker-Brent 

optimization runs to determine the conditional distribution P(A|C) and that constitutes the 

outer optimization loop. 

 

Even though the two-loop Markov chain procedure ensures global convergence, the 

introduction of multiple sets of inner optimization schemes requires multiple evaluations 

of the flow response. However, the dynamic-calibrated gradual deformation methodology 

renders the history match process faster and more controlled, increasing the consistency 

between the initial and the proposed realizations at every step, and improving the rate of 

convergence of the objective function. 
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The implemented interface between the geological modeling algorithm and the flow 

simulator is summarized in the following steps: 

1. The geological modeling algorithm generates a file with a realization of the target 

permeability model in the appropriate format. This file will be used by the flow 

simulator as an include file.  

2. The modeling algorithm invokes the flow simulator. The flow simulator 

(ECLIPSE) is run, generating an output file with the flow response. 

3. The simulated flow response is read from the output file and the objective 

function is evaluated. 

4. The Dekker-Brent optimization is implemented in order to generate a new 

realization of the geological model.  

 

 

Applications  

An approach that uses a probability perturbation method for gradual deformation of 

geological models conditioned to dynamic information has been presented. This 

approach, compared to other perturbation methods, offers the important advantages of 

preserving the prior geological heterogeneity model and simplifying the history match 

process to a single (or few) parameter(s) optimization problem.  

 

Preliminary evaluations of the algorithm for dynamic data integration using the proposed 

probabilistic approach have been pursued with the synthetic case described in the 

following table. 

 

Table 2.1: Description of the synthetic simulation case used to evaluate the probabilistic 
dynamic data integration algorithm. 

 

SIMULATION PROPERTY/DESCRIPTION VALUE 

Simulation Model Black Oil 

Solution  Implicit 
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Simulation Period, years 2 

Grid (Cartesian) 50x50x5 

Active Grid blocks 12500 

Grid block dimensions, ft3 80x80x4 

Porosity  0.22 

Kx = Ky (Mean – Std Dev), md  200 - 250 

Kz/Kx 0.15 

Saturation Pressure, psi 5064 

Water-Oil Contact, ft 9000 

Gas-Oil Contact, ft 4000 

Reference Depth, ft  7300 

Initial Pressure @ 7300 ft, psi 6000 

Residual Water Saturation 0.18 

Residual Oil Saturation 0.24 

Oil Relative Permeability Endpoint 0.7 

Water Relative Permeability Endpoint  0.5 

Oil Gravity (API) 35 

Water Injectors  1 

Injection – Control Rate, Stb/day 5000 

Injection – BHP upper Limit, psi 8000 

Oil Producers 2 

Production – Control BHP Lower limit, psi 2000 

Production – Minimum rate, Stb/day 10 

 

 

Figures 8-12 describes the convergence of the simulated field pressures to the historic 

data.  
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Fig 2.8: Field Pressure History Match obtained with the probabilistic 

dynamic data integration algorithm for the synthetic case study. 

Results after forty flow simulation runs, distributed on 5 outer 

iterations of 8 inner Dekker-Brent iterations each.  
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Fig 2.9: Field Production History Match of synthetic case using the 

probability perturbation method. Final model is obtained after 40 

simulation runs. 
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Run 1 Run 5 Run 13

Run 21 Run 32 Run 40

 

 

Fig 2.10: Example of Gradual Deformation of geological models, 

obtained with the probability perturbation method. Variations in 

the third layer of the geological model through 40 flow simulation 

runs are presented.  

 

Fig 2.11: Third layer of the reference geological model used in the 

synthetic case to generate the historical production data.  
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Fig 2.12: Example of convergence of the objective function applying the 

probabilistic approach to history matching.  

 

A computer code implementing the following steps for history matching has been 

developed: 

1. An indicator sequential simulator is used to generate an initial stochastic 

realization of the target reservoir model and calculate the local probability 

distributions conditioned to static information. 

2. A Markov chain iterative updating process is started with the initial realization. 

The Markov chain forms the outer loop of the procedure and every outer step or 

outer iteration includes the following sub procedures: 

2.1. Generate new random paths and sets of random draws to sample from the local 

conditional distributions. The random paths and the sampling draws are fixed 

during each outer iteration, but changes from one outer iteration to the next. 

2.2. Evaluate the Objective function at different values of the deformation parameter, 

rd, screening the whole range of variability [0, 1]. Usually 5 different values are 

enough to get started. For each value of rd, a different permeability model is 
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obtained by merging with P(A|B) and that model is run in the flow simulator; in 

order to obtain the objective function. 

2.3. Pick the value of the deformation parameter with the minimum objective 

function and start the calibration process of rd with the dynamic data using the 

Dekker-Brent iterative algorithm. This calibration process is called the inner 

loop, and the number of inner steps or inner iterations can be fixed or controlled 

by a tolerance in the change of the objective function in consecutive steps.  

2.4. Use the best model (with the minimum objective function) to update the 

stochastic realization. When the best model is obtained with a deformation 

parameter of 0.5, no updating is required (the realization remains invariant). This 

is the final step of the outer loop.  

3. Repeat step 2 (outer loop) until a tolerance in the objective function (history 

match) has been reached or for a fix number of outer iterations. 

4. Print out final permeability realization with the corresponding flow response.  
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3. APPLICATION OF PARALLEL AND DISTRIBUTED 

COMPUTING 

The following section describes 

1) Some concepts in parallel and distributed computing applied to reservoir 

simulation. 

2) Choice of the reservoir simulator and the important features of the chosen 

simulator. 

3) Selection of a parallel and distributed computing scheme considering the specific 

requirements of the project & preliminary verification of the availability of the 

required features in the selected simulator.  
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Concepts in parallel and distributed computing applied to reservoir 
simulation 

1) Parallel computing 
 

In parallel computing, a task is subdivided among many computer processors such that if 

done efficiently the total computational time scales with the number of CPUs assigned. 

Parallel computer architecture have generally been based on the following major 

concepts: 

a) SIMD – Single instruction multiple paths. 

b) MIMD – Multiple instruction multiple data paths 

 

The MIMD architecture has emerged recently and is based on the principle that each 

CPU can operate independently, with frequent synchronization among the CPUs. 

MIMD architecture has three basic memory configurations: 

− Flat shared memory: Allows access to all memory by each of the CPUs. This is costly 

and cannot scale well above 10 CPUs. 

− Multi-level shared memory: Based on the concept of cache i.e. sophisticated software 

or hardware keep track of the current location of data within the global memory of the 

system. 

− Distributed memory. Has become the most popular for massively parallel computers. 

These machines are based on the use of RISC-based CPUs, some with attached vector 

processors. Performance of each CPUs varies from a few million floating-point 

operations per second to more than 100 Mflops. 

  

Recently the parallelization of reservoir simulators has been accomplished on distributed 

memory parallel computers. This parallelization has been accomplished on both MIMD 

and SIMD. A critical analysis of parallel computing with respect to reservoir simulation 

has been done by Killough  (SPE 26634, 1993). 
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Message passing between the processors is critical to the performance of the distributed 

memory parallel computing. Two aspects of communication are important: latency and 

bandwidth. Latency may be defined as the time taken for setting up pathways between 

the processors and identifying locations that are involved in the transfer of data. In order 

to reduce the latency, several messages may be packed together, so that communication 

between the processors is reduced. In that case the bandwidth becomes critical.  

 

Theoretically, for an N*N grid solved on P processors : 

1) Total work time is proportional to N*N/P (Assuming complete parallelizing of the 

simulator) 

2) Communication time is proportional to N 

 

As the problem size increases : 

1) Latency is affixed cost 

2) Communication time increases with N 

3) Work time increases with N*N 

 

For inter-node connections, there are in general four options 

a) Fast Ethernet 

b) Gigabit 

c) Myrinet 

d) Quadrics 
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  Table 3.1: Bandwidth and Latency for various switches of a PC cluster 

Switch Bandwidth (Mbytes/sec) Latency 

(microsecond) 

Fast Ethernet 12 150 

Gigabit 128 26-12 

Myrinet 421 7 

Quadrics 400 5 

 

 

 

The Myrinet and Quadrics have high bandwidth and are most suited for reservoir 

simulation. The research cluster used for this project has a gigabit switches between the 

different processing nodes. A reduction in parallel performance is therefore likely. 

Amdahl’s law 

The efficiency of a parallel program can be assessed by comparing the performance 

speed of a parallel algorithm with that of a program run on a single node. That measure 

known as speedup can be written as: 

 








 +
=

n

p
s

Speedup
0.1

                                                                                                       (3.1) 

 

s    = serial fraction of program work including the communication overhead 

p  =  parallel fraction of program work 

n  =   number of parallel processors 

 

To achieve better efficiency the subdivided tasks among the processors should be large as 

compared to the inter-processor communication. Amdahl’s law implies that even the 

smallest portion of the model must be parallelized to achieve reasonable parallel 
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efficiencies for a massively parallel processor with one hundred or more processors. In 

the notation of the above equation, making the fraction part to be higher is better than 

keeping s to be high since the quantity p is divided by n the number of processors and the 

net gain in speedup may be considerable. Serial code sections become significant if a 

high number of CPUs (i.e. 100 + CPUs) are used in a single run. 

 

It must be noted that parallel algorithms are generally less optimized than their serial 

counterparts and hence the performance of a parallel code running on a serial machine 

may often not be as good as the serial code running on the same serial machine.  

 

There are certain challenges using parallel computation for reservoir simulation: 

a) Firstly the non-recursive nature of existing linear solutions techniques for solving 

the sparse matrices encountered in reservoir simulation renders them unacceptable 

for massively parallel architectures. Considerable research is currently being 

focused on developing robust parallel linear equation solutions. Killough (SPE 

26634, 1993) proposed a complex preconditioning scheme for conjugate residual 

type iterative methods such as ORTHOMIN. 

b) The trade-off between load balancing and global data structure has yet to be 

thoroughly investigated. 

c) Well and facility constraints and production optimization are generally 

implemented using serial algorithms and these may lead to severe serial 

bottlenecks.                                                        

 

 

One of the key issues affecting the performance of parallel computing is load balancing. 

Load imbalances can severely reduce the efficiency of parallel computing. If one of the 

processor within a parallel job is multi-tasking or has not finished the allotted load, then 

other processors within the parallel job will end up waiting. Hence parallel jobs must 

have dedicated resource (i.e. the processors to be used for parallel processing should not 
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be multi-tasking or processing other jobs). The point being that if the speed of one 

processor slows down, other processors would be waiting reducing the efficiency of the 

tasks that are spawned on the other processors as well. Two common load-balancing 

methods are   

− Static, data structures are allocated before beginning the computation 

− Dynamic, restructuring of data structures as the computation proceeds  

 

Wheeler and Smith (SPE 19804, 189) dealt with load imbalances brought about by 

irregularly shaped grids through a redistribution of active cells among the processors. 

This technique works well in cases where the solution depends linearly on the number of 

grids blocks. But for cases where the solution is related non-linearly to the sub 

dimensions associated with the processor arbitrary redistribution of active cells can 

further exacerbate the problem. Killough (SPE 26634, 1993) distributed the computation 

work at each grid block within the simulation domain to all the processor nodes and 

assigned to each node its proportion of the calculations. A substantial improvement 

appears to be possible but unresolved issues still exist: 

a) The number of grid blocks will seldom be a perfect multiple of the number of 

nodes. 

b) The number of iteration will vary for each grid block. This implies that to achieve 

better load balancing, a prior idea of number of iterations and hence allocation of 

work to the computer nodes is necessary.  

c) The communication overhead may overshadow the performance of the algorithm. 

 

Killough (SPE 29102, 1995) later proposed a receiver-initiated dynamic load-sharing 

algorithm to achieve high parallel efficiencies. It adapts the workload on each node in a 

dynamic way and can react to any sudden perturbation that can appear during the 

simulation. The algorithm suffers from the fact that there is significant loss in 

performance for a small number of processors since one processor is dedicated for 

supervising and monitoring the computation at the remaining nodes. 
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2) Distributed computing 

In a distributed configuration, the processors do not share memory or clocks. Distributed 

computing systems group individual processors together via network connections and 

pool the computing resources in order to accomplish CPU intensive computation. The 

network provides a means by which client and host machines communicate, sharing 

computed information or passing information that is required by the computations. Local 

area networks (LAN) of PCs connected by Ethernet connections are ubiquitous and are 

good examples of distributed computing. Distributed computing requires coordinating the 

efforts of a collection of processing nodes linked together by a network. The common 

tool used for the external parallelization is PVM (Parallel Virtual Machine).  PVM allows 

the development of the programs that can send “slave” tasks to different cpus in a 

network.   

 

The use of distributed computing/external parallelization to speed up history matching 

procedures has been studied by Schiozer and Sousa (SPE 39062, 1997). They showed 

that sensitivity analysis could be performed efficiently, as well as various direct search 

optimization techniques can be improved, by the use of external parallelization (or 

distributed computing). The choice of optimization techniques to be used is quiet 

important. Methods that use derivatives may have convergence problems. For this reason, 

Leitao and Schiozer (SPE 53977, 1999) recommends direct search methods that are most 

robust. Quenes et al (SPE 29107, 1995) applied parallelization techniques to history 

matching reporting good results. The benefits of external parallelization could be 

summarized as follows: 

− To calculate sensitivities 

− To determine the best search directions for direct optimization techniques. 

− To launch several simulations in direct search methods. 

 

There are some advantages of using external parallelization (or distributed computing) 

over parallel computing 
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− Efficiency of current commercial simulator codes is maintained. 

− An existing network of workstations can be used without the need of high investment 

in parallel computers or in communication. 

 

The main disadvantage is slow data transfer imposed by the LAN communication 

protocols, but in this kind of work, actual computations are so time consuming that 

communication time can be neglected for practical applications.  
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Choice of the reservoir simulator and its important features  
 

Two commercial simulators Eclipse and VIP were tested for their parallel 

computation capabilities. Both have the parallel as well as the flux boundary options 

available. The flux boundary option is important from the standpoint of distributed 

computing. The choice of simulator was dictated by the availability of options (outputs) 

such as the Hessian matrix of the objective function that would help in identifying the 

sensitive regions. Simopt  - a history-matching module in Eclipse, has the option to 

report sensitivities. The commercial simulator VIP doesn’t have similar options. Keeping 

in view this limitation of VIP, the following section dwells on important features of the 

Eclipse flow simulator that facilitates parallel computation and retrieval of flux boundary 

conditions. 

Eclipse (General) 

The Eclipse simulator suite consists of two separate simulators: Eclipse 100 

Specializing in black oil modeling, and Eclipse 300 specializing in compositional 

modeling. Eclipse 100 is a fully implicit, three phase, three dimensional, general-purpose 

black oil simulator with gas condensate options. Eclipse 100 can be used to simulate 1, 2 

or 3 phase systems. Two-phase options (oil/water, oil/gas, gas/water) are solved as two 

component systems saving both computer storage and computer time. Eclipse 300 is a 

compositional simulator with cubic equation of state, pressure dependent K-value and 

black oil fluid treatments. Eclipse 300 can be run in fully implicit, IMPES and adaptive 

implicit (AIM) modes.  

Fully implicit technology (Black Oil) 

Eclipse (Black oil) uses the fully implicit finite difference method to ensure numerical 

stability over long time steps. The non-linear fully implicit equations are solved precisely 

by reducing all residuals to user set tolerances. Newton’s method is used to solve the non-

linear equations. The Jacobian matrix is fully expanded in all variables to ensure 

quadratic (fast) convergence. Most simulators cannot apply fully implicit methods to 
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large problems. In Eclipse, these restrictions are removed by nested factorization, which 

solves large problems efficiently and reliably. 

Adaptive Implicit and IMPES (Compositional) 

In a compositional model where the number of components and hence equations to be 

solved is greater than say 5 or 6, the cost of performing fully implicit simulations can 

become prohibitive in terms of both memory and CPU time. In Eclipse 300 this problem 

is tackled by using an adaptive implicit (AIM) scheme, making cells implicit only where 

necessary. In  Eclipse 300 adaptive implicit, fully implicit or IMPES solution techniques 

may be selected. For larger compositional studies AIM can be selected. 

Parallel Option 

The Parallel option allows a single simulation job to be distributed across a number of 

processors. This allows large simulations to be carried out in shorter time than would 

normally be the case with the standard simulators. The results obtained using a number of 

processors will generally agree with single processor solutions within limits of 

engineering accuracy. The scalability is poorer than one might expect, as the linear solver 

becomes less efficient when larger numbers of processors are utilized. Eclipse 100 first 

partitions the reservoir either in the x or the y direction, depending on the outer solver 

direction. The code is optimized so as to automatically divide the reservoir into domains 

with approximately equal numbers of active cells.  

  

For reservoirs with a significant number of inactive cells, the default partitioning is not 

sufficient to load-balance the domains. It is possible to control further the way in which 

cells are assigned to domains by applying the following formula:  

 

 

The one important difference between Parallel Eclipse 100 and Parallel Eclipse 300 is in 

the approach used for the parallelization of the linear solver. Eclipse 100 uses a modified 
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nested factorization approach in which a 1-dimensional domain decomposition is 

performed, full coupling of the solution across the reservoir for each linear iteration is 

maintained, at the expense of increasing the work required per linear iteration by 1.3. 

Eclipse 300 allows a 2-dimensional domain decomposition (For large numbers of 

domains, a two-dimensional decomposition is desirable, to avoid thin strip domains) 

approach.  

Flux Boundary Conditions 

Flux boundary conditions enable to runs to be performed on a small section of a field 

using the boundary conditions established from a full field run. These smaller field 

simulations can be distributed to the different nodes of a cluster. Flows across the 

boundary of the reduced field are written to a FLUX file at each min-time step of the full 

field run. The flux file is input to the smaller field simulation as the boundary condition 

for that simulation.  

 

Instead of using the flows of each phase from the full field run as boundary conditions on 

the reduced run, an alternative treatment (i.e. alternative set of boundary conditions)  

using pressure and saturations is available in Eclipse.  
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Selection of a parallel and distributed computing scheme considering 

the specific requirements of the project  

The proposed approach for history matching utilizes reservoir regions determined by the 

sensitivity analysis procedure and subsequent perturbation of the local conditional 

distributions describing the uncertainty in permeability values in that region in order to 

effect a history match. The perturbation to the probability distributions is performed 

using an updating parameter termed rD. There can be two plausible ways of handling 

multiple “rDs” corresponding to multiple domains i.e. parallel or distributed computing. 

Each has its merits. For parallel computing the first requirement is that the domains be of 

comparable size. This problem can be addressed by having two different definitions of 

domains i.e. that updating is done on the domains defined as per the sensitivity criteria 

while during the running of simulator the domains divided are defined such that they are 

equal in size. This implies that the flow simulation can consist of multiple rD regions, and 

so the problem of rD optimization of multi-parameter optimization. The resultant 

algorithm will therefore be complicated, defeating the very objective of the proposed 

history matching approach. 

 

Using distributed computing, the same problem of rD optimization can be approached 

using the 1-D optimization methodology that renders the proposed method efficient.  

Each domain can be perturbed at different node of the cluster while targeting the global 

objective function. Finally the perturbed regions can be put together since the domains 

perturbed were least correlated. The proposed approach is particularly suited for 

distributed computing since independent tasks of equal magnitude need to be performed. 

This would amount to flow simulations of the same realization at different nodes while 

perturbing different regions. Rather than doing the flow simulation on whole realizations 

at different nodes, certain low sensitive regions may be excluded by using boundary 

conditions. These low sensitivity boundary regions would not need frequent updating 

since the there would be minimal flow across those regions. However when more severe 

changes are made to permeability field, the solver may not converge resulting in a much 
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larger simulation time. For such cases full field simulations at different nodes while 

perturbing locally is advisable. In the distributed environment, any commercially 

available serial flow simulator can be utilized at each of the computational node and 

furthermore, the high efficiency of serial algorithms can be put to use. Two scripts for 

distributing simulations to various nodes have been attached in ‘Chapter-3’ in the 

appendix. The scripts are very simple and use the ‘rsh’ utility. The scripts are well 

documented and self-explanatory. 

 
In the first script ‘rshtemp’, the macro ‘/opt/MPI/ecl/macros/@eclipse’ is distributed to 

the different nodes of the cluster i.e. MPI_1 to MPI_8. The purpose of this script is just to 

illustrate the use of ‘rsh’ utility to distribute the applications.  

 

The second script ‘s.pl’ is a perl script. This script is much more generalized script. This 

script requires an input file, which has the name of the nodes to which the application 

needs to be distributed. The macro or the application that needs to be distributed is stored 

in the variable ‘macro_name’.  For example if the temp file has the name of the nodes of 

the cluster then ‘perl  s.pl  temp’ should be typed on the command prompt. And the 

macro name should be accordingly changed as per the requirement. 
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Preliminary verification of the availability of the required features in 
the selected simulator 

Test Cases 

Parallel Simulation  
 

In order to demonstrate the parallel flow simulation capabilities of Parallel ECLIPSE 

100, the following cases were run.  

 

Case1 and Case 2    
 

A  4000 ft. x 4000 ft. x 20 ft reservoir model was assumed (with constant permeability of 

500 md, constant porosity of 30%). The reservoir is assumed to have one vertical 

producer in the middle of the reservoir. Four parallel processors were utilized for the 

parallel simulation. Parallel Eclipse 100 was used that allows the reservoir to be divided 

in either X or Y dimension. Three cases were run, with identical reservoir dimensions and 

well locations. The simulation was run for 500 days. All parallel simulations utilized four 

processors. In our case the definition of aspect ratio is the number of grid blocks in x 

to y directions. The whole point of doing the following cases was to demonstrate that 

certain schemes of domain decomposition could be computationally efficient.  
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Case 1: Aspect ratio changed while the number of grid blocks are kept same 

The effect of the aspect ratio of the reservoir on the performance of the parallel 

simulation was assessed.  

 

Table 3.2: Influence of aspect ratio on computation speed using ECLIPSE 100 (1-D 
domain decomposition). 

Grids Aspect Ratio 
Time 
(Sec) 

Producer 
Coordinates 

4*4000*3 0.001 184 (2,2000) 

16*1000*3 0.016 75 (8,500) 

20*800*3 0.025 56 (10,400) 

40*400*3 0.1 144 (20,200) 

80*200*3 0.4 236 (40,100) 

160*100*3 1.6 322 (80,50) 

400*40*3 10 491 (200,20) 

 
 
 

 

0

100

200

300

400

500

600

0.0001 0.001 0.01 0.1 1 10 100

Aspect Ratio

T
im

e 
in
 S
ec

 
 

 Fig 3.1: Influence of aspect ratio on computation speed using ECLIPSE 

100 (1-D domain decomposition)  

 

 

 

Case 2: Aspect ratio constant while the number of grid blocks were changed 
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The same reservoir scenario was simulated but this time with different grid resolution and 

keeping the aspect ratio constant. The grids employed are summarized below: 

 

                   Table 3.3: Computation time against number of grid blocks.  
 

Grids No. of grids 
Time 
(Sec) 

4*4*3 48 4 

40*40*3 4800 21 

80*80*3 19200 76 

160*160*3 76800 530 

 

 

The results shown in Figure 3.2 indicate that maximum gain in computational speed is 

achieved when the grid size is increased by a factor of 100 from 100 grid blocks to 10000 

blocks. Subsequently, the computation slows down when the grid size is increased. This 

could be attributed to the increased communication between processors due the larger 

interacting surface area among the domains. 
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              Fig 3.2: Plot of computation time against number of grid blocks.  

 

 

Case 3: Number of grid blocks are kept same, the ratio of x to y gridblock 

dimensions has been changed and the physical dimensions of reservoirs are varied. 
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In this case physical dimensions of the reservoir are varied unlike the earlier two cases.  

The reservoir is assumed to have constant permeability of 500 md, constant porosity of 

30%.  The reservoir is assumed to have one vertical producer in the middle of the 

reservoir. Four parallel processors were utilized for the parallel simulation. Parallel 

Eclipse 100 was used that allows the reservoir to be divided in either X or Y dimension. 

Three cases were run, with identical reservoir dimensions and well locations. The 

simulation was run for 500 days. Parallel simulations utilized four processors. Physical 

dimension of grid blocks were kept same i.e. 500 ft, 500 ft and 50 ft in x, y and z 

directions respectively. 

 

Table 3.4: Computation time versus ratio x to y grid block sizes 
 

 

 

 

 

 

 

 

The results indicate that simulations performed with approximately the same number of 

blocks in the x and y directions and with square grid blocks are the most efficient. 

 
 
 
 
 
 
 
 
 
 

Aspect Ratio Time in sec 

0.001 598 

0.025 213 

0.1 100 

10 82 

1000 413 
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Flux Boundary Conditions 

The following are the results obtained while simulating a small section of the field using 

the boundary conditions obtained from the full-scale simulation. The full field has 50*50 

gridblocks while the smaller sections have 25*25 grid blocks. Fluxes (flows of each 

phase from the full field run as a function of time) are used as boundary conditions. The 

full field simulation took 21 seconds while the smaller section took 9 seconds. Figure 18 

shows the pressures and oil saturations at the end of 5000 days. Comparing the grid bloc 

pressures and saturations obtained for the sub domain simulations against the full field 

simulation values, the accuracy of the sub-domain simulation results was ± 1 psi. The 

saturations were alike up to three places of decimal. 

 

 

 
 
 

Fig 3.3 : Full field flow simulation results: a) Pressure variations in the 

reservoir at 500 days obtained by full field simulation; b) Pressure 

variations in a domain obtained corresponding to boundary 

conditions derived from the full field simulation; c) Oil saturation 

values obtained by full field simulation, and d) Oil saturation values 

(a) (b) 

(c) (d) 
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obtained for sub-domain simulation using boundary conditions 

derived from full field simulation. 

The choice of simulator was dictated by the availability of the calculation options that 

facilitate identification of sensitive regions and provide Hessian matrix of the objective 

function. Various Parallel and Boundary flux cases were run for the preliminary checks 

on Eclipse. A scheme for using parallel and distributed computing, specifically from the 

project’s point of view has been formulated. 
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4. SENSITIVITY ANALYSIS 

For the purpose of defining the domains the obvious choice would be to identify the 

sensitive regions to the objective function. Jacquard et al. (1965) first investigated the use 

of sensitivity coefficients.   Sensitivity coefficients are defined as derivatives of the target 

simulation output with respect to parameters being adjusted to get a history match. The 

sensitivities may be calculated for one of the following: 

1) Global objective function  

2) Well specific objective function  

3) Field phase (oil, water or gas flow rates) objective function.  

4) Well specific phase (flow rates) objective function. 

 

Mathematically sensitivity coefficient may be defined as
x

f

∂
∂

 where, f is one of the 

objective function listed above and x is the history matching parameter at a grid block, 

which is permeability for the cases presented in this report. In case the sensitivity were 

calculated with respect to multiple parameters xi (e.g. porosity, permeability, thickness 

etc.), then normalization of the parameters would have to be performed in order to render 

the resultant sensitivities comparable on the same scale.  

 

The program module Simopt in the ECLIPSE suite has been used for the sensitivity 

analysis done in the report. All the flow sensitivity coefficients mentioned in this thesis 

are with respect to permeabilities in X direction. All the figures show permeability in X 

direction and permeability in Y & Z directions are equal to Permeability in X direction, 

unless otherwise is stated. The results can be easily generalized to permeabilities in other 

directions.  
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In order to demonstrate the sensitive analysis procedure, a deterministic reservoir model 

representative of a fluvial depositional environment has been used. The model has 

120,000 (100*120*10) grid blocks with high permeability channels. The channel 

distribution and orientation exhibit small changes from one layer to the next. The process 

for generating the synthetic data set including the calculation of pseudo-seismic 

responses has bee discussed in Mao, 2000. This particular reservoir model was used for 

many of the cases discussed later in this report and is referred to as the STAN5 data set 

throughout the report.  

 

Example 1 

Computing the sensitivity coefficient corresponding to the permeability in each grid 

block is practically not feasible due to the associated computational cost. The sensitivity 

analysis is done at 180 uniformly distributed pilot points. The sensitivity coefficients are 

then spatially interpolated to all other grid blocks. Since the different layers of the 

reservoir exhibit strong resemblance to one another, the strategy adopted for the analysis 

was to utilize one of the layers as the reference layer and the other layers as the 

incremental realizations for calculating the required sensitivities. For this case, the fifth 

(Fig 4.2 (a)) and the third (Fig 4.2 (b)) layers of the reservoir were used for computing 

sensitivities while the history was generated using the fourth layer (Fig 4.1). The history 

is generated for 500 days. Adjacent layers are chosen deliberately so that the initial guess 

is near to the actual model. There are three producers and two injectors. The full STAN5 

rock property data & surfaces data is attached as ‘STAN5’ in the appendix. The eclipse 

data files for layer 3, 4 & 5 are also attached in the appendix as ‘STAN5-Layer3-Eclipse 

file’, ‘STAN5-Layer3-Eclipse file’ & ‘STAN5-Layer3-Eclipse file’ respectively. 
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Fig 4.1: Reservoir model utilized to generate the base case production 

history 

 

 
Fig 4.2: (a) Permeability realization for Layer 5 of STAN 5    

              (b) Permeability realization for Layer 3 of STAN5    

 

 

(a) 

(b) 
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The following Fig 4.3 shows the global (derivative of global objective function with 

respect to permeabilities) sensitivity coefficients. In all the cases discussed in this report 

the objective function is calculated using only flux terms with equal weight attached to 

them. The degree of change is proportional to absolute magnitude while the direction of 

change is governed by the sign of sensitivity coefficients.  The highest values are 

represented in red, the middle ones in green and the lowest in blue. The negative values 

are shown with the shaded lines. Negative sensitivity implies that permeability values in 

those regions need to be increased in order to match the flow response for the base case.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 4.3: Global sensitivities for: a) 3
rd
 layer, and b) 5

th
 layer. The 

permeability corresponding to the 4
th
 layer is used as the base model 

for calculating the sensitivities. 

 

 

Sensitivity coefficient can also be calculated on the basis of individual well response. The 

following Fig 4.4 and 4.5 depict the sensitivity of different well responses to the 

permeability variations in layer 3, given the 4th (STAN5) layer as the base case.  

The following figure qualitatively illustrates the concept of sensitivity coefficients. The 

blue shaded region implies that permeability needs to be increased in the region while red 

(a) (b) 
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implies that permeability needs to be decreased in the region. It is evident form fig 4.3 (c) 

& (d) that permeability needs to be increased in third layer near the produces wells in 

order to approach the base case. This is exactly what is being derived from the sensitivity 

coefficients in fig 4.3(e).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Fig 4.3(c): Permeability for base case  (d) Permeability for 3
rd
 layer  (e) 

Global sensitivity coefficient on percentile map for layer 3 with 

respect to layer 4 of STAN5. 

 

(c) 

(d) 
(e) 



 54

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.4: Sensitivity coefficients for the layer 3 permeability model 

calculated on the basis of: a) Well 1 oil production rate; b) Well 2 oil 

production rate; c) Well 3 oil production rate; d) Well 1 water 

production rate; e) Well 2 water production rate; and f) Well 3 

water production rate. 

 
 

(a) (b) 

(c) 
(d) 

(e) (f) 
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Fig 4.5: Sensitivity coefficients for the layer 3 permeability model 

calculated on the basis of: a) Well 1 gas oil ratio, b) Well 2 gas oil 

ratio, c) Well 3 gas oil ratio. 

 
 
 
 
 
 
 
 
 

(a) (b) 

(c) 
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The following observations are based on the results in Fig 4.4 and 4.5: 
 
• Decreasing objective function defined on a per well basis may not be a wise 

approach for history matching. There are regions in the reservoir, that show positive 

sensitivities for one well and negative sensitivity for another well. This implies that 

decreasing the permeability in one region may decrease the objective function for 

one well but it may increase the objective function for another well.  

• Even for a particular well it is possible to decrease the mismatch for particular phase 

production rate at the cost of the increasing the mismatch for another phase.  

Based on the results and observations made above, it is proposed that a better approach to 

defining reservoir regions may be using the global objective function. The global 

objective function would be a weighted sum of individual phase production rates from all 

wells and would hence represent a compromise between competing flow response 

characteristics. Hence the better approach would be to target the global objective function 

while perturbing the permeability locally in a domain. 
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Example 2 

In this case the permeability realization is very different from the base case unlike the 

earlier case where the initial guess closely resembled the base case (reference) model. 

Since an iterative, permeability updating procedure for history matching is proposed in 

this research, the objective is to gauge the frequency with which the reservoir zones 

designation would have to be updated during the iterative procedure. 

 

The base model is still the 4th layer of STAN5 and all other inputs remain the same. 

Sensitivity coefficients are calculated for two models. The first model has perm-y and 

perm-z equal to the base case while the perm-x is very different from the base case and is 

shown below. The second model is a constant permeability field with permeability being 

1000 md in all directions.  
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Fig 4.6: Permeability field with perm x very different from the base case. 

The corresponding global sensitivity coefficients computed on the 

basis of the base case model are shown in the right. 

 

 

 

 

 

 

 

 

 

 

Fig 4.7: Global sensitivities corresponding to a homogeneous 

permeability field. 
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In both these cases, the results seem to indicate that the sensitivity coefficients are not so 

reliable if the initial guess is not near the actual model. 

 

This important observation can be understood on the basis of the following conceptual 

plot.  

                                A                                      B 

                                                                                C     

                                                                                                       

 

 

 

 

 

 

Fig 4.8: Typical objective function profile and the importance of a good 

initial guess. 

 
 

The sensitivity analysis would give reliable information if the initial guess is between 

points A and B. The negative slope of the objective function from A to the global minima 

would suggest a negative sensitivity i.e. the permeability value in the grid block would 

have to be increased. If the permeability value becomes too high, the positive slope of the 

objective function profile from the global minimum point to B would suggest a positive 

sensitivity coefficient value and hence a decrease in permeability value to result in a 

history match. However, if the initial guess had been C, the negative slope of the 

objective function profile at C would suggest a negative sensitivity value and hence an 

increase in permeability and hence a further drift away from the true minimum value.  

 

Permeability at a given grid block  
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The application of sensitivity analysis for domain identification and some of the issues 

that have to be considered prior to defining reservoir zones have been discussed in this 

section. Prior to refining the procedure for zone identification, a brief review of the 

underlying theory is presented in the next section and subsequently techniques to improve 

the robustness of the zone identification procedure are discussed. 
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5. DESCRIPTION OF METHOD 

The initial permeability realization is generated using p-field simulation (Srivastava, 

R.M., 1992, Reservoir characterization with probability field simulation, SPE 24753, 

67th SPE Annual Technical Conference and Exhibition, 927-938). The local conditional 

distribution at each location is derived using indicator kriging (Deutsch, C.V., Journel, 

A.G.(1998): GSLIB: Geostatistical Software Library and Users Guide, Oxford University 

Press Inc., Oxford, New York 1992). Indicator kriging utilizes the available data and a 

model for spatial correlation (indicator variogram). A realization of the permeability field 

is obtained by sampling from the respective conditional distributions using spatially 

correlated random draws. The resultant permeability realization reflects the desired 

geological correlation and honors the available data. The history is created from a 

reference realization. All other parameters except the permeabilities are kept same while 

generating history from the reference model. The resulting realization is then subjected to 

sensitivity analysis. 

 

Sensitivity coefficients are calculated using permeability values at certain pre-selected 

pilot-points (or the grid blocks). Ideally the points should be located at the points of 

maximum uncertainty from a flow perspective and also the number points should be kept 

as low as possible without compromising much on the accuracy. In current application 

the pilot points are distributed uniformly through out the reservoir. The sensitivity 

analysis is only done with respect to permeabilities since only permeabilities are 

perturbed for the present case in order to history match the synthetic field. During the 

sensitivity analysis both sensitivity coefficients and the Hessian of the objective function 

are evaluated at pilot points.  

 

Principal Component analysis is then performed on the Hessian Matrix of the objective 

function. The gradient zone concept first proposed by Robert Bissel (Bissell, R. C. 

“Calculating Optimal Parameters for History Matching”, ECMOR IV, 4th European 

Conference on the Mathematics of Oil Recovery, Roros, Norway, 1994 ) has been 
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suitably modified to meet the requirements of the proposed approach. The basic premise 

of PC analysis is to isolate the most sensitive and least correlated regions. In the original 

application of PCA, the most sensitive regions were needed to make the history matching 

efficient while the least correlated property is needed so that regression works efficiently. 

Regression works best when the independent variables are least correlated with each 

other in terms of their effect on the dependent variables. In the present case the 

independent variables are the permeabilities and the dependent variable is objective 

function. Full independence of domains within a reservoir is not possible unless there are 

regions separated by zero permeability streaks or zero transmissibility faults. In the 

proposed probabilistic history matching approach, least correlated regions are needed so 

as to make the problem suitable for distributed computing and to retain the simplicity of 

1D optimization. 

 

The proportion of the variance extracted by the eigenvectors has been used as the 

deciding criteria to determine the number of eigenvectors (or the domains) to be extracted  

That proportion can be obtained by dividing the corresponding eigenvalue with the trace 

of the Hessian matrix and a suitable threshold may be applied on the amount of total 

variance (or the total information) extracted.  

 

The following procedure is followed for obtaining the domains based on principal 

component analysis of the Hessian matrix 

1) Obtain the eigen values and the corresponding eigenvectors of the Hessian matrix. 

Eigenvectors thus evaluated would be in n dimensional space, where n is the 

number of the pilot points (or the rank of the Hessian matrix). Hence every 

eigenvector would have a component associated to all pilot points 

2) Interpolate the component of the eigenvectors throughout the reservoir from the 

component values at the pilot points. 

3) Rank the eigen values based on their magnitude.  
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4) Apply a threshold on the size of domain covered by first eigenvector. It could be 

say 40% of the total grid blocks. In other words all the grid blocks at which the 

absolute value of the eigen component corresponding to the first eigenvector 

exceeds the P60 value (of the eigen components) are grouped as the first domain. 

5) Follow step 4 for the subsequent eigen vectors with respective thresholds. During 

this step the grid block cells covered by the earlier (higher in rank) are excluded. 

 

The commercial simulator used for this research already has the capabilities to evaluate 

the Hessian and the eigen vectors.   

 

In the above scheme the magnitude of the eigenvalue is used to rank and retain a reduced 

set of eigenvectors. In the subsequent step, the eigenvectors are scaled such that the 

magnitude of a vector is equal to the corresponding eigenvalue. The merits for this sort of 

scaling can be summarized as follows: 

1) There is no need for different thresholds for each eigenvector in order to define   

regions that span a certain volume of the reservoir. Instead one common threshold 

may be applied for all eigenvectors since the eigen components are directly 

comparable once they are scaled.  

2) It might be possible that a component of lower eigen value exceeds the eigen  

component of the larger eigen value at a particular grid block. In that case, if proper 

scaling is not done, the grid block may end up being erroneously assigned to the 

larger eigenvector domain. 

3) In practical implementations, it has been observed that if the eigenvectors are 

used without scaling then the regions covered by the lower rank eigenvectors form 

rings around the region covered by higher eigenvector (Figures 5.2(c) & (d)). This 

is institutive from sensitivity criteria perspective. But this is not physically possible 

since a region corresponding to a lower eigen vector can not be least correlated and 

yet form an annular region around the region corresponding to a higher eigen 



 64

vector. The code for domain decomposition subsequent to scaling has been attached 

as ‘Code 5.1’ in the appendix. 

 

            

          

          

          

          

          

          

          

           

 

 

 

 

 

 

 

 

           

         

Fig 5.2: (a) Actual permeability field used to generate the history;  

(b) Initial guess to be history matched; (c) show the domains obtained 

without scaling of eigen vectors with thresholds of 30% for the five 

eigen vectors; (d) Domains with scaled eigen vectors with thresholds 

30%.  

 

 

  

 

 

(a) (b) 

(c) 
(d) 
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Each domain is then perturbed using the probabilistic approach at different nodes of the 

cluster while targeting the global objective function. The global objective function is a 

weighted sum of individual phase production rates from all wells in the reservoir.  

 

This point has been mentioned in chapter 4.The following discussion explains it in more 

detail, that it is important to consider the global objective function since otherwise the 

objective function for one well may be reduced at the expense of increasing the objective 

function for another well. Even for a particular well it is possible to decrease the 

mismatch for one particular phase production rate at the expense of increasing the 

mismatch for other phase. This point has been illustrated in Fig 5.3 & 5.4, which show 

that same region could be in either positive sensitivity region (implying that the 

permeability has to be increased to minimize mismatch) or in the negative sensitivity 

zone depending upon the well or the phase, for which sensitivity coefficients are being 

calculated. 
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Fig 5.3: Showing the sensitivity coefficients on the percentile map for the 

case ‘5.2(a)’ as reference for creating history and ‘5.2 (b)’ as the 

initial guess. Highest values in red, intermediate in green and the 

lowest in blue, negative sensitivity coefficients regions are shown 

with shaded lines;   (a) With respect to well-1 oil production rate (b) 

With respect to well-2 oil production rate (c) With respect to well-3 

oil production rate. 

 
 
 
 
 
 
 
 
 
 

 

Fig 5.4: Showing the sensitivity coefficients on the percentile map for the 

realization shown in Fig. ‘5.2(a)’ as reference for creating history 

and Fig. ‘5.2(b)’ as the initial guess. Highest values in red, 

intermediate in green and the lowest in blue, negative sensitivity 

coefficients regions are shown with shaded lines;   (a) With respect 

to well-1 oil production rate b) With respect to well-1 water 

production rate (c) With respect to well-3 Gas oil ratio. 

(a) (b) (c) 

(c) (a) (b) 
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Once the reservoir zones have been delineated, the perturbation of permeability values 

within individual zones is controlled by the updating parameter rD for that zone. Starting 

from an initial permeability model, the permeability value at each location is coded into 

an indicator category by selecting suitable permeability thresholds. The indicator 

category at each location is then perturbed within a L-step Markov chain. The probability 

of transitioning from indicator category k at step l  to the category k’ at step  1+l is 

written as: 
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                                           (5.9) 

 

The probability { }')( kIP =u  is the same as the prior probability P(A) and  represents the 

marginal probability corresponding to class k’ . This prior probability can be calculated 

on the basis of available data. The parameter rD is an optimization parameter that is 

selected such that the mismatch between the predicted dynamic response and the target 

dynamic response is minimized. Upon convergence, the probability on the left hand side 

of Eq. (5.9) is the conditional probability )|( CAP  that quantifies the information 

contained in dynamic data pertaining to the permeability variations in the reservoir.  At 

any step of the iterative calibration procedure, a higher value of rD implies a higher 

probability for the current category k to change to a new category k’ from step l  to step 

1+l . As a result the realization sampled at the step 1+l may be significantly different 

from that at step l . Conversely, a low value of rD signifies a higher probability to remain 

in the same category k over the step. This gives rise to a realization that is quite similar to 

that at the previous step. 

 

Starting with an initial guess for rD
*, the probability on the left-hand side of Eq. (5.9) 

corresponding to different indicator categories 1,...,1 += Kk is calculated. As noted from 

Eq. (5.9), a starting image )(uoI is required in order to compute the requisite 
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probabilities. A starting image conditioned to available hard data and depicting the target 

spatial correlation structure is used. The probability distribution obtained using Eq. (5.9) 

has to be combined with the conditional probability )|( BAP  that quantifies the prior 

geological knowledge and is obtained from indicator kriging. The merging of 

probabilities )|( BAP  and )|( CAP  is done using the permanence of ratio hypothesis. 

Under this hypothesis, the relative updating of the permeability event A due to the 

observed dynamic data C remains unaffected by the occurrence of B (the prior geological 

information). The joint conditional probability ),|(* CBAP can then be written as: 

 

bca

a
CBAP

+
=),|(l                                                            (5.10) 

.  

The superscript in the probability expression indicates that the joint conditional 

distribution is not yet the converged distribution and corresponds to the step l  of the 

Markov chain. The quantities: 
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CAP
c

−
=  can be interpreted as the relative 

distance to event A occurring given that events B or C occur. For example, if occurrence 

of B guarantees the occurrence of event A, then 0=b , i.e. the relative distance to A is 

zero. If on the other hand, occurrence of B guarantees non-occurrence of A, then the 

relative distance ∞→b .  

 

The updated probability distributions at all locations u within the domain are derived 

using Equation (5.10). A spatially correlated field of random numbers is used to sample 

permeability values from the updated conditional distributions as in p-field simulation. 

The updated permeability field at the iteration step l is thus obtained.  

 

The model is then flow simulated and the deviation of the simulated production response 

from the target response is computed in a global sense: 
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The objective function is minimized by iteratively adjusting the deformation parameter 

rD. A 1-D, non-gradient based optimization procedure such as the Dekker-Brent method  

( Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P.: “Numerical Recipes 

in C: The art of scientific computing”, Cambridge University Press, 1992 ) is utilized to 

obtain the optimal value of the parameter rD. The model )(1 uI  obtained corresponding to 

the optimal rD value is still a locally optimal realization, since it represents the optimal 

corresponding to the starting realization )(uoI . Several outer iterations L,...,1=l  are 

performed until a global match to the production history data is obtained. Thus the 

procedure described above consists of two iterative loops – an inner loop that 

corresponds to Dekker-Brent iterations for establishing the optimal rD and an outer loop 

that corresponds to updating the reservoir realizations )(ulI for computing the LHS 

probability in Eq. (5.9).  The two loops are repeated for all the domains. 

 

Finally the perturbed regions are put together since the domains perturbed were least 

correlated and the geological consistency is always maintained while perturbing locally. 

The proposed approach is particularly suited for distributed computing since independent 

tasks of equal magnitude need to be performed. This would amount to performing flow 

simulations of the full reservoir model at different nodes while perturbing different 

regions. At the end of rD optimization for individual domains, the merged permeability 

field is then subjected to full field perturbation. This step is needed because certain 

regions in the reservoir may never get perturbed if they don’t fall within the delineated 

zones. Secondly, the full field perturbation would smooth out any artifact in the merged 

permeability due the fact that domains are not perfectly independent. The full 

methodology has been described through the flow chart in Fig. 5.5 & 5.6. 
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Fig 5.5: Flow chart showing the work flow; step 6 has been described in 

detail Fig 5.6 

 
 

Generate initial realization from indicator sequential 
simulation. 

Obtain the Hessian using the production history and the current guess for the 
realization. The approximate Hessian can be obtained by running the flow 

simulator just for fraction of total simulation period thus saving on computational 
time. 

Apply a threshold on the variance extraction so as to reduce the number of eigen 

vectors required from PC analysis of Hessian. 

Optimize on the different rD parameters at the different nodes of the cluster while 

perturbing locally but targeting the global objective function. 

Scale the eigen vectors and apply an optimal threshold for the domain delineation.  

Realization is history 
Matched 

 

Merge the resulting realizations from each node into a new realization 

Subject the full reservoir to one rD parameter optimization. This step is needed 
because certain regions in the reservoir would never get perturbed since they 
would not qualify to the threshold criteria. As well it would smoothen out any 
artifact in the merged permeability due the fact that domains are not perfectly 

independent. 

Step 6 



 71

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

Fig 5.6: Flow chart showing the work-flow for r d  optimization 

Starting from an initial realization )(ulI , update and obtain the merged 

probability distribution P(A|B,C). Sample an updated realization )(1 u+lI from 

Evaluate the Objective function at different values of the deformation 
parameter, rd, screening the whole range of variability [0, 1]. For each value 
of rd, a different geological model is obtained and run in the flow simulator; 

and the objective function is evaluated. 

Pick the value of the deformation parameter with the minimum objective 
function and start the calibration process of rd with the dynamic data using 
the Dekker-Brent iterative algorithm. This calibration process is called the 

inner loop. 
 

Use the best model (with the minimum objective function) to update the 
stochastic realization. When the best model is obtained with a deformation 
parameter of zero, no updating is required (the realization remains invariant). 

This is the final step of the outer loop. 
 

Is Objective function 

< tolerance 
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6. TEST CASES 

This section dwells on the following topics  

1. Alternate ways of domain decomposition 

2. Computational cost associated with sensitivity analysis 

3. Robustness of domain delineation 

4. History matched synthetic cases 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 
 



 73

1. Alternate ways of Domain Decomposition 

a) Domain decomposition based on porosity and thickness  
 

Domain delineation based on principal component analysis of the Hessian matrix is 

computationally expensive. In most situations, porosity and reservoir thickness can be 

reliably ascertained using auxiliary data such as seismic. In order to test this conjecture, 

an attempt was made to delineate the domains based just on the porosity and thickness at 

the grid blocks. Geobodies were defined on the basis of the product of porosity and 

thickness (Fig. 6.1(b)). Geobodies represent connected volumes of the reservoir that have 

storativity ( h⋅φ ) values greater than a threshold. The definition of geobodies was later 

modified in order to take into account the connectivity of storativity to a well location. In 

this revised scheme (Fig 6.1(c)), all regions within a search radius around wells where the 

product of porosity and thickness exceeds a threshold are grouped in a domain. The 

search radius is made proportional to the upper flow rate constrains on the wells. 

 

 

 

 

 

 

 

 

 

(a) 
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Fig 6.1: a) Permeability for base case model (Layer 4 of Stan5) used to 

generate the production history; b) Geobodies computed using the 

porosity and layer thickness information for layer 4; c) Geobodies 

computed using a modified definition that focuses on a search 

radius of 16 units around well locations. 

 

 

 

For the same set of geobodies but different permeability realizations sensitivity analysis 

was performed. The base case was always kept the fourth layer of Stan5. Different 

sensitivity maps are generated for different permeability realizations. The results show 

that sensitivity coefficients are a strong function of the permeability realization under 

consideration.  In a way this can be predicted since the permeability sensitivity 

coefficients are more influenced by the permeability realization under consideration 

rather than the product of porosity and thickness.  

(b) 
(c) 
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Fig 6.2 shows the sensitivity maps on percentile scale for different permeability 

realizations but same geobodies. It can be easily appreciated that they look quite different 

despite sharing same set of porosities and thickness values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
                            (a)                                                                               (b)  
 
 
 
 
                                (c)                                                                                (d)  
 
 
 
 
 
 
 
 
 
 
 

Fig 6.2:  a) Sensitivity coefficients for constant 1000 md (in X, Y & Z 

directions)  permeability realization   b) Sensitivity coefficients for 

3
rd
 Layer of Stan5  c) Permeability realization used for the 

sensitivity analysis for the sensitivity coefficients shown in fig. 6.2d   

d) Corresponding sensitivity coefficients for 6.2c 
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A second approach could be that using permeabilities for domain definition instead of 

geobodies. This approach suffers from the fact that domains defined on the basis of 

permeabilities would lack the information of the reference. It is to be noted that the 

reference permeability field is indirectly represented by production history in case of 

sensitivity coefficients.  

 

Geology is very important for history matching. It can be used to guide the degree 

perturbation to the existing guess in order to approach the reference. This would be a very 

wise way to get to physically realistic initial model. But in the present case the stochastic 

methodology dictates the perturbation, which does, has P(A/B) component at the end of 

each outer loop forcing the geological consistency.  
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b) Domain decomposition based on permeability covariance matrix 
 

Principal component analysis can also be applied to the permeability covariance matrix 

obtaining the domains. Once the eigenvectors are obtained appropriate thresholds in the 

manner described earlier may be applied to get the domains. It is expected that the 

domain delineation procedure using the covariance matrix would identify regions that 

exhibit similar permeability structure (geological facies). A potential drawback could be 

that the analysis is just based on the static data. It is possible that for particular boundary 

(well) conditions, there might be significant flow across facies boundaries, resulting in 

connected flow-based sensitivity regions but un-connected permeability-based regions.  

 

A synthetic 100*120*1 field is used to illustrate the point outlined above.  The 

covariance matrix is generated in such a way there are three facies ( 100*40*1, 

100*40*1, 100*40*1) in the reservoir. This is deliberately done to evaluate the efficacy 

of eigenvectors in identifying the facies. The exponential model is used such that 

variances within three facies are 800, 600 and 1000 respectively. The correlation length is 

170 units within the facies. The correlation length is 20 units across the facies with 

variance being 100 units.  A cut off 33% was applied to first three eigenvectors. The 

eigenvectors could resolve the three facies perfectly (Fig 6.3).  

 

 

Fig 6.3: Eigen domains based on covariance matrix of permeabilities. 

The following is the color scheme employed: First eigenvector 

positive components , second eigenvector positive components  

and third eigenvector positive components . 
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The facie with highest variance is being identified as most sensitive, the facie with the 

second highest variance as the next most sensitive and so on. The covariance matrix is 

attached as ‘Covariance_6.2’ the appendix. The code for generating this matrix is 

attached as ‘Code_6.3’ in the appendix.  

 

 A similar exercise was carried using 2nd, 3rd, 4th, 5th and 6th layer of STAN5. The 

covariance matrix was calculated from the above-mentioned five layers. In other words at 

a particular grid block the permeabilities from the five layers are taken as multiple 

observations at that particular grid block. Stationarity is not assumed while calculating 

the covariance matrix since we have multiple observations for each grid block. 

Covariance matrix from a single permeability realization may also be used but then 

stationarity needs to be assumed. The problem may be visualized as evaluating 

interdependencies from six plausible geological models of the same 2D field. It must be 

noted that a covariance value calculated over a sample set of five is likely non-robust, 

nevertheless the calculation was performed to demonstrate the methodology. 

 

 

                               

                             (a)                                                                  (b)                       
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                                 (c)                                                                (d) 

 

Fig 6.4: Reservoir regions for the STAN5 data obtained using the 

permeability covariance matrix: a) Applying a 60% cut-off for the 

first two eigenvectors of, b) Applying a 50% cut off on the first 3 

eigenvectors, c) Applying a 50% cut-off on the first 5 eigenvectors, 

d) Applying a 30% cut off on the first 5 eigenvectors.  

 

As seen in Figure 6.4, the delineated zones retain the imprint of the channel feature 

common to all the reservoir layers. Increase in the number of eigenvectors retained to 

represent the variability and/or reduction in the cut off threshold, adds more noise to the 

resultant maps.  

 

In order to evaluate whether the lack of adequate statistical mass influences the 

calculation of the covariance matrix and hence the determination of eigen domains, the 

same exercise was performed on 50 realizations of a permeability field generated by the 

p-field simulation technique. The reservoir size is 50 x 50 grid blocks. The results are 

shown in Fig. 6.5.  
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Fig 6.5: Reservoir regions delineated corresponding to a suite of 

permeability models obtained using p-field simulation. The eigen 

decomposition of the permeability covariance was performed and 

the reservoir regions were obtained by: a) Applying a 60% cut-off 

for the first two eigenvectors, b) A 50% cut off applied to the first 5 

eigenvectors, and c) A 30% cut off applied to the first 5 

eigenvectors. 

 

 

 

(a) 
(b) 

(c) 
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The following is a comparison table for the two cases discussed above. 

 
Table 6.1: Profile of the eigenvalues for the two cases discussed   

 
 

It can be seen from the table above that eigenvalues are almost of the same magnitude for 

the 50 Realizations generated by p-field simulation unlike STAN5 layer case. This 

implies that redundancy level among the 5 layers is much higher as compared to 50 

realizations. This is due the fact that permeability realizations from the five layers are 

quiet similar to each other.  

It should be noted that static sensitivity analysis based on many permeability realizations 

while sensitivity coefficients from flow are calculated for a given realization.  

There are two aspects considering during history matching – Uncertainty (Geostatistical) 

and Flow Sensitivities. The domains defined based on the Principal component analysis 

of permeability covariance matrix identifies the most uncertain region to be most 

sensitive. The most uncertain parameters may not be very sensitive to the objective 

function. For example the permeabitities at particular reservoir regions may be most 

uncertain but due to lesser flow may not be consequential to the objective function. The 

regions near the wells may be most certain but still may be most sensitive. Any difference 

in the actual and estimated model permeability near the well would be exaggerated in the 

low sensitivity analysis. Targeting most uncertain regions would be more accurate but 

would not be as effective.  

Eigenvalues of the covariance 
matrix generated from the 50 
Realizations generated by p-
field simulations. 

10409609 8356552 5564055 5162116 4260301 3972610 

Ratio of the Eigenvalues to the 
fourth largest eigenvalue. 

2.016539 1.618823 1.077863 1 0.825301 0.76957 

Eigenvalues of the covariance 
matrix generated from the five 
layers of STAN5. 

2.5E+08 6.9E+07 3.7E+07 10000 0 0 

Ratio of the Eigenvalues to the 
fourth largest eigenvalue 

24820 6853 3731 1 - - 
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2.  Computational cost associated with sensitivity analysis 
 

As earlier mentioned calculation of one sensitivity coefficient cost as much as 20% of the 

total run time. Some approximations are necessary in order to keep the computational 

cost reasonable. The feasibility and robustness of reservoir regions defined by restricting 

the duration of the flow simulation runs was evaluated. The results in Fig 6.6 indicate that 

while the sensitivity coefficients do change in the magnitude with respect to time, their 

relative magnitudes remain the same provided the permeability, well constraints, number 

of wells remains the same. The sensitivity coefficients defined on percentile scale remain 

almost the same. This implies that reservoir regions defined by performing the flow 

simulation for a fraction of total simulation period would serve the purpose of defining 

reservoir regions.  

It has to be emphasized that in this project, the objective of sensitivity analysis is only to 

identify reservoir regions. History matching would ultimately be performed using a 

probabilistic approach only. The absolute magnitudes of the sensitivity coefficients are 

not important since they are not used in the history matching process.  

 

 

 

 

 

 
 
 
 
 

 

Fig 6.6: Sensitivity coefficients on percentile plot for the 3
rd
 layer of 

STAN5 (with 4
th
 layer as base case for generating history) at a) 100 

days, b) 500 days, and c) 1500 days. 

 

(a) (b) (c) 
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3. Robustness of Domain Delineation 
  

In this section the robustness of domains delineation based on the PC analysis has been 

demonstrated on two cases. For the two cases discussed below, global objective function 

has been used for the evaluation of Hessian. The objective function comprises of flux 

terms from all wells weighted equally. Each well also has unit weight as well in the 

global objective function. Measurement errors are assumed to be the same for all 

responses. 

Case 1 

Fig 6.7 (a) & (b) shows the two realizations used for this case.  One realization was used 

for creating history while the other was used for history matching. The model has 2500 

(50*50*1) grid blocks. Each grid block has dimension 100ft x 100ft x 30ft.  The 

simulation parameters are summarized in Table 6.2. The history is generated for 450 

days. There are four producers and three injectors. Fig. 6.7 (c) shows the sensitivity 

analysis. Fig. 6.7 (d)-3(g) show the domains based on scaled eigenvectors with different 

thresholds. Fig. 6.7 (h) –3(k) show the domains based on eigenvectors (not scaled) with 

different thresholds. For eigenvectors (not scaled) the individual thresholds for each 

eigenvector is kept same. The total variance extracted by first five eigenvectors is 96%. 

The regions near the wells are the most sensitive regions as expected. More importantly, 

the example illustrates the least correlation concept since the injector-producer couples 

fall in one domain. In other words the couple does not have much tendency to interact 

with other regions in reservoir. This is a particular case in which the injector-producer 

couples are situated in close proximity to one another.  

 

Table 6.2: Reservoir model parameters for Case 1 

 

 

 

 

 

 Phases Present Oil, Water and Gas

Reservoir Dimensions 50*50*1
Grid block Dimensions (ft) 100*100*30

Porosity 0.32

Number of wells 7

Well coordinates - Producers (17,32); (17,7); (32,17); (42,27)
Well coordinates - Injectors (7,12); (27,22); (12,42)
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Fig 6.7 (a) Actual permeability field used to generate the history;  

(b) Initial guess to be history matched  (c) Sensitivity coefficients on 

percentile map. Highest values in red, intermediate in green and the 

lowest in blue, negative sensitivity coefficients regions are shown 

  

 

(a) (b) (c) 

(d) (e) (f) (g) 

(h) (i) (j) (k) 
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with shaded lines; (d), (e), (f), (g) show the domains obtained after 

scaling of eigen vectors with thresholds of 20%, 40%, 60% and 80% 

respectively; (h), (i), (j) and (k) show the domains with unscaled 

eigen vectors with thresholds of 20%, 40%, 60% and 80% 

respectively for all the five eigen vectors. 
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Case 2 

Fig. 6.8 (a) & (b) show the realizations used for history matching as well as for creating 

the history. The history is generated for 450 days. The model in this case has 12000 

(100*120*1) grid blocks. Each grid block is 100ft in length, 100 ft wide, while the 

thickness is variable with the average being 16 ft. There are three injectors and two 

producers. Total variance extracted by the first five eigenvectors is 80%. Other details are 

provided in Table 6.3. The injector and producers are far apart in this case as compared to 

case 1. But still the concept of least correlated domains based on scaled eigenvectors can 

be readily appreciated from this case. It can be seen that the regions corresponding to the 

first eigenvector are disjoint and near each producing well. The disjointed domains near 

producer wells imply that any perturbation near one well would highly influence the 

performance of other producer wells.  In other words the regions near the three producer 

wells should not be perturbed with different rD parameters.  

          

Table 6.3: Reservoir model parameters for Case 2 

 

 

 

 

 

            
 

 

 

 

 

 

 

 

 

Phases Present Oil, Water and Gas

Reservoir Dimensions 100*120*1
Grid block Dimensions (ft) 100*100*Variable (Average 16.07)

Porosity Variable (Average 0.21)
Number of wells 5
Well coordinates - Producers (10,20); (8,55); (50,86)
Well coordinates - Injectors (66,15); (20,103)
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Fig 6.8: (a) Showing the actual permeability field used to generate the 

history; (b) Initial guess to be history matched; (c) show the 

domains obtained without scaling of eigenvectors with thresholds of 

30% for the five eigenvectors; (d) show the domains with scaled 

eigenvectors with thresholds 30%. 

 

 

 

 
 

 

(a) (b) 

(c) (d) 
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4. History matched synthetic cases 
 

Two realizations generated by p-field simulation have been used. One realization was 

used for creating history while other was used for history matching. The model has 10000 

(100*100*1) grid blocks. The grid blocks have dimension 100ft x 100ft x 30ft.  History is 

generated for 450 days. Figures 6.9 (a) & (c) show the permeability realizations. Two 

extreme well configurations cases were tested on the same realization sets. The first case 

has just one well while the second case has four producers and two injectors. Global 

objective function has been used for the evaluation of Hessian. The objective function 

comprises of flux terms from all wells weighted equally.  
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Case 1 

This case has one producer well. Details of the simulation are provided in Table 6.4.  

Fig. 6.9 (b) shows the domains pertaining to 80% threshold after scaling the eigenvectors. 

Three domains are delineated i.e. the regions corresponding to the 1st positive, 2nd 

negative and 3rd positive eigenvectors. The 3rd positive domain is barely visible. The total 

variance extracted by first five eigenvectors is 99.6%. Different domains are perturbed at 

different nodes of the cluster. Six outer loops and six inner loops have been performed on 

each domain.  The perturbed realizations are then merged.  The merged realization has 

significantly less objective function value as compared to the starting guess. The merged 

realization is then subjected to a full field parameter perturbation. The objective function 

values are listed in Table 6.5. Fig. 6.9(d) shows the realizations after perturbing different 

domains at different nodes of the cluster. Fig. 6.9(e) shows the merged realization.  

Fig. 6.9(f) shows the final history matched realization after perturbing globally using one 

deformation parameter. Fig. 6.10 shows the flow responses from the history-matched 

realization compared to the production history. 

 

 

Table 6.4: Reservoir model parameters for case 1 of History matched examples 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Phases Present Oil, Water and Gas

Reservoir Dimensions 100*100*1

Grid block Dimensions (ft) 100*100*20

Porosity 0.25

Number of wells 1

Well coordinates - Producers (41, 71)
Well coordinates - Injectors -
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Fig 6.9: (a) Reference realization for creating history  (b) Domains for 

80% threshold  (c) Initial Guess  (d) Realizations after perturbing 

domain wise  (e) Merged realization  (f) Realization after perturbing 

the merged realization by one deformation parameter 

Merging 

1(p) 2(n) 3(p) 

(d) 

(e) (f) 

(a) (b) (c) 

Producer well 
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Table 6.5: Showing the objective function for 1-well case 
 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Objective function

Initial guess 2.88

After preturbing 1p 2.19
After preturbing 1n -

After preturbing 2p -
After preturbing 2n 0.17

After preturbing 3p 2.18
After preturbing 3n -

After preturbing 4p -
After preturbing 4n -

After preturbing 5p -
After preturbing 5n -

Merged Realization 0.25

After preturbing merged realization 
with one rd parameter 0.12

(a) Well oil production rate(a) Well oil production rate

(b) Well gas oil ratio(b) Well gas oil ratio
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Fig 6.10: The red line is the initial guess, green is the target response and 

blue is the response from history matched realization 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Well water production rate(c) Well water production rate
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Case 2 

This case has four producer wells and two injector wells. Simulation details are provided 

in Table 6.6. Fig. 6.11(a) shows the domains pertaining to 50% threshold after scaling the 

eigenvectors. Three domains are delineated i.e. regions corresponding to the 1st positive, 

2nd positive and 4th positive eigenvectors. The total variance extracted by first five 

eigenvectors is 99.4%. Different domains are perturbed at different nodes of the cluster. 

As in case 1, six outer loops and six inner loops have been performed on each domain.  

The perturbed realizations are then merged. The merged realization has smaller objective 

function compared to the starting guess. The merged realization is then subjected to full 

field parameter perturbation. The objective function values are listed in Table 6.7. 

Objective function was reduced to 20% of the original after 36 iterations in the merged 

50 % case. Fig. 6.11(b) shows the realizations after perturbing different domains at 

different nodes of the cluster. Fig. 6.11(c) shows the merged realization. Fig. 6.11(d) 

shows the final history matched realization after global perturbation.  

 
 
Table 6.6: Reservoir model parameters for case 2 of History matched examples 
 
 

 

 

 

 

 

 

 

 
 

 

 
 
 
 

 

Phases Present Oil, Water and Gas

Reservoir Dimensions 100*100*1

Grid block Dimensions (ft) 100*100*20

Porosity 0.25

Number of wells 6

Well coordinates - Producers (25, 85); (80,90); (66,16); (25,40)
Well coordinates - Injectors (40,22); (50,70)
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Fig 6.11: (a) Domains for 50% threshold  (b) Realizations after 

perturbing domain wise (c) Merged realization  (d) Realization after 

perturbing the merged realization by one  deformation parameter 

(b) 

 

Merging 

(a) 

(c) (d) 

Injector 

Producer 
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Table 6.7: Showing the objective function for 6-well case 
 
 

 

 

 

 

 

 

 

Comparison of Case 1 and 2  

The flow sensitivities at a grid block are influenced by the amount of flow through the 

grid block and the difference between the initial guess and the reference realizations of 

the permeability field. For the 1-well case the difference between the initial guess and the 

actual permeability field dominates the domain delineation. It can be seen from Fig. 

6.9(b) that the transition between high to low permeability regions is generally identified 

as a separate domain. For the 6-well case the boundary conditions at the wells become the 

dominant influence in delineating zones (Fig. 6.11(a)). In the 1-well case the merged 

realization for 80% threshold has significantly less objective function than the initial 

realization. While for 6-well case, the objective function does not decrease as much as 

Case-1 in the merged case for 50% threshold. This is because of more interactions 

between nearly located wells. The objective function value is sensitive to the threshold 

value used for delineating the zones. The objective function increases by a factor of 12.5, 

if 80% threshold is taken for 6-well case. This is due to the fact that higher threshold 

increases the correlation among the domains. 

 

Ideally domains should be recalculated as soon as some changes are induced in the 

permeability field. That would imply recalculation of costly Hessian matrix. Since there 

6 well Case Objective function

Initial Guess 95.52

After perturbing 1p (50% case) 47.26

After perturbing 1n (50% case) -

After perturbing 2p (50% case) 38.18

After perturbing 2n (50% case) -

After perturbing 3p (50% case) -

After perturbing 3n (50% case) -

After perturbing 4p (50% case) 28.01

After perturbing 4n (50% case) -

After perturbing 5p (50% case) -

After perturbing 5n (50% case) -

Merged Realization (50% case) 18.72

Merged Realization (80% case) 1195.75

After perturbing merged realization from 

50% case with one rd parameter 19.35
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is a gradual deformation of permeability field in the approach discussed, frequent 

updating of domains is not needed.  

 

In order to further speed up the domain delineation process, the feasibility of using a 

reduced duration of production record for establishing the domains was assessed. A test 

case was run and sensitivity analysis was performed corresponding to different time 

durations of production record. The sensitivity coefficients do change in magnitude as the 

duration changes. But the relative values remain same (if all other factors i.e. 

permeability, well constrains, number of wells etc. remains the same). Hence the 

sensitivity coefficients on a percentile scale remain almost the same. This is shown in 

Fig. 6.6. This implies that sensitivity coefficients obtained after a shorter duration would 

be sufficient for delineating the domains, thereby expediting the process. 

 

In all cases after scaling of eigenvectors, domain corresponding to either positive or 

negative component for a particular eigenvector is minimal and can be safely neglected. 

In case the regions corresponding to positive and negative eigen components for a 

particular eigenvector, cover significant grid block volume, they should not be perturbed 

on different nodes since they are not orthogonal. As well they cannot be perturbed on the 

same node using one-dimensional optimization since the regions correspond to opposite 

sensitivity regions (Fig.6.7 (c) & (g)). Therefore 2D optimization routine may be needed 

for theses special cases. 
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7. SENSITIVITY COEFFICIENTS AND CORRELATION 

COEFFICIENTS FROM A SET OF EQUI-PROBABLE 

REALIZATIONS 

Calculating sensitivity coefficients is costly. Therefore an attempt was made to get the 

same information from flow simulations carried on a set of realization. In the 

conventional sensitivity analysis all other parameters except the one to which sensitivity 

is sought is kept same. In the cases discussed in this section the approach is to allow all 

the parameters to vary simultaneously such that parameters honor the prior variogram.   

 

In all the cases discussed in this chapter there is  

� One injector at (1,1,1) and a producer at (99,99,1)     

� 100*100*1 gridblocks  

� Three phases are present  

� Injector is injecting water at a constant rate of 7500 bbl/day  

 

Sensitivity coefficients and correlation coefficients are calculated using the following 

procedure 

a) Flow simulations are performed on the multiple realizations. 

b) For every pair of realization, calculate the difference between the flow response 

(e.g. OPR, GOR etc.) parameter, ∆∆∆∆f. Also calculate the difference between the 

permeabilities, ∆∆∆∆x, for the same pair for respective grid blocks. Calculate the 

sensitivity, ∆∆∆∆f/∆∆∆∆x, for the pair of realization in consideration.  

c) Perform step (b) for each pair of realizations. Calculate the mean of the 

sensitivities thus calculated. 

d) Correlation coefficients may also be obtained between the permeabilities at a 

particular grid block across all the realizations and the corresponding flow 

responses for the set of realizations.  
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The visual basic code for calculating sensitivities is attached as ‘Sensitivity Code 7.1’ in 

the appendix.  

Case 1 
 

The realizations for this case and the flow response are attached as ‘Case1_7.2’ & 

‘Case1_7.3’ respectively in the appendix. The eclipse data file with full details is attached 

as ‘CASE1.DATA’ in the appendix. 

 

 

 

 

 

 

 

 

 

          

Fig 7.1: (a) to (d) are the four of total 50 realizations used for the analysis

          

     

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) (d) 
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The following are the plots for sensitivities and the correlation coefficients obtained using 

the 50 realizations.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.2: Averaged sensitivities calculated for the set of realizations with 

respect to a) Oil Production rate b) Well production rate c) Gas oil 

ratio d) Total oil production e) Total water production 

 

 

 

(a) (b) (c) 

(d) (e) 
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Fig 7.3: Correlation coefficients calculated over the set of realizations  

with respect to: a) Oil Production rate at 500 days b) Well 

production rate at 500 days c) Gas oil ratio at 500 days d) Oil 

Production rate at 2000 days e) Well production rate at 2000 days f) 

Gas oil ratio at 2000 days 

 
 
 
 
 

 

 

 

 

(a) (b) (c) 

(d) (e) (f) 
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Case 2  

The realization used for this case is constructed from different r d  guesses with a seed 

realization. A total of 51 realizations were used for the analysis. The realizations for this 

case and the flow response are attached as ‘Case2_7.4’ & ‘Case2_7.5’ respectively in the 

appendix. The eclipse data file with full details is attached as ‘CASE2.DATA’ in the 

appendix. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7.4: Permeability realization corresponding to different r d values  

r d  = 0         b) r d  = 0.5          c) r d  = 1 

 
 
 
 
 
 
 
 
 
 
 

 

(a) (b) (c) 
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Fig 7.5: Correlation coefficients calculated over the set of realizations at 

2000 days with respect to  a) Oil Production rate  b) Well 

production rate  c) Gas oil ratio 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 

(a) (b) (c) 



 103

Case 3  

In this case the effect of correlation lengths on the correlation coefficients was 

investigated. The realization sets used for this case is constructed from different r d  

values with a seed realization. A total of 51 realizations were used for the analysis. The 

realization set and the corresponding flow responses are attached as ‘Case3_7.6’ in the 

Appendix. The flow responses after 2000 days are provided at the end in the excel file 

‘Case3_7.6’ in the respective sheets. The eclipse data file is the same as used for Case 2. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7.6: Correlation coefficients calculated over the set of realizations 

(with correlation lengths 20, 20) at 2000 days with respect to a) Oil 

Production rate b) Well production rate c) Gas oil ratio 

 
 
 
 
 
 
 
 
 
 
 

(a) 

 

(b) (c) 
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Fig 7.7: Correlation coefficients calculated over the set of realizations 

(with correlation lengths 10, 10) at 2000 days with respect to a) Oil 

Production rate b) Well production rate c) Gas oil ratio 

 
 
 
 
 

(a) 
(b) 

(c) 
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Fig 7.8: Correlation coefficients calculated over the set of realizations 

(with correlation lengths 5, 5) at 2000 days with respect to a) Oil 

Production rate b) Well production rate c) Gas oil ratio  

          

          

        

(a) (b) 

(c) 
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Fig 7.9: Correlation coefficients calculated over the set of realizations 

(with correlation lengths 5, 10 in x and y directions respectively) at 

2000 days with respect to a) Oil Production rate b) Well production 

rate c) Gas oil ratio 

 
 

(a) 
(b) 

(c) 
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Case 4 

In the three cases discussed above there is no second derivative information, which is 

needed to delineate the least correlated regions. Also the regions obtained were not near 

the wells, which is counterintuitive.  

So a different methodology was adopted. The method is simple and is described below:  

1) Simulate a flow parameter (Pressure, Saturations etc.) at different gridblocks 

from the set of realizations 

2) Obtain the variance of the flow parameter across different realizations at each 

gridblock. The variance is intuitively analogous to sensitivity.  

3) Calculate the covariance matrix for the simulated flow parameters from the 

multiple simulated values at each gridblock. 

4) Subject the covariance matrix to Principal Component Analysis and obtain the 

most sensitive and least correlated regions. 

 
For this case there are   

� Three producers at (10,10,1), (10,90,1), (90,40,1) and injectors at (20,10,1), 

(20,90,1), (90,60,1)     

� 100*100*1 gridblocks  

� Three phases are present  

� Simulation is run for 500 days 

� Injector is injecting water at a constant rate of 3000 bbl/day  

� Producers are Oil rate controlled at 3000 bbl/d and a lower BHP limit of 600 psia  

 

This method gives extremely good results and provides the regions, which could be 

intuitively justified. 
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Fig 7.10 (a): Variance of the pressure or the sensitivities from a set of 

realizations; The figure has been scaled down to 50*50 so that the 

final covariance matrix used for PCA is manageable. (b) Most 

sensitive and least correlated regions obtained after subjecting the 

covariance matrix to PCA. 

 

 

 

 

(a) (b) 
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The following figures demonstrate the effect of change in underlying permeability 

realizations to the sensitive regions. The right figure (fig 7.11(a)) corresponds to 

realizations with correlation lengths 30 and 5 units in y and x directions respectively. The 

left figure (fig 7.11(b)) corresponds to realizations with correlation lengths 5 and 30 units 

in y and x directions respectively. 

 

 

 

 

 

 

Inferences 

 
 
 
 
 
 
 
 
 
 

Fig 7.11: Variance of the pressure or the sensitivities 

 
 
 
 
 
 
 
 
 
 
 

(a)  
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The following inferences can be made from the cases discussed above  
 

1. Sensitivity coefficient map obtained as per the procedure mentioned earlier is 

very smooth with no information content in it. The map seems to be white noise 

with no structure. A reason could be that the averaging process wipes out the 

correlation structure of the sensitivity coefficients. 

 

2. Correlation coefficients do have some information stored in them. Further 

investigation is needed to in order to formulate a scheme to use this information 

for history matching. 

 

3. Correlation coefficients appear to change as a function of time. Certain regions, 

which were highly correlated at earlier times, may become less correlated to the 

flow response with time. 

 

4. Correlation coefficient maps appear to be become less continuous as the 

correlation lengths decreases in the set or realizations used to calculate the 

correlation lengths. There is high degree of association between the correlation 

lengths of the underlying set realizations and the structure obtained on the 

correlation coefficient map.  

 

5. The correlation coefficient approach provides the degree to which the 

permeability at a particular gridblock is correlated with the flow response from 

various realizations. It might give an insight to sensitivities, but these are 

inadequate to get least correlated regions, which are instrumental for the 

distributed computing application.  In other words second derivative information 

is needed for distributed computing. A plausible approach may be calculating the 

covariance among the correlation coefficients. This could be done by having 

multiple sets of realization giving multiple sets of correlation coefficients. Theses 
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multiple correlation coefficient map may then be used for calculating the 

correlation among the correlation coefficients.   

 

6. There is little resemblance between the sensitivity coefficients obtained for the 

Simopt  and the correlation coefficients obtained from the set of realizations. 

This might be attributed to the fact the sensitivity coefficients calculated using 

Simopt are based on one realization. Hence it is realization specific, while the 

correlation coefficient gives a generic parameter quantifying how the flow is 

affected if the permeability is changed at particular grid block across the set of 

realization. The other point to be noted is that permeability at other locations are 

also getting changed in set of realizations used for calculating the correlation 

coefficients. 

 

7. The most sensitive and least correlated regions defined based on the PCA on 

the covariance matrix of a flow parameter (which was Pressure in Case 4 in 

Chapter 7) simulated over a set of realizations, gives good results and 

provides the regions which could be intuitively justified. One of the weak 

point of this methodology is that it doesn’t take into account the history (or 

the reference). In the conventional sensitivity analysis, which takes into 

account the history, one can ascertain whether the model parameter needs to 

increased or decreased from the sign of the sensitivity coefficient. But this 

approach would only provide absolute sensitivity of the model parameter, 

which serves well the requirements of the current project, because the 

perturbation is not guided by the sign of sensitivity coefficient.  
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EXPERIMENTAL METHODS/APPROACH 

In this project we are developing algorithms and implementing them on computers.  The 

scope of work does not include experiments.  

RESULTS AND DISSCUSSIONS 

1. A computer code implementing the Probabilistic approach of History 

matching has been developed and validated on various test cases. 

 
2. Global rather than well specific objective function should be minimized by 

perturbing permeability values locally within domains.   

 

3. Reservoir regions based on sensitivity coefficients calculated for an initial 

guess of the permeability field that is far from the “truth” may not be very 

reliable. The results with the ensemble of realizations indicate that it may be 

better to base the reservoir regions on the average response of the ensemble 

rather than use any particular initial guess. 

 

4. These domains are delineated on the basis of sensitivity and least correlation. 

Principal component analysis of the Hessian matrix and subsequent scaling 

provide the domains that are sensitive and least correlated. This has been 

verified from test cases. Regions defined on the basis of sensitivity increases 

the effectiveness of the history matching process. The least correlation criteria 

make the problem amenable to distributed computing and hence imparting 

efficiency in terms of computational time. Least correlation also helps in 

retaining the simplicity of 1-D optimization. 

 

5. The grid block volume cut-offs should be reasonable such that the regions 

covered by eigenvectors are not too large (which increases the correlation) nor 

too small (implying ineffective history matching). If the wells are located near 
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to each other then it becomes difficult to isolate least correlated regions and 

the merged realization may have higher objective function. In these cases the 

smaller thresholds for domain delineation should be used. 

 

6. In case there is high degree of overlap among the eigen components of 

different eigenvectors, rotation of eigenvectors by relaxing the constraint of 

sensitivity but maintaining orthogonality has been suggested. This approach 

has not yet been tested on history matching examples. 

 

7. Alternate ways of domain decomposition   

a. Principal component analysis of permeability covariance matrix 

i. Regions with the highest variance are identified as the most sensitive. 

Regions with less covariance (different facies) among them are 

identified as least correlated. The drawback being that the analysis is 

just based on the static data. It is very much possible that there is very 

high flow across the facies due to particular well locations and facies 

are correlated from flow perspective but not statically. Also high 

variance (or high sensitivity statically) regions may have not much 

flow associated with them and thus would not affect the objective 

function in any significant way. 

 

b. Domain decomposition based on porosity and thickness  

i. From the test cases it appeared that sensitivity coefficients are a strong 

function of the permeability realization in consideration. Geobodies 

defined on the basis on porosity and thickness were inadequate to 

define the domains. 

 
8. In order to counter the high computational cost associated with sensitivity 

analysis an approximation based on analysis of limited duration of production 

data has been proposed.  
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9. The following codes are ready to be used 
i. A visual basic code for domain delineation. This code is very user 

friendly and requires minimal inputs like number of grid blocks and 

the volume threshold.  Domains can be visualized layer by layer. The 

code provides the indicator -5 to + 5 at each gridblock, depending 

upon which eigenvector dominates at that particular gridblock. The 

problem of having the negative and positive regions for a particular 

eigenvector is not encountered in any of the cases till tested. In those 

cases this problem arises, the two dimensional optimization may be 

needed. 

 

ii. A visual basic code for the modified geobodies as mentioned in 

chapter. 

 

iii. A script to distribute the simulation over on different nodes of the 

cluster  

 

10. Sensitivity coefficients and Correlation coefficients from a set of realizations 

� Sensitivity coefficient map obtained as per the procedure mentioned is 

very smooth with no information content in it. The map seems to be white 

noise with no structure. A reason could be that the averaging process 

wipes out the correlation structure of the sensitivity coefficients. 

 

� Correlation coefficients do have some information stored in them. Further 

investigation is needed to in order to formulate a scheme to use this 

information for history matching. 
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� Correlation coefficients appear to change as a function of time. Certain 

regions, which were highly correlated at earlier times, may become less 

correlated to the flow response with time. 

 

� Correlation coefficient maps appear to be become less continuous as the 

correlation lengths decreases in the set or realizations used to calculate the 

correlation lengths. There is high degree of association between the 

correlation lengths of the underlying set realizations and the structure 

obtained on the correlation coefficient map.  

 

� The correlation coefficient approach provides the degree to which the 

permeability at a particular gridblock is correlated with the flow response 

from various realizations. It might give an insight to sensitivities but these 

are inadequate to get least correlated regions, which are instrumental for 

the distributed computing application.  In other words second derivative 

information is needed for distributed computing. A plausible approach 

may be calculate the covariance among the correlation coefficients. This 

could be done by having multiple sets of realization giving multiple set of 

correlation coefficients. Theses multiple correlation coefficient map may 

then be used for calculating the correlation among the correlation 

coefficients.   

 

� There is little resemblance between the sensitivity coefficients obtained 

for the Simopt  and the correlation coefficients obtained from the set of 

realizations. This might be attributed to the fact that the sensitivity 

coefficients calculated using Simopt  are based on 1 realization. Hence it 

is realization specific while the correlation coefficient gives a generic 

parameter quantifying how the flow is affected if the permeability is 

changed at particular grid block across the set of realization. The other 
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point to be noted is that permeability at other locations are also getting 

changed in set of realizations used for calculating the correlation 

coefficients. 

 

� The most sensitive and least correlated regions defined based on the 

PCA on the covariance matrix of a flow parameter (which was 

Pressure in Case 4 in Chapter 7) simulated over a set of realizations, 

gives good results and provides the regions which could be intuitively 

justified. One of the weak point of this methodology is that it doesn’t 

take into account the history (or the reference). In the conventional 

sensitivity analysis, which takes into account the history, one can 

ascertain whether the model parameter needs to increased or 

decreased from the sign of the sensitivity coefficient. But this 

approach would only provide absolute sensitivity of the model 

parameter, which serves well for the requirements of the current 

project, because the perturbation is not guided by the sign of 

sensitivity coefficient. 
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CONCLUSIONS 

A novel methodology for delineating multiple reservoir domains, for the purpose of 

history matching in a distributed computing environment has been proposed and tested. 

The domains are delineated on the basis of sensitivity and least correlation. Sensitive 

regions manner increases the effectiveness of the history matching process. The least 

correlation criteria make the problem amenable to distributed computing and hence 

imparting efficiency in terms of computational time. Least correlation also helps in 

retaining the simplicity of 1-D optimization.  

 

Since delineation of domains would require calculation of Hessian which could be 

computationally costly and as well as would have restricted the current approach to some 

specific simulators, therefore a robust technique to get those regions from a set of equi-

probable realizations has been developed. This technique is easy to implement and 

provides the regions, which could be intuitively justified. 

  

The new thing in this work is scaling of eigenvectors, defining optimal thresholds based 

on grid block volumes and using the thus defined domains for history matching in a 

distributed environment using probabilistic approach. Also a new and robust technique 

has been developed to delineate most sensitive and least correlated regions without 

evaluating the Hessian of the objective function.  

 

The use of flow sensitivities for guiding the permeability perturbation by constraining the 

random number draw such that perturbation is according to flow sensitivity sign has been 

deliberately avoided. The constraint would have improved the convergence but could 

have taken away the freedom in the probabilistic approach to escape the local minima. 

Sampling from a PDF using a random number helps in escaping local minima. But the 

down side is that even higher objective function values may be accepted during the 

iteration. 
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COST AND SCHEDULE SECTION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Categories

Yr. 1-  

9/1/03-

3/31/05 

Budget- 1st 

Increment 

Funding

Funds 

Redirected

Adjusted 

Balance

2nd 

Increment 

Funding 

4/1/05-

3/31/06

Total 

Funding to 

Date thru 

8/31/05

Expenditures 

9/1/03-8/31/04

Expenditures 

9/1/04 thru 

8/31/05 

Total 

Expenditures 

to Date 

8/31/05

Balance 

Remaining 

for period 

9/1/05-3/31/06

Salaries  (12) $82,074 $5,800 $87,874 $83,112 170986 $88,664 $7,007.00 $95,671 $75,315

Fringe Benefits (14) $18,944 $3,500 $22,444 $19,183 41627 $17,946 $647.98 $18,594 $23,033

MO&E $1,875 $1,875 $1,875 3750 2604.17 2571.85 $5,176 -$1,426

Subcontract (67) $0 $0 $0 $12,400 $12,400 $2,914 0 $2,914 $9,486

Tuitition & Fees (71) $13,200 $12,450 $25,650 $13,199 38849 $27,269 $3,253.49 $30,523 $8,326

Travel (75) $2,600 $0 $2,600 $4,941 7541 $3,180 $177.60 $3,357 $4,184

Special Equipment (80) $22,500 -$17,600 $4,900 -$4,900 0 $0 $0 $0 $0

Overhead Expense (90) $63,997 -$4,150 $59,847 $58,306 118153 $55,361 $4,351.53 $59,713 $58,440

INCOME $205,190 $0 $205,190 $188,116 393306 $197,937 $18,009.45 $215,947 $177,359

UT's Cost Share  Breakdown by Account Total for Period 9/1/03-8/31/05

Steven Bryant Salaries $17,030

" FB $4,358

Subtotal $21,388

OH at  50% $10,694 $32,082 Acct # 14-3085-20XX)

Total 

Sanjay Srinivasan Salaries $16,947

" FB $3,909

subtotal $20,856

OH at 50% $10,428

Total $31,284 Acct 14-3085-20XX

Computer Cluster 19558 19558 Accts 20-3085-2457 & 20-3085-2557

UT-Portion - Total Cost Share to date (8/31/05) $82,924

Cost Share Required on $215,947 (expenditures thru 8/31/05) $63,305
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SUMMARY OF SIGNIFICANT ACCOMPLISHMENTS DURING 

REPORTING PERIOD 

1) Robustness of the PCA for domain delineation has been successfully tested. 
 

2) The full algorithm has been tested on 2-D synthetic cases. 
 

3) A new and robust technique has been developed to delineate most sensitive 

and least correlated regions without evaluating the Hessian of the objective 

function. This would eliminate the need of costly Hessian, which could be 

computationally costly, and as well as wouldn’t restrict the current approach 

to any some specific simulator.  

 

FUTURE WORK 

1. Test the methodology on complex 3-D cases.  

2. Integrate the three pieces of code i.e.  

a) Domain delineation code  

b) History matching code  

c) Script used for distributing the simulations 
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