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Disclaimer 
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Abstract 
 
With the recent development of temperature measurement systems, continuous 
temperature profiles can be obtained with high precision.  Small temperature changes 
can be detected by modern temperature measuring instruments such as fiber optic 
distributed temperature sensor (DTS) in intelligent completions and will potentially aid 
the diagnosis of downhole flow conditions.  In vertical wells, since elevational 
geothermal changes make the wellbore temperature sensitive to the amount and the type 
of fluids produced, temperature logs can be used successfully to diagnose the downhole 
flow conditions.  However, geothermal temperature changes along the wellbore being 
small for horizontal wells, interpretations of a temperature log become difficult.  The 
primary temperature differences for each phase (oil, water, and gas) are caused by 
frictional effects.  Therefore, in developing a thermal model for horizontal wellbore, 
subtle temperature changes must be accounted for. 

In this project, we have rigorously derived governing equations for a producing 
horizontal wellbore and developed a prediction model of the temperature and pressure by 
coupling the wellbore and reservoir equations.  Also, we applied Ramey’s model (1962) 
to the build section and used an energy balance to infer the temperature profile at the 
junction.  The multilateral wellbore temperature model was applied to a wide range of 
cases at varying fluid thermal properties, absolute values of temperature and pressure, 
geothermal gradients, flow rates from each lateral, and the trajectories of each build 
section.   

With the prediction models developed, we present inversion studies of synthetic 
and field examples. These results are essential to identify water or gas entry, to guide 
flow control devices in intelligent completions, and to decide if reservoir stimulation is 
needed in particular horizontal sections.  This study will complete and validate these 
inversion studies. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 
In the past decades, thousands of wells have been drilled horizontally and in multiple 
directions to obtain larger contact with the reservoir.  Because of the growing 
complexities of the recent well trajectories, running conventional production monitoring 
tools on appropriate locations has become difficult and costly.  Flow rate, pressure, and 
temperature are the principle parameters to be measured through production logging.  
Continuous profiles of pressure and temperature measurements in a complex well can be 
obtained accurately and inexpensively using the advanced technology of fiber optics.  
Since the first fiber optic sensor was implemented in a well in Shell’s Sleen Field in 1993 
(Kragas, 2001), the use of distributed temperature sensors (DTS) and distributed pressure 
sensors (DPS) has become increasingly common for monitoring producing sections of 
horizontal wells.   

For multi-phase flowing wells, despite the recent advancements in technologies 
and equipments, a comprehensive solution to measuring flow rates and holdups of the 
phases is evasive (Falcone et al., 2002).  However, to take full advantage of intelligent 
wells, which can control inflow capacities from different producing sections without 
interventions, real-time monitoring of the downhole flow conditions such as flow rate 
profiles and locations of excessive water or gas influx is essential.  Therefore, to realize 
the value of intelligent wells, downhole flow conditions are either measured or 
interpreted from measurable parameters (e.g. density, pressure, and/or temperature) in 
horizontal, multi-lateral, or multi-branching wells. 

Temperature logs have been interpreted successfully in vertical wells to locate 
water or gas entry zones, casing leaks, and inflow profiles (Hill, 1990).  Recently, 
interpretations of temperature profiles in horizontal wells have been reported to be useful 
to identify types of fluid flowing to a wellbore (Tolan et al., 2001; Brown et al., 2003; 
Foucault et al., 2004).  However, the inferences described above require a model to 
translate temperature information into flow information.  Although several wellbore 
temperature models are available for vertical wells, there has been little work on the 
thermal modeling of horizontal producerbores. 

The main difference between vertical and horizontal wellbore models lies in the 
variation of temperature and pressure.  In vertical or near vertical wells, the wellbore 
pressure is usually dominated by a hydrostatic difference, and the wellbore temperature 
by the geothermal temperature, causing both wellbore temperature and pressure to change 
with depth.  If a vertical well produces fluid from different depths, the fluids have 
different inflowing temperatures because of the geothermal temperature variation with 
depth.  This difference in inflowing temperature can cause clear changes on a 
temperature log, which can be interpreted to infer the downhole flow conditions.   
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The geothermal temperature variation along a horizontal well is very small. To 
identify the causes of a measured temperature variation, reservoir and wellbore 
temperature models are required to relate a measured temperature to the inflow profile of 
the well.  These models must account for all the subtle thermal energy effects including 
Joule-Thomson expansion, viscous dissipative heating, and thermal conduction. 

 

1.2 LITERATURE REVIEWS 
One of the earliest works on temperature prediction was done by Ramey (1962).  
Ramey’s method approximates the pressure gradient of vertical wellbores by the 
hydrostatic difference, neglecting frictional pressure drop, and assumes steady-state heat 
transfer inside the wellbore and transient conduction from the reservoir.  The solution 
was obtained semi-analytically under these assumptions.  His temperature prediction 
model works for either a single-phase incompressible liquid or a single-phase ideal gas in 
vertical injection and production wells.  Sagar (1991) extended Ramey’s work to 
inclined wellbores.  Hasan et al. (1998) applied an energy equation for multi-phase flow 
and calculated temperature profile and history numerically.  Hagoort (2004) revisited 
Ramey’s equation and compared it to the rigorous solution.  He confirmed that Ramey’s 
equation works for broad situations except for early periods of production, and also 
determined the periods for which Ramey’s approximate solution could be applied. 

For horizontal or near-horizontal wells, the hydrostatic difference is zero or very 
small.  Dikken (1990) presented a coupled reservoir and wellbore equations to simulate 
horizontal well production.  In developing the model, he considered wellbore pressure 
as a function of wellbore and reservoir pressures, and flow rate of the well.  He also 
showed that neglecting wellbore pressure drop could result in errors in estimating 
production rate profiles.  Hill and Zhu (2006) introduced a dimensionless number that 
represents the relative importance of the horizontal wellbore pressure drop to the 
reservoir pressure drawdown and categorized the situations where the wellbore pressure 
could be regarded as constant.   

When the wellbore is continuously receiving mass from the formation (radial 
influx), the frictional pressure drop is different from that which occurs in pipe with no 
inflow along it..  Yuan et al. (1998) and Ouyang et al. (1998) conducted horizontal 
wellbore flow experiments to estimate the pressure drop caused by radial influx in a 
porous pipe and correlated new friction factors for horizontal producerbores.   

Stone et al. (2002) proposed a thermal simulation model with multi-segment 
wells.  They applied nodal analysis to the coupled problem and solved the equations 
segment by segment.  Ouyang and Belanger (2006) presented an inversion study of DTS 
data.  They concluded that flow rate could be properly estimated based on DTS data for 
wells oriented from vertical to 25o and also stated that the inversion would not be 
performed in the wells inclined closer to horizontal than this limit by showing numerical 
experimental results from the model they developed.  However, the theoretical details of 
the study were not revealed. 
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1.3 OBJECTIVES 
The primary objective of this study is to develop an interpretation method of temperature 
and pressure data from horizontal or near-horizontal wellbores.  There are three 
significant differences in concepts from vertical wells.  First, the geothermal 
temperature that surrounds the horizontal wellbore is almost constant.  Second, the 
frictional pressure drop is the dominant effect on the pressure profile while in vertical 
wells the gravitational pressure drop is the most important term.  Finally, because of 
much longer exposed length to the formation, the wellbore continuously gains or loses 
convective energy from or to the formation as well as mass along its path.   

Except for the production system that is stimulated by thermal method (wellbore 
heating, hot-fluid injection, or combustion), the isothermal system has been assumed in 
petroleum engineering applications.  However, to identify the causes of a measured 
temperature variation in the normal horizontal well production system, we must consider 
subtle temperature behaviors in the wellbore and the reservoir.  

In this project, we derive the governing equations for the wellbore and the 
reservoir then combine the equations.  The derived equations also work for inclination 
wells including vertical wells.  The coupled equations are solved simultaneously for 
flow rate, pressure, and temperature profiles along the wellbore by applying successive 
substitution.  Using the temperature and pressure prediction model developed, we infer 
the features and sensitivities of temperature or pressure profiles under various production 
scenarios, such as water entry.   

This research also proposes an interpretation method of temperature and pressure 
profile data to downhole inflow conditions.  We set the parameters to be estimated as 
productivities or inflow rates of each segment.  From continuous temperature and 
pressure data along the well, we invert them into the parameters by applying the 
Levenberg-Marquardt algorithm. 
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CHAPTER 2 

EXECUTIVE SUMMARY 

The increasing deployment of distributed temperature and pressure measuring devices in 
intelligent well completions provides a means to monitor the inflow profiles without any 
well intervention.  If the profiles of pressure and/or temperature are affected by the 
inflow profiles of the various phases being produced, we would be able to estimate these 
flow profiles by inverting measured temperature and pressure profiles.  This inversion is 
particularly challenging for horizontal wells because the pressure drop along the well is 
usually small, and temperature changes, which are primarily caused by Joule-Thomson 
effects, are also small. 
 The objectives of this research are twofold.  The first goal is to develop a 
comprehensive prediction model of temperature and pressure behavior in horizontal 
laterals, build sections, and junctions.  Second, we develop an interpretation method of 
distributed temperature and pressure data into downhole flow conditions. 

This report first presents a simple and comprehensive model for predicting the 
temperature profile in a horizontal well during normal production (steady state flow).  
Prediction of the wellbore temperature profile requires modeling of all thermal effects 
occurring in the reservoir and in the wellbore itself.  For the reservoir temperature 
model, we couple mass and energy balances of fluid flow in a permeable medium in a 
rectangular homogeneous reservoir with no flow boundaries at the top and bottom of 
reservoir. For the two flow regions (radial and linear) considered in the reservoir, the 
equation is solved analytically in one dimension.  This analytical solution is then 
coupled with a wellbore temperature model using a multi-segment technique to obtain the 
fluid temperature profile along the wellbore.  The wellbore model presented here  
accounts for Joule-Thomson effects, and convective and conductive heat transfer from 
the formation.  It can model both compressible and incompressible single/multi phase 
flow in a wellbore with an arbitrary inclination.  

The primary results of the model are estimates of the extent of temperature 
change during flow.  Results show that temperature changes on the order of a few 
degrees are possible and temperature changes of this magnitude are certainly detectable 
with current technology.  A second result is a demonstration of the inference of a single 
phase and multiphase flow profiles from a synthetic case.  Sensitivity studies with the 
model illustrate the flow conditions that cause measurable temperature changes or 
anomalies that could be recognized in an analysis of distributed temperature 
measurements. 

We further developed a numerical temperature model of a bottom water drive 
reservoir to demonstrate the uses of temperature profiles in detecting water entries driven 
by water coning.  Water in this numerical model is initially located in a warmer zone 
below a horizontal well.  Results show that oil or water can enter the wellbore 2-3 oF 
higher, while gas can enter with 5-6 oF lower, than the geothermal temperature.  Inflow 
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temperature causes the slope of the wellbore temperature profile to change notably, 
depending on the flow rates and types of fluid entering.  
 We also present an inversion method that interprets distributed temperature and 
pressure data to obtain flow rate profiles along horizontal wells.  The inversion method, 
which is based on the Levenberg-Marquardt algorithm, is applied to minimize the 
differences between the measured profiles and the profiles calculated from a forward 
model of the well and reservoir flow system. The minimization was accomplished by 
adjusting the well's inflow profile.   
 We present synthetic and field examples in this report to illustrate how to use the 
inversion model to interpret the flow profile of a horizontal well. The synthetic examples 
show that even with single-phase oil production, the inflow profile can be estimated, in 
many cases, with the inversion method developed. The method is even more robust when 
water or gas is produced along discrete intervals in an oil production well because of the 
unique temperature signature of water or gas production. We applied the inversion 
method to temperature and pressure profiles measured with production logs in a North 
Sea horizontal oil producer. The method successfully determined the profile of oil and 
water entry in a region of large water influx; the profile determined compared well with a 
flowmeter derived profile. 

Finally, we show a temperature estimation model for build sections and junctions.  
The model predicts the temperature profiles in the build sections connecting the laterals 
to one another or to a main wellbore, accounting for the changing well angle relative to 
the geothermal temperature profile.  In addition, energy balance equations applied at 
each junction predict the effect of mixing on the temperature above each junction.  The 
sensitivity studies in the build section and junction are shown in this report.  



CHAPTER 3 

RESERVOIR MODEL 

3.1 INTRODUCTION TO THERMAL RESERVOIR MODEL 
In most thermal vertical wellbore models, the fluid is assumed to arrive at the wellbore 
with the same temperature as the geothermal temperature.  Some authors included 
warming or cooling effects near the wellbore vicinity before the fluid enters the wellbore 
(Ouyang and Belanger, 2006; Maubeuge et al., 1994).  However, these warming or 
cooling effects resulted from the Joule-Thomson effect (see Appendix A) are relatively 
small compared to the temperature variation in depth caused by geothermal temperature 
gradient.  Therefore, these effects are in general negligible in vertical wellbore 
modeling. 

Under the condition of normal production, a temperature difference on the order 
of a few degrees Fahrenheit from the geothermal temperature can possibly occur through 
the transport in porous media (Dawkrajai et al., 2006; Dawkrajai, 2006).  These 
temperature changes, which are often neglected in vertical well modeling, would play an 
important role in horizontal well modeling since there would be little differences in 
geothermal temperature along horizontal wells.  Hence, to develop a prediction model 
for horizontal well interpretations, we also need equations for the reservoir flow and have 
to couple them with the wellbore equations. 
 

 
Fig. 3.1 Box-shaped reservoir with constant fluxes from the sides. 

 

3.2 WORKING EQUATIONS FOR RESERVOIR FLOW 
We consider a box-shaped reservoir fully penetrated by a horizontal well as depicted in 
Fig. 3.1 with no-flow lateral boundaries and constant fluxes from the sides.  The 
fundamental equations describing fluid flow in a reservoir are mass balances, Darcy’s 
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law, and energy balance.  These equations are very general and used in many 
engineering applications.  They are discussed and formulated to fit the scope of this 
study. 

3.2.1 Mass balance 
A starting point for studying fluid flow is the mass balance.  It is the conservation of 
mass that transports through a unit area in unit time.  By understanding the mechanisms 
of mass flow, we can infer the velocity or pressure distribution of the fluid in a reservoir.  
The velocity or pressure distribution is then coupled with the energy equation to obtain 
temperature profiles in the reservoir. 

The general form of the mass balance that can apply directly to fluid flow in 
permeable media for any number of components, phases, and chemical reactions is 
explained in Chapter 2 of Lake (1989).  It is simplified here for single phase and steady-
state flow condition. 

( uρ )ρφ ⋅−∇=
∂
∂

t
.         (3.1) 

where  is the Darcy velocity (u φvu = ) and the relationship between the pressure is 
given as, 

)( gku ρ
µ

+∇⋅−= p .        (3.2) 

where k is the permeability and µ  is the viscosity.  The mass balance (Eq. 3.1) is 
typically expressed in terms of pressure by substituting Darcy’s law (Eq. 3.2).  Dropping 
time derivative term, we obtain 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∇⋅⋅∇=

⋅−∇=

)(

0

gk

u

ρ
µ

ρ

ρ

p
.        (3.3) 

For an isotropic and homogeneous reservoir, neglecting gravity, Eq. 3.3 becomes 

( pp ∇⋅∇+∇= ρρ 20 ) .        (3.4) 

Dividing by ρ  and expanding ρ∇  yield 

( )

( )ppcp

pp
p

p

∇⋅∇+∇=

∇⋅∇
∂
∂

+∇=

2

2 10 ρ
ρ ,       (3.5) 

where c is the compressibility of the fluid.  The second term is usually negligible for a 
slightly compressible fluid. 
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3.2.1 Energy balance 
A brief derivation of the thermal energy balance is presented here.  Rigorous detail is in 
Bird et al. (2002) and Sandler (1999).  First, we start from the flowing fluid. 

( ) gτvvv ρρρ +⋅∇−∇−⋅−∇=
∂
∂ p
t

,      (3.6) 

where  is the shear stress tensor.   τ
The momentum is usually viewed as a force, thus; multiplying force by velocity 

gives the mechanical energy.  Knowing that, we can take the dot production of the 
velocity vector, v, with the momentum balance in Eq. 3.6.  The result is the mechanical 
energy balance shown in Eq. 3.7. 

( ) ( ) ( ) gvvτvτvvv ⋅+∇−−⋅⋅∇−⋅∇−−⋅∇−⎟
⎠
⎞

⎜
⎝
⎛⋅−∇=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂ ρρρ :

2
1

2
1 22 ppvv

t
. 

           (3.7) 
The general form of the total energy balance includes kinetic energy, internal 

energy, heat conduction, work done on the flowing fluid by pressure forces, external 
forces (gravity) and viscous forces.  This total energy balance can be written below. 

( ) ( ) gvvτvτ

vv

⋅+∇−−⋅⋅∇−

⋅∇−∇⋅∇+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⋅−∇=⎟

⎠
⎞

⎜
⎝
⎛ +

∂
∂

ρ

ρρρρ

:
2
1

2
1 22 pTKUvUv

t T , (3.8) 

where U is the internal energy and KT is the total thermal conductivity of rock and fluid.  
Subtracting the mechanical energy balance in Eq. 3.7 from the total energy balance in Eq. 
3.8 yields the thermal energy balance from which temperature of fluid can be obtained as 

( ) ( ) ( vτvv ∇−+⋅∇−∇⋅∇+⋅−∇=
∂
∂ :pTKUU
t Tρρ ) .  (3.9) 

Eq. 3.9 is one of the most useful forms of the microscopic energy balance in engineering 
thermodynamics and fluid mechanics.  The left side describes the accumulation of 
internal energy per unit volume.  The transport terms on the right side are the internal 
energy changes caused by convection, conduction, fluid expansion, and viscous 
dissipation, respectively.  For steady-state flow, the time derivative is dropped.  The 
equation is in the following form. 

( ) ( )vτvv ∇−−∇⋅∇−⋅∇+⋅∇= :0 TKpU Tρ .     (3.10) 

To express the thermal energy balance in terms of measurable (sensible) 
quantities ( ,T ), we substitute the definition of enthalpy, H, which is given by p

ρ
pUH += ,         (3.11) 

Substituting Eq. 3.11 into Eq. 3.10 gives 
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):()()(0 vτvvv ∇−−∇⋅∇−⋅∇+⋅∇−⋅∇= TKppH Tρ .   (3.12) 

Expanding the first term on the right side, we have 

):()()()(0 vτvvvv ∇−−∇⋅∇−⋅∇+⋅∇−⋅∇+∇⋅= TKppHH Tρρ .  (3.13) 

Assuming spatially constant porosity, the mass balance (Eq.3.3) becomes 
( )
( v
u
ρφ )
ρ
⋅∇=
⋅∇=0

.         (3.14) 

Therefore, the second term on the right side of Eq. 3.13 is zero.  We obtain 

):()()(0 vτvvv ∇−−∇⋅∇−⋅∇+⋅∇−∇⋅= TKppH Tρ .   (3.15) 

 Enthalpy is a function of temperature and pressure and can be expressed as 

( )dpTdTCdH p β
ρ

−+= 11 ,       (3.16) 

where  is the heat capacity, and pC β  is the coefficient of isobaric thermal expansion 
defined as 

PT
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
ρ

ρ
β 1 .         (3.17) 

From the relationship in Eq. 3.16, Eq. 3.15 becomes 

( )

):(

):()(110

vτvv

vτvvv

∇−−∇⋅∇−∇⋅−∇⋅=

∇−−∇⋅∇−⋅∇+⋅∇−⎥
⎦

⎤
⎢
⎣

⎡
∇−+∇⋅=

TKpTTC

TKpppTTC

Tp

Tp

βρ

β
ρ

ρ
. (3.18) 

The  term is the viscous dissipation heating that describes the 
irreversible degradation of mechanical energy into thermal energy.  The research and 
discussion on it is ongoing.  This term is sometimes viewed as an entropy generation in 
thermodynamics, which means that it is always positive (heating) for a Newtonian fluid.  
For special fluids, the term can be negative because some energy may be stored as elastic 
energy (Bird et al., 2002).  

):( vτ ∇−

):( vτ ∇− is commonly substituted by ( )p∇⋅− v  for a flow 
governed by Darcy’s law; see Ingham et al. (1990) and Al-Hadhrami et al. (2002) for 
details.  This substitution makes Eq. 3.18 become a complete energy balance of steady-
state flow. 

The heat conductivity is the effective heat conductivity, , which combines 
both fluid and rock conductivity.  Empirical expressions for  can be found in the 
literature (Lake, 1989).  For a fluid filled consolidated sandstone, an example expression 
is given as 

TK

TK
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⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

− 30.4482.033.0

)1(
57.41299.01

sd

fl

a

fl
dT K

K
K
K

KK
ρ
ρ

φ
φ

.  (3.19) 

where the subscripts fl, a, and d refer to fluid, air and dry respectively.   depends 
weakly on temperature and is treated as a constant here.  The main assumption is that 
the temperature of flowing fluid is identical to the temperature of the rock.  This 
assumption is valid for continuous flow (steady-state) because changes in a flow rate are 
much slower than the response time of any sensor.  Finally, replacing the interstitial 
velocity, v, with the Darcy velocity, u, the equation becomes 

TK

pTKpTTC Tp ∇⋅+∇⋅∇−∇⋅−∇⋅= uuu βρ0 .     (3.20) 

The first term is thermal energy transported by convection.  The second term is 
thermal energy (cooling) caused by fluid expansion.  The third term is thermal energy 
by heat conduction, and the last term represents viscous dissipation.   

 

3.3 INFLOW TEMPERATURE ESTIMATION 
Inflow temperature can be estimated by solving the equations derived in the previous 
section.  For the reservoir with horizontal well shown in Fig. 3.1, the pressure drop in 
the reservoir can be obtained by integrating Darcy’s law along the streamline.  Furui et 
al. (2003) investigated the geometry of streamlines from a finite element simulation and 
approximated the pressure profile in the reservoir by a composite of 1D radial flow near 
the well and 1D linear flow farther from the well as drawn in Fig. 3.2.  They estimated 
the distance from the wellbore where linear streamlines become radial as h/2.  Their 
solution corresponds to the analytically derived solution by Butler (1994).   

We solve the reservoir equations following the streamline geometry shown in Fig. 
3.2.  Firstly, we solve the equations analytically and then approximate the solution to a 
simpler expression that gives almost an identical answer to the rigorous solution. 
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Fig. 3.2 Geometry of the streamlines. 

 

3.3.1 Analytical solution 
Following the reservoir streamline geometry, the pressure relationship in a 1D Cartesian 
coordinate (y-direction) is described by Darcy’s law as

dy
dpku y µ

−= ,         (3.21) 

In term of the volumetric flow rate, Eq. 3.21 becomes 

dy
dpk

Lh
q

µ
−=

2
,         (3.22) 

where q, L, and h are the flow rate, the length of well, and the thickness of the reservoir 
respectively.  In linear coordinate, the energy balance becomes 

02

2

=+−−
dy
dpu

dy
TdK

dy
dpTu

dy
dTuC yTyyp βρ .     (3.23) 

Substituting Eq. 3.22 into Eq.3.23 and rearranging yield 

0
222

22

2

2

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−

hL
q

kK
T

hL
q

kKdy
dT

hL
q

K
C

dy
Td

TTT

p µβµρ
.   (3.24) 

Solving the second-order ordinary differential equation, we obtain 

β
1

21 ++= −+ ymym eLeLT ,        (3.25) 
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where 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
±=±

TT

p

T

p

kKK
C

K
C

hL
qm βµρρ 4

4

2

.      (3.26) 

1L and  are integration constants to be determined by boundary conditions.  2L
Similarly, we have for the radial flow portion, 

dr
dpk

rL
q

µπ
−=

2
.         (3.27) 

In radial coordinates, the energy balance becomes 

01
=⎟

⎠
⎞

⎜
⎝
⎛−+−

dr
dTr

dr
d

r
K

dr
dpu

dr
dpuT

dr
dTuC Trrrp βρ .    (3.28) 

Substituting Eq. 3.27 into Eq. 3.28 gives 

0
22

22
2

2
2 =−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−

kL
q

kL
Tq

dr
dTr

q
KLC

dr
Tdr

q
KL T

p
Tt

π
µ

π
βµπ

ρ
π

.  (3.29) 

Solution to this second-order differential equation is given by 

β
1

21 ++= −+ nn rRrRT ,        (3.30) 

where 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
±=±

TT

p

T

p

kKK
C

K
C

L
qn µβρρ
π

4
4

2

.      (3.31) 

1R  and  are integration constants. The boundary conditions are as follow:  2R
At the external reservoir boundary, temperature is known (geothermal temperature) 

oYy
TT =

=
2

.          (3.32) 

Temperature and heat flux is continuous at the boundary between radial and linear 
elements 

22
hyhr

TT
==

= ,         (3.33) 

and 

22
hy

hr dy
dT

dr
dT

==

= .         (3.34) 

Heat flux is continuous at the wellbore. 
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( wrr
rr

T TT
dr
dTK

w
w

−=
=

=

α ).       (3.35) 

where α  is the overall heat transfer coefficient between the wellbore and the formation 
(see Appendix B).  The last boundary condition makes the inflow temperature 
dependent on the wellbore temperature and the overall heat transfer coefficient between 
reservoir and wellbore.  From the boundary conditions, finally we have 

−+ +
+

=
ψψ

21
1

llL ,         (3.36) 

−+ +
+

=
ψψ

43
2

llL ,         (3.37) 

−+ +
+

=
ψψ
θθ 21

1R ,         (3.38) 

and 

−+ +
+

=
ψψ
θθ 43

2R .         (3.39) 

where 

( )( ) ⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛−+−= +−−

+
−

− nmhhTrnKerl
n

owT

mh
n

w 22
12

1 βα ,    (3.40) 

( )( )

( )(
⎥
⎥
⎦

⎤
−−⎟

⎠
⎞

⎜
⎝
⎛+

−+−⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛=

−+

+−−

+
−

+
−

−

nnThre

TrnKnmhrehl

w

n

w

m
Y

owT
n

w

m
hn

1
2

1
22

2

2
2

βα

βα

)
,  (3.41) 

( )( ) ⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛−−= ++−

+
−

+ nmhhTrnKerl
n

owT

mh
n

w 22
12

3 βα ,    (3.42) 

( )( )

( )(
⎥
⎥
⎦

⎤
−−⎟

⎠
⎞

⎜
⎝
⎛−

−+−⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛=

−+

+−+

+
+

+
+

−

nnThre

TrnKnmhrehl

w

n

w

m
Y

owT
n

w

m
hn

1
2

1
22

2

2
4

βα

βα

)
,  (3.43) 
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( ) ( )( )( 1
2

2
1 −−−= −−+

+
−

−+

owT
n

w

mmh

TrnKmmrhe βαθ ),    (3.44) 

( ) ⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ +−+⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛= −−

+

−+

+ −+−+
−

nmhenmherTh m
h

m
Y

m
Y

m
h

ww

n

22
1

2
2222

2 αβθ , (3.45) 

( ) ( )( )( 1
2

2
3 −+−−= +−+

+
+

−+

owT
n

w

mm
h

TrnKmmrhe βαθ ) ,    (3.46) 

( ) ⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ +−+⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛= ++

+

+−

+ +−+−
+

nmhenmherTh m
h

m
Y

m
Y

m
h

ww

n

22
1

2
2222

4 αβθ , (3.47) 

and 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛= ±

++

±±
±±

±
mmm

mm
m

nmhenmhernKhr
m

Y
m

h
m

h
m

Y

wTt

n
n

w 222
2222αβψ . 

           (3.48) 
The solution of the reservoir temperature mainly depends on Joule-Thomson 

effect in the reservoir and the conduction of heat to or from the wellbore.  Fig. 3.3 
shows the reservoir temperature profiles (perpendicular to the wellbore) comparison for 
various reservoir pressure drawdowns (100 psi, 300 psi, and 500 psi) neglecting the 
wellbore temperature effect (zero heat transfer with the wellbore) for single-phase oil 
flow.  Unless stated, the default properties listed in Table 3.1 are used in the examples 
through in this chapter. 
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Fig. 3.3 Reservoir temperature profiles (Joule-Thomson effect). 
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Reservoir length [ft]
Reservoir width [ft]
Reservoir height [ft]

Pressure drawdown [psi] 300
T at outer boundary [oF]

Oil Water Gas
Density [lb/ft3] 41 63 14
Viscosity [cp] 0.49 0.48 0.03

KTt [Btu/hr ft °F] 2 2.5 1.3

Table 3.1 Properties used in the examples.

2000
3150
55

180

 
 

The Joule-Thomson effect is proportional to the pressure drop in the system.  
Therefore, the higher the pressure drawdown, the more significant the Joule-Thomson 
effect can be observed and the higher the inflow temperature of the fluid.  When a 
different type of fluid is produced than the one flowing in the wellbore, there is often a 
temperature difference between the inflowing fluid from the reservoir and the fluid 
flowing inside the wellbore.  In this case, the wellbore temperature effect becomes 
important.  In Fig. 3.4, the reservoir temperature profiles near the wellbore vicinity ( -
1.5 ft) for different wellbore temperatures with a fixed heat transfer coefficient (88 
Btu/hr-ft2-oF) are shown.  As can be seen in Fig. 3.4, inflow temperature is affected by 
the wellbore temperature.  Because of the high non-linearity between reservoir and 
wellbore temperature, the equations have to be solved iteratively.  The details about the 
coupling model are discussed in Chapter 5. 
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Fig. 3.4 Wellbore temperature effect. 
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Reservoir temperature profile also varies if the types of fluid differ.  The 
example calculations of temperature profiles of various types of fluid (oil, gas, and water) 
flowing into a wellbore are shown in Fig. 3.5.  If the pressure drawdowns (300 psi) and 
the boundary temperatures (180 oF) are same for all the types of fluid, the temperature 
difference is essentially governed by the Joule-Thomson coefficient, , of the fluid.   JTK
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Fig. 3.5 Reservoir temperature profiles (different fluid types). 

 

3.3.2 Studies from reservoir model 
We have derived the rigorous temperature solution to the reservoir energy balance 
equation, and demonstrated some key behaviors of the reservoir temperature behavior.  
From the above examples, we can see that the temperature profiles follow straight lines 
except for the radial flow region near the wellbore.  This implies that we can neglect the 
second derivative (conductive heat flux) of the temperature in the linear flow region. 

Neglecting the heat conduction term, 2

2

dy
TdKT , and dividing both sides by , 

Eq. 3.23 becomes 

yu

( ) 01 =−−
dy
dpT

dy
dTC p βρ .       (3.49) 

Solving for 
dy
dT  yields 
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dy
dpK

dy
dp

C
T

dy
dT

JT

p

=

−
=

ρ
β 1

.         (3.50) 

Assuming the Joule-Thomson coefficient, , is invariant over the domain of interest 
(

JTK
2hyWy =→= ), we can integrate Eq. 3.50 as 

∫∫ =
=

W

h
JT

W

hy

dy
dy
dpKdy

dy
dT

22

,        (3.51) 

∫∫ =∴
=

W

h
JT

W

hy

dpKdT
22

,        (3.52) 

( )
22 hyeJTehy

ppKTT
==

−−=−∴  .      (3.53) 

Then we have the reservoir temperature at 2hy =  

( ) LhyeJTehy
TppKTT ≡−−=

== 22
.      (3.54) 

The solution to the radial region (Eq. 3.30) is now obtained with the new coefficients 

β
1

21 +′+′= −+ nn rRrRT .        (3.55) 

The new coefficients are to be estimated by the following two boundary conditions: 

Lhyhr
TTT ==

==
22

,         (3.56) 

and 

( wrr
rr

T TT
dr
dTK

w
w

−=
=

=

α ).       (3.35) 

Thus, we obtain 

( ) ( ) (
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛+−−−=′

−

−−
−− 1

2
1

1 ww

n

wT
n

wLwT
n

w TrhrnKrTrnKr
D

R βαααβ ) , (3.57) 

and 

( ) ( ) (
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛−−−−=′

+

++
++ 1

2
1

2 ww

n

Tw
n

wLTw
n

w TrhnKrrTnKrr
D

R βαααβ ) , (3.58) 

where 
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( ) (
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⎥
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⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛−−⎟

⎠
⎞

⎜
⎝
⎛= +−

−

+

+

−
wT

n
n

wwT

n
n

w rnKhrrnKhrD ααβ
22

) .   (3.59) 

The comparisons with the rigorous solution are shown in Figs. 3.6 and 3.7.  A small 
discrepancy can be observed in a fine scale near the wellbore (Fig. 3.7).  However, the 
results are almost identical.  From the results above, we conclude that the approximate 
model is a fair alternative to the rigorous solution. 
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Fig. 3.6 Comparison between rigorous and approximate solution. 
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Fig. 3.7 Comparison with rigorous solution in the radial flow region. 
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3.3.1 Effect of damage skin on reservoir temperature 
Damaged skin factor is created by formation damage during drilling or other well 
operations.  If the damaged formation affects the reservoir inflow temperature enough to 
detect, we would be able to estimate skin distribution along the well from DTS data.  
The inferences can be performed easily by adding another radial flow region that has a 
reduced permeability.  In this section, we revisit the inflow temperature model to 
include the damaged zone and show how much temperature changes could occur under 
various conditions. 
 

 
Fig. 3.8 Schematic of a well with formation damage. 

 
The damaged region usually extends a few feet from the wellbore radially if 

permeability field is isotropic and homogeneous (Fig. 3.8).  According to the streamline 
geometry depicted in Fig. 3.2, the potential profile ( )zy,Φ  in the reservoir can be 
simply estimated by the following. 
For the radial region: 

( ) 2for       ,ln
2

, 22
22

hzyr
r

zy
L
q

k
zy w

w

≤+≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
⎟
⎠
⎞

⎜
⎝
⎛=Φ

π
µ .   (3.60) 

For the linear region: 

( ) Wzyhhy
L

q
khr

h
L
q

k
zy

w

≤+≤⎟
⎠
⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=Φ 222for      ,

2
2/2ln

2
, µ

π
µ . (3.61) 

Considering a small region of formation damage, we assume the geometry of a 
streamline does not change.  Then, for the pressure field, 
For the damaged region: 
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( ) dw
wd

rzyr
r

zy
L
q

k
zy ≤+≤

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
⎟
⎠
⎞
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for       ,ln
2

,
π
µ .   (3.62) 

For the radial region: 

( ) 2for       ,ln
2
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           (3.63) 
For the linear region: 

( )
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⎠
⎞

⎜
⎝
⎛+

⎟⎟
⎠

⎞
⎜⎜
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L
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L
q

k
zy

dw

d
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π
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π
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,    Wzyh ≤+≤ 222for . 

           (3.64) 

From Eqs. 3.62 - 3.64, the total pressure drop with fixed flow rate is obtained as 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∆ shW

r
h

kL
qp

w
t 21

2
2ln

2
π

π
µ ,     (3.65) 

where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

w

d

d r
r

k
ks ln1 .        (3.66) 

where kd is a damaged permeability and rd is a damaged radius.  As an example, we 
consider  and ft (kkd 1.0= 3=dr 7.20=s ).  The pressure profiles of an undamaged 
reservoir and a damaged reservoir for 500 psi pressure drawdown with fixed flow rate are 
plotted on a log-log plot in Fig. 3.9. 
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Fig. 3.9 Pressure profile comparison between undamaged and damaged reservoir. 

 
From Fig. 3.9, we can observe the higher pressure drawdown in the radial flow 

region if the damage zone, which creates additional pressure drop, exists.  Since the 
temperature profile is very sensitive to the reservoir pressure drawdown, the temperature 
profile should be affected by the existence of skin as well.  The solutions to the 
temperature profile are given by 

2for      ,1
21 hrrrCrCT d

nn ≤≤++= −+

β
,     (3.67) 

and, 

dw
dd rrrrCrCT ≤≤++= −+ for      ,1

43 β
,     (3.68) 

where 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
±=±

TdT

p

T

p

KkK
C

K
C

L
qd µβρρ
π

4
4

2

.      (3.69) 

We estimate these coefficients, C1, C2, C3, and C4 with the following boundary conditions 
in addition to Eqs. 3.35 and 3.56: 
The temperatures at the damaged and undamaged boundary are same, 

ββ
11

4321 ++=++ −+−+ d
d

d
d

m
d

n
d rCrCrCrC ,     (3.70) 
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and first derivatives of Eqs. 3.67 and 3.68 are equal since the temperatures should be 
continuous 

1
2

1
3

1
2

1
1

−
−

−
+

−
+

−
+

−+++ +=+ d
d

d
d

n
d

n
d rdCrdCrnCrnC .    (3.71) 

Then the coefficients are: 
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and, 

( )( ) ( )[
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where 

( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]−−

+
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+
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+

++
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−++−−−

−++−−=′
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α

α
. (3.76) 

Using the solution derived above, we can calculate the temperature profile.  The 
temperature profiles corresponding to the pressure profiles in Fig. 3.9 are plotted on a 
semi-log plot in Fig. 3.10.  Reservoir temperature is warmed up linearly in the linear 
flow region, while it follows the radial pressure change in the radial flow region.  For 
both cases, as fluid approaches to the wellbore, the temperature change is accelerated.  
The well with damage has more pressure drawdown near the wellbore, and the fluid 
arrives at the wellbore with a higher temperature, 0.4 oF higher for this example.   
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Fig. 3.10 Temperature profile comparison between undamaged and damaged reservoir. 

 
Fig 3.11 shows the variation of the inflowing temperature varying damaged 

permeability ratio from 0.05 to 1 and damaged radii of 1, 3, and 5 ft.  The more 
damaged, the higher the inflow temperature observed.  Fig. 3.12 shows the same inflow 
temperature example plotted with the skin factor values calculated from Eq. 3.66 in Fig. 
3.7.  From the figure, we can see the almost proportional change of inflow temperature 
to the skin. 
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Fig. 3.11 Inflow temperature vs kd/k. 
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Fig. 3.12 Inflow temperature vs skin factor. 
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CHAPTER 4 

WELLBORE MODEL 

4.1 INTRODUCTION TO WELLBORE MODEL 
Because of the long exposed length of a horizontal wellbore to the reservoir, fluid may 
enter the wellbore continuously throughout the producing zone.  Therefore, we must 
account for two streams that are in the axial direction (along the wellbore) and the radial 
direction (from the reservoir) in deriving equations.  Also, the extensive length of the 
well that is exploiting the reservoir makes the downhole pressure and temperature inside 
the wellbore vary with the positions. 

The mass or heat transferred between the wellbore and the reservoir will be 
determined by both the wellbore and the reservoir conditions.  For instance, as a result 
of fluid flow in a horizontal well, the wellbore pressure of near the heel tends to be lower 
than that of the toe, which creates more pressure difference from the reservoir pressure, 
resulting in higher inflow rate near the heel.  In development of a wellbore model, these 
dependences on the reservoir have to be considered. 

4.2 WORKING EQUATIONS FOR SINGLE-PHASE FLOW 
In this section, we derive the steady-state conservation equations for the wellbore region 
averaging any variation in temperature or pressure in the radial direction over a 
differential volume element shown in Fig. 4.1.  Then we account for the net input and 
output of intensive properties such as mass, momentum and total energy using the shell 
balance. 

The completion types may be open hole, perforated liner, etc.  We introduce the 
open pipe ratio defined as 

pipe of area Surface
pipe of areaOpen 

=γ .        (4.1) 

The open pipe ratio is a function of position considered over a given length of the 
wellbore.  It will be the perforation density over a segment for a perforated well and is 
the reservoir porosity of a section for an openhole completed well.  Using γ , the 
surface area of a differential volume element can be expressed as xR ∆γπ2 , and 
convective properties from the formation, for instance, transferred mass can be written as 

xMR ∆γπ2 . 
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Fig. 4.1 Volume element of a wellbore. 

 
As depicted in Fig. 4.1, the main streams of the fluid flow are in two directions 

that are axial (x-direction) and radial (r-direction).  We assume the velocity vector as 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=⎟⎟
⎠

⎞
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⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Rr
v

v

v
v

I

r

x

at   
0

otherwise  
0

v ,       (4.2) 

where the subscript I means inflow properties.  Equation Figure 4.2 indicates that there 
is no slip ( ) at the wall, and the radial velocity only exists at the wall (0=xv Ir vv = ) 
which is reasonable because in most part of the well, radial velocity is much smaller than 
the axial velocity. As stated previously, inflow velocity  is a function of the reservoir 
and the wellbore condition.  Using the productivity index of the well, , the inflow rate 
for a certain distance ( ) of the well can be written as 

Iv
J

x∆
 

( ppJvdxR R
x

−=∫
∆

γπ2 ) ,        (4.3) 

where  is the reservoir pressure. Rp
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4.2.1 Mass balance 
Conservation of mass can be equated by observing the incoming mass flux and outgoing 
mass flux as 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−

⎪
⎭

⎪
⎬
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⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

out
mass

of rate

in
mass

of rate

mass of
increase

 of rate
.      (4.4) 

The rate of increase of mass within the differential volume element is 

t
xR
∂
∂

∆=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
ρπ 2

mass of
increase

 of rate
,        (4.5) 

The rates of mass in and out of the differential volume are given as follows. 

( ) ( )xxRr vRvxR ρπργπ 22
in

mass
 of rate

+∆=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
,      (4.6) 

and, 

( ) xxxvR ∆+=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
ρπ 2

out
mass

 of rate
.        (4.7) 

Substituting Eqs. 4.5 - 4.7 into Eq. 4.4 gives 

( ) ( ) ( )

( ) ( )[ ]xxxxxI

xxxxxRr

vvRvxR

vRvRvxR
t

xR

∆+

∆+

−+∆=

−+∆=
∂
∂

∆

ρρπργπ

ρπρπργπρπ

2

222

2

2
.    (4.8) 

Dividing by , Eq. 4.8 becomes xR ∆2π

( ) ( )
x

vv
v

Rt
xxxxx

I ∆
−

+=
∂
∂ ∆+ρρ

γρρ 2 .      (4.9) 

Taking , we have 0→∆x
( )

x
vv

Rt II ∂
∂

−=
∂
∂ ρργρ 2 .        (4.10) 

Finally, for steady-state, we obtain 
( )

II vRdx
vd ργρ 2

= .         (4.11) 
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4.2.2 Momentum balance 
To derive the equation for momentum, we write a momentum balance over the 
differential volume as 
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⎭
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The rate of increase of momentum in the x-direction is given as 
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t
v

xR x
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.      (4.13) 

Let  be the combined convective and molecular momentum tensor that is defined as Φ
τδvvΦ −+= pρ ,         (4.14) 

where  is the Kronecker delta.  Then the rate of momentum in and out are written as δ

( ) ( )
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For Newtonian fluid, the shear stress is given by 
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There is no slip at the wall ( ( ) 0=Rxv ) and Eq. 4.15 becomes 

( )
x

x
xxRrx x

v
pvvRxR ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−++∆−=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
µρπτπ

3
42

in
momentum

of rate
2 .   (4.17) 

The rate of momentum out is 
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The external force on the fluid is 
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Substituting into Eq. 4.12 and dividing by , we obtain xR ∆2π
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Taking , Eq. 4.20 becomes 0→∆x
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We neglect the second derivative of the velocity and for steady-state, Eq.4.21 can be 
written as 

( ) ( ) θρρτ sin20 2 gpv
dx
d

R Rrx −+−−= .      (4.22) 

The wall shear stress, rxτ , is given by introducing a fanning friction factor as 

2

2
x

rx
fvρ

τ = .          (4.23) 

The friction factor for porous pipe was estimated as a function of the friction factor 
without radial flux and wall Reynolds number by Ouyang (1998).  For laminar flow, it 
is independent of completion type and is given as 

( )( )6142.0
Re,04304.01 wo Nff += .       (4.24) 

For turbulence flow, friction factor for openhole completion is given as 
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and for perforated well, it is 
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Re,0153.01 wo Nff −= .       (4.26) 

where  and  are the Reynolds number and the wall Reynolds number that are 
given by 

ReN wN Re,

µ
ρvRN 2

Re = ,         (4.27) 

and 
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Re, = ,         (4.28) 

of  is the friction factor without radial influx and is estimated from the Moody’s diagram 
or from Chen’s correlation
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where ε  is the relative pipe roughness. 
Finally, solving for pressure gradient yields 

( ) θρρρ sin
22

g
dx

vd
R

fv
dx
dp

−−−= .       (4.30) 

4.2.3 Energy balance 
Total energy flux is a combination of convective energy flux, rate of work done by 
molecular mechanisms, and rate of transporting heat by molecular mechanisms, which is 
written as 

[ ] qvπve +⋅+⎟
⎠
⎞

⎜
⎝
⎛ += Uv ρρ 2

2
1 ,       (4.31) 

or 

[ ] qvτve +⋅+⎟
⎠
⎞

⎜
⎝
⎛ += Hv ρρ 2

2
1 ,       (4.32) 

where  denotes the total molecular stress tensor which is defined as π
τδπ += p .         (4.33) 

An energy balance can be written as 
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The rate of kinetic and internal energy increase is 
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The rates of total energy in and out are 
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and 
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The rate of work is done by gravity force and is given as 
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The energy production in the system is zero.  Therefore, Eq. 4.34 becomes 
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           (4.39) 
The total energy in at r=R is obtained from Eq. 4.32 as 
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We can split the energy in into two parts as 
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The first term on the right side of Eq. 4.41 is the energy in through the pipe material and 
the second one is through the open area.  Since the covered area of the pipe is 
impermeable, fluid velocity is zero.  Also, we neglect the heat conductions between 
fluids.  Therefore, the heat flux in the pipe open area consists of only convection as 
depicted in Fig. 4.2.  
 

 
Fig. 4.2 Energy transport through a perforated/slotted pipe. 

 
Therefore, Eq. 4.41 becomes 
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Substituting Eq. 4.42 into Eq. 4.38 and dividing by  yield xR ∆2π
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Taking , Eq. 4.43 becomes 0→∆x

 32



( )

θρ

γρµργρρ

sin

12
3
2

2
12

2
1 22

vg
x
e

q
R

vH
R
vv

R
Uv

t

x

IIII
I

II

−
∂
∂

−

−
+⎟

⎠
⎞

⎜
⎝
⎛ ++=⎟

⎠
⎞

⎜
⎝
⎛ +

∂
∂

.  (4.44) 

Also, the energy flux in the x-direction is 

xrxrxxxxx qvvvHve +−−⎟
⎠
⎞

⎜
⎝
⎛ += ττρρ 2

2
1 .      (4.45) 

Since we neglect the heat conduction between fluids, the heat flux in the x-direction is 
dropped ( ).  Using average velocity for an entire region of the cross section area, 
the energy flux can be written as 
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Substituting Eq. 4.46 into Eq. 4.43, we obtain 
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We denote the kinetic energy terms as 
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and the viscous shear terms as 
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For steady-state, Eq. 4.47 becomes 
( ) ( ) θρργργ sin1220 vgEE
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Expanding the third term on the right side of Eq. 4.50, we have 
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From mass balance (Eq.4.11), we obtain 
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Substituting Eq. 4.52 into Eq. 4.50 gives 
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Let the pressure at the boundary, , be the same as the pressure of wellbore .  
Then, the enthalpy difference term between inflow and wellbore becomes  
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From Eq. 4.54 and the relationship between enthalpy and pressure and temperature (Eq. 
3.16), we obtain 
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Solving for temperature gradient, we have 
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           (4.56) 
Joule – Thomson coefficient is defined as 

P
JT C

TK
ρ
β 1−

= .         (4.57) 

The heat flux can be estimated in terms of the temperature difference by solving the heat 
conduction equation in steady-state, which is given as 

( TTq II −= )α .         (4.58) 

Substituting Eqs. 4.57 and 4.58 into Eq. 4.55 yields 
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4.2.4 Studies from a single-phase model 
In the above derivations, we made as few assumptions as possible.  Before extending the 
temperature equation to multi-phase flow, we have performed sensitivity studies to 
determine the impact of each term in Eq. 4.59 on the wellbore temperature profile by 
numerically solving the equation under various conditions.  From these evaluations, we 
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have determined that the kinetic energy, EKE, and viscous shear, EVS, are less important to 
the temperature profile.  Example temperature profiles are shown below.  The 
procedure of the numerical solution is addressed explicitly in next chapter. 
 Fig. 4.3 shows example temperature profiles obtained from the original 
temperature equation, Eq. 4.59 and the one without the kinetic energy term.  This 
example was generated with the wellbore that has an inner diameter of 4.6 in and is 
producing about 6,000 b/d oil.  Fig. 4.4 shows a comparison of the temperature profiles 
with and without the viscous shear terms. 

From these examinations, we can conclude that neither kinetic energy nor viscous 
shear affect the computed temperature very much.  We neglect kinetic energy and 
viscous shear terms in further discussions.  Dropping these terms, the energy balance 
equation becomes 
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or 
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where 

( )αγγρα −+= 1PIII Cv .  ...........................................................................  (4.62) 

We call Iα  a combined overall heat transfer coefficient in this research.  It combines 
both conductive and convective heat transfer for porous wall pipe that has an additional 
convective term added to the conventional overall conductive heat transfer. 
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Fig. 4.3 Temperature profiles with and without kinetic energy. 
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Fig. 4.4 Temperature profiles with and without viscous shear. 

 

4.3 WORKING EQUATIONS FOR MULTI-PHASE FLOW 
Using a similar shell balance method to the single-phase flow derivations, the mass and 
energy balance equations for multi-phase flow can be developed.  The main difference 
from the single-phase flow is that the conserved properties are weighted by their volume 
fraction (holdup) in the system.  As for the momentum balance of multi-phase flow, it 
needs a special treatment and a number of models have been developed for wellbore 
pressure and holdup calculations (Hasan and Kabir, 1998; Flores et al., 1998; Taitel and 
Dukler, 1976).  We apply a homogeneous model for oil-water flow and a homogeneous 
with drift-flux model for gas-liquid flow (Ouyang and Aziz, 2000). 
 

4.3.1 Mass and energy balance 
The mass balance for phase  is given as gas)or   water,oil,( =i

( )
Iii

Iiiii v
R
y

dx
yvd

,
,2
ρ

γρ
= .        (4.63) 

where  is a volume fraction of phase . iy i
 Neglecting kinetic energy and viscous shear terms, the energy balance for phase i 
is 
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Summation of the equation for the three phases gives 
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Assuming that the pressures and temperatures are the same in each phase, we have 
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where Tα  is an overall heat transfer coefficient for multi-phase flow.  The details are 
discussed in Appendix B.  Solving for temperature gradient, we obtain 
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Total (mixing) properties can be factorized as 
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Finally, we have 
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or 
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where 
( ) ( ) TITpIT vC αγργα −+= 1

,, .       (4.73) 

 

4.3.2 Momentum balance 
When estimating the pressure profile and holdup along the well, we can apply a 
homogeneous, a drift flux, or a mechanistic model to the problem.  The simplest model 
is a homogeneous model which regards flow as homogenized single-phase flow.  A 
mechanistic model is the most realistic and complicated model.  However, it sometimes 
encounters problems in convergence between flow regime transitions.  A drift flux 
model relaxes the assumptions of homogeneous model and considers a slip velocity 
between phases.  Because of the ease and continuities in the parameters of drift flux 
model, it has been widely accepted in a variety of petroleum engineering applications. 
 
Oil-water two-phase flow 
For oil-water two-phase flow, a homogeneous model is applied and the momentum 
balance equation is given with mixture properties as 
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Where the mixture density, mρ  is given by 
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Since no slip velocity between phases is considered, the holdup is 
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where  and  represent superficial velocities of water and oil.  Mass flux can be 
written as 

swv sov

swwsooTPm vvv ρρρ += .        (4.77) 

Therefore, the two-phase velocity is 
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The oil-water mixture viscosity is estimated by the model that takes into account 
the phase inversion point (Jayawardena et al., 2001).  It is given by 
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where the subscript  means continuous phase and  means dispersed phase.  The 
dimensionless numbers to be used for friction factor estimation will be calculated based 
on the mixture properties as 
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Liquid-gas two-phase flow 
When the flow is liquid-gas multi-phase flow, the homogenized pressure gradient model 
by Ouyang and Aziz (2000) is used.  It consists of frictional, gravitational, and 
accelerational pressure drops and is given as 
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where  and  are superficial velocities of liquid and gas respectively.  slv sgv
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is an accelerational pressure drop caused by wall friction and is given as 
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and 
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where  is the mass flow rate.  Subscription  and  denote liquid and gas 
respectively.  The value for 

w l g
ϖ  is proposed as 0.8. 

The mixture properties are given by 
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The in-situ velocity of gas is estimated from drift-flux model as 

dsgslg vvvCv ++= )(0 ,        (4.90) 

where  is the drift velocity and  is the profile parameter.  They are determined 
experimentally (Franca and Lahey, 1992; Shi et al., 2005). 

dv 0C
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CHAPTER 5 

COUPLED MODEL 

5.1 INTRODUCTION TO COUPLED MODEL. 
In the last two chapters, we have derived the wellbore and reservoir equations.  Our 
objective in this chapter is to develop a pressure and temperature prediction model that 
provides the flow rate, the pressure, and the temperature profiles along the horizontal or 
near horizontal wellbore.  The three unknowns have to be determined from the mass, the 
momentum, and the energy balance equations of the wellbore along with the reservoir 
equations. 

As Eq. 4.11 indicates, inflow rate profile is obtained from wellbore pressure 
profile.  Simultaneously, estimating wellbore pressure profile requires flow rate profile.  
Similarly, the wellbore temperature is estimated from the wellbore pressure and the 
reservoir temperature which is a function of the inflow rate and the wellbore temperature.  
Since the working equations of the wellbore and the reservoir are highly dependent each 
other, they must be solved iteratively at the same time. 

We consider a horizontal well fully penetrated through a box-shaped 
homogeneous reservoir as described in Fig. 3.1 and divide the reservoir into a number of 
segments (Fig. 5.1).  With no-flow lateral boundaries, flow in the reservoir is only in the 
y and z directions; flow in the horizontal wellbore is in the x-direction.  The assumptions 
for this coupled model are the followings: 
1) Steady-state flow: For continuous well flow, changes in the well rate are much slower 
than the response time of any sensor.  We use the steady-state equations derived in 
Chapter 3 for the reservoir and Chapter 4 for the wellbore. 
2) Isolated reservoir segments: Each segment of the reservoir is idealized to be isolated 
from each other.  There is no flow in the x-direction within the reservoir. 
3) Single-phase reservoir flow: Each reservoir segment produces a single-phase fluid.  
Multi-phase flow occurs only in the wellbore as a result of the combination of single-
phase flows of different phases from the reservoir segments. 
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5.2 SOLUTION PROCEDURE 
These highly non-linear equations are solved numerically.  We first discretize the 
equations with a finite difference scheme and solve the matrices for each equation as 
many times as necessary until the variables meet the convergence by the successive 
substitution. 

The mass balance equation (Eq. 4.63) can be discretized as 
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In matrix form, the equations are given by 

( ) ( TpTp ,, BVA =⋅ ).        (5.4) 

Since fluid properties are also pressure and temperature dependent, both coefficients are a 
function of pressure and temperature.   

If the flow is oil-water two-phase, we can discretize the momentum equation (Eq. 
4.74) as 

jjj Dpp =− −1 ,         (5.5) 

where 

( ) ( )
( ) ( ) ( )[ ]2

1
2

2
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R
fv

xD ρρθρ
ρ

.  (5.6) 

In matrix form the equation becomes 

( Tv,DPC =⋅ ) .         (5.7) 

In discretized form, the temperature equation (Eq. 2.72) can be written as 

jjjj FTTE =− −1 ,         (5.8) 

where 

( )
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IT
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+=

ρ
α ,21 ,        (5.9) 
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Then we have 

( ) ( ITpvpv ,,, FTE =⋅ ) .        (5.11) 

 

 
 

Fig. 5.2 Schematic of the solution procedure. 
 
The solution can be found iteratively.  For instance, when velocity and pressure profiles 
are known as ( , ), then the temperature profile can be obtained as follows: nv np
Solve 

( ) ( )lnnlnn TpvFTTpvE ,,,, =⋅ ,       (5.12)  

for . Then  will be updated as T T

( ) lll TTTT +−=+ κ1 ,        (5.13) 
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where superscript n means the known variable and l means the current status of the 
unknown variable, and κ  is a relaxation factor that takes value between 0 and 1.  This 
process will be repeated until we have 

2

)()(
)()(

tollTl

lTl

ε<−−
TT

TTTT ,        (5.14) 

where tolε  is a pre-assigned tolerance. A schematic of the solution procedure is shown 
in Fig. 5.2. 

 

5.3 RESULTS AND DISCUSSIONS 
With the recent fiber optic technology, a temperature can be measured with a resolution 
on the order of 0.0045 oF at some spatial and temporal resolutions (Sensornet Limited, 
2007).  The changes in the horizontal wellbore are normally very limited.  
Hypothetically, we set up the measurable temperature resolution as 0.01 oF.  However, 
if the estimated total temperature change of the wellbore is on the order of 0.01 oF, it may 
not benefit us to install the equipment and measure the profile.  Therefore, it is 
important to infer the possible temperature changes under various synthetic production 
cases. 

Other than the quantity of temperature change, we can also learn from the quality 
of temperature changes by taking a spatial derivative of temperature (Hill, 1990).  When 
the different types of fluid are produced or well trajectory is changed at some position of 
the horizontal well, the slope of the temperature profile show some anomalies (Yoshioka 
et al., 2006; Yoshioka, 2007). 

We consider two kinds of wells: one with a small diameter and the other large, 
and both are completed as cased and perforated wells.  The details of the well properties 
are shown in Table 5.1.  Oil, gas and water are the produced fluids.  The reservoir and 
fluid properties are listed in Table 5.2.  The physical fluid properties are estimated 
based on pressure and temperature along the wellbore, and Table 5.2, using accepted 
correlations (McCain, 1990).   

 

Small Large
ID [in] 2.602 4
OD [in] 3.5 4.5

Diameter with cement [in] 5 6
Kcasing  [Btu/hr ft oF]
Kcement  [Btu/hr ft oF]
Relative roughness

Total Length [ft]
Pipe opened ratio [%]

2000
2

6.933
4.021
0.01

Table 5.1 Well properties.
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Reservoir length [ft]
Reservoir width [ft]
Reservoir height [ft]

Pressure drawdown [psi] 300
T at outer boundary [oF]
Specific gravity of gas
Salinity of water [%]

Oil API
Disolved GOR [SCF/STB]

Surface tenstion [dyne/cm]

Oil Water Gas
KTt [Btu/hr ft °F] 2 2.5 1.3
K [Btu/hr ft oF] 0.0797 0.3886 0.0116

800
10

Table 5.2 Reservoir and fluid properties.

2000
3150
55

180
0.75

5
45.176

 
 

5.3.1 Possible temperature changes 
To evaluate the possible temperature changes along the horizontal wellbore in a single-
phase production system, we studied two extreme cases: small and large production 
scenarios with small or large well diameter.  These examples should bracket the possible 
temperature changes in actual single-phase producers.  

Fig. 5.3 displays the pressure change from the toe pressure for flow through a 
well with small diameter.  With a total flow rate of about 5,000 b/d, the total pressure 
drop in the 2,000 ft long well is about 30 psi; at a very high rate of about 20,000 b/d, the 
wellbore pressure drop is over 300 psi.  The corresponding temperature change profiles, 
the temperature at any location along the well minus the temperature at the toe, are shown 
in Fig. 5.4.  For the small flow rate case, the temperature changes less than 0.2 oF 
throughout the well while the temperature changes 1.4 oF for the large flow rate case.  
Since the pressure drop for this case, a high flow rate in a small diameter well, is quite 
large, this order of change would be the largest temperature change caused by wellbore 
flow effects that can be expected in a horizontal single-phase oil production well. 

Table 5.3 summarizes results from several other cases.  The profiles for each are 
similar to those shown in Figs. 5.3 and 5.4.  In these calculations, the temperature 
changes for low production rates with the larger diameter wellbore for both oil 
(maximum change of 0.02 oF) and gas production (0.01 oF) cases were small.  However, 
if the production rate is large, the temperature change would be measurable.  Even 
though the pressure change along a well producing gas is small, the temperature change 
of gas is more sensitive to the production rate. 
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Fig. 5.3 Pressure deviation profiles (oil production with small well diameter). 
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Fig. 5.4 Temperature deviation profiles (oil production with small well diameter). 
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Fluid Rate Diameter ∆PTotal, psi ∆TTotal, oF

oil Low (4990 bbl/day) Small 35.2 0.16

oil High (20077 bbl/day) Large 314.9 1.44

oil Low (5064 bbl/day) Small 4.4 0.02

oil High (20053 bbl/day) Large 63.4 0.29

gas Low (5046 MSCF/day) Small 6 0.08

gas High (20039 MSCF/day) Large 63.9 0.79

gas Low (5097 MSCF/day) Small 0.73 0.01

gas High (20039 MSCF/day) Large 10.5 0.13

Table 5.3 Summary of possible temperature changes.

 
 

5.3.2 Pressure and temperature profiles with well inclination 
Horizontal wells are rarely perfectly horizontal, with the inclination angle varying along 
the trajectory.  Deviations of the well trajectory may alter the temperature and pressure 
profiles along the wellbore from that of a perfectly horizontal wellbore. 

The geothermal temperature of the formation monotonically increases with depth 
so that in upward flow, the wellbore fluids will encounter cooler formation temperatures 
as they move up the wellbore, and will encounter warmer surroundings with a downward 
trajectory.  For this example, the geothermal gradient is taken to be 0.01 oF/ft.  
Inclinations of 2o and -2o from horizontal were examined.  These results were compared 
with the horizontal small-diameter case that has uniform inflow (5b/day/ft for oil and 25 
MCF/day/ft for gas).   

Fig. 5.5 shows the comparisons of pressure changes from the toe pressure 
(wellbore ) for upward and downward trajectories.  For oil flow, the pressure loss 
will be larger in upward flow compared to horizontal flow and less in downward flow as 
depicted in Fig. 5.5 because of the decreasing hydrostatic pressure drop.  Fig. 5.6 plots 
the temperature deviations from the toe temperature.  In downward flow, the wellbore 
encounters warmer formation temperature and, as expected, temperature deviation of 
downward flow is more than the horizontal case.  Upward flow temperature behavior is 
more profound.  The fluid temperature decreases first because of a cooler environment, 
and then increases because of Joule-Thomson warming.  Although this results in the 
minimum temperature deviation among cases, its shape is remarkable since temperature 
should not decrease in a perfectly horizontal wellbore producing liquid.  This downward 
concave shape could be an identification of the upward trajectory of the well and 
illustrates that an accurate measurement of well trajectory is needed to interpret 
temperature and pressure profiles in nominally horizontal wells. 

p∆
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Fig. 5.5 Wellbore pressure changes (single-phase oil). 
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Fig. 5.6 Wellbore temperature changes (single-phase oil). 

 
Next, we present the gas production cases.  Comparisons with the horizontal 

case are displayed in Figs. 5.7 and 5.8.  Similarly, the pressure drop is smaller in 
downward flow and larger in upward flow.  And, the temperature deviation profiles 
show distinct differences for the two inclinations.  Because of Joule-Thomson cooling, 
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the usual temperature profile shows a monotonically decreasing curve in gas production.  
But in downward flow, the wellbore is exposed to the warmer surrounding and ends up 
with a higher temperature at the heel than at the toe.  This does not usually occur in a 
flowing horizontal gas well. 
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Fig. 5.7 Wellbore pressure changes (single-phase gas). 
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Fig. 5.8 Wellbore temperature changes (single-phase gas). 
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 50

5.3.3 Water entry effects 
When water is produced from the same elevation as the oil zone, the water producing 
zone can be actually cooler than oil-producing zones because of the difference in Joule-
Thomson coefficients as shown in Fig. 3.5.  We have observed in Chapter 3, that oil, 
gas, and water would have different inflow temperatures and difference in inflow 
temperature is dominated mostly by Joule-Thomson effects in the formation and the 
reservoir boundary temperature.  A case for which the boundary temperatures are 
different is when water entry is caused by water coning.  Since water is produced from 
the deeper zone, water entry tends to cause warming of the wellbore (Dawkrajai et al., 
2006).  In this study, we consider the boundary temperatures are the same for all the 
fluid types.  Therefore, the Joule-Thomson effect of the reservoir, which is a product of 
pressure drawdown and the Joule-Thomson coefficient, is the dominant term. 

Fig. 5.9 shows an example of temperature profiles for water entry near the middle 
with different water cut values and Fig. 5.10 shows the corresponding pressure curve.  
In this example water is entering the wellbore from 1,200 to 1,400 ft from the heel of the 
well.  This water entry is identified by the cool anomaly along the well.  Beginning 
from the toe of the well, the water producing zone is clearly indicated by the cool 
temperature anomaly, with the beginning of the water zone corresponding to the sudden 
drop in temperature and the end of the water zone marked by the increase in temperature.  
For the higher water cut, this difference is more pronounced.  While temperature 
profiles indicate where the water entry starts and ends, the pressure profiles (Fig. 5.10) do 
not clearly show the location of the water entry.  We can see that the overall pressure 
drop of the higher water cut case is higher.  Since the density of water is higher than that 
of oil, the mixture density of the flowing fluid in the wellbore for the higher water cut 
case is higher.  Therefore, the frictional pressure, which is proportional to the density, 
ends up with being larger for the higher water cut case.  The slope of the pressure curve 
with a water cut of 0.3 was changed where the water entry began.  However, the 
pressure profiles did not exhibit distinct anomalies. 
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Fig. 5.9 Temperature deviation profiles for different water cuts. 
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Fig. 5.10 Pressure drop profiles for different water cuts. 

 
The temperature drops observed on the profiles also vary with the water entry 

locations.  Fig. 5.11 depicts the temperature profiles with different water entry locations 
with a water cut of 0.3.  Water entry near the heel has limited effects on the wellbore 
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temperature profile compared to the water entry near the toe because the relative amount 
of water production will be smaller.  For instance, supposing that a well is producing 
5b/d/ft uniformly, the maximum water holdup along a horizontal well can be as high as 
0.5 if water is entering over 1600-1800 ft from the heel.  However, if water is entering 
over 0-200 ft from the heel, water holdup can only be 0.1.  Therefore, as water entry 
occurs closer to the toe, fluid in the wellbore is more affected.  The pressure drop 
profiles are also plotted in Fig. 5.12.  Again, we can observe the slope change where 
water entry starts.  Compared with temperature profiles, pressure profiles would be less 
informative to identify amount and location of water entry. 
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Fig. 5.11 Temperature deviation profiles for different water entry locations. 
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Fig. 5.12 Pressure drop profiles for different water entry locations. 

 
To examine the use of a temperature log as a means to locate water entry location, 

we define the temperature difference ( T∆ ) cause by water inflow into an oil as shown in 
Fig. 5.9 as the difference between the wellbore temperature upstream of the entry and the 
minimum temperature caused by the water entry.  Also, the dimensionless water entry 
location is defined as the fraction of the water entry start distance from the heel divided 
by the total well length as shown in Fig. 5.11.  To develop guidelines for what 
conditions lead to identifiable temperature anomalies, we varied the water cut (0.05 – 0.3) 
and the water entry location while fixing total flow rate (10,000 b/d), the pressure 
drawdown in the reservoir (300 psi), and the length of the water entry zone (10% of total 
well length).  The temperature differences from these simulations are summarized in 
Fig. 5.13, which shows broad conditions of detectable temperature changes except for 
conditions of low water cut and water entry locations close to the heel.  As the water cut 
increases, and the location goes away from the heel, the temperature changes become 
larger. 
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Fig. 5.13 Temperature difference contour (water). 

 

5.3.4 Gas entry effects 
When gas is produced, the wellbore will usually experience a temperature cooling.  The 
temperature deviation profiles for different amounts for gas production and the pressure 
drop profiles are shown in Figs. 5.14 and 5.15 respectively.  The sensitivity of the 
temperature behavior to the amount of gas production is clearer than those of water entry 
cases.  But for the pressure profiles, the profiles with different amount of gas production 
cases are almost identical.  The temperature deviation profiles of gas entry with different 
entry locations are shown in Fig. 5.16 and the pressure drop profiles are plotted in Fig. 
5.17.  While the temperature behaves sensitively to the gas entry locations, the pressure 
profiles only change the slopes.  Similarly to the water entry example, the temperature 
change caused by a gas entry increases as the amount of gas production becomes higher 
and the gas entry occurs farther away from the heel. 
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Fig. 5.14 Temperature deviation profiles for different gas fractions. 
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Fig. 5.15 Pressure drop profiles for different gas fractions. 
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Fig. 5.16 Temperature deviation profiles for different gas entry locations. 
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Fig. 5.17 Pressure drop profiles for different gas entry locations. 

 
As with the water entry case, we varied the volume fraction of gas production 

(0.05 – 0.3) and the gas entry location, and fixed total flow rate (10,000 b/d or 56,146 
CF/d), the length of the gas entry zone (10% of total well length), and the reservoir 
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pressure drawdown (300 psi) to determine the conditions which gas entries can be 
identified from the temperature profile.  The gas flow rates for these calculations are the 
downhole volumetric flow rate, so a gas cut of 0.3 means that at the bottomhole pressure 
and temperature, 30% of the total volumetric flow rate is gas.  The results from these 
simulations are summarized in Fig. 5.18.  Similar features to the water entry scenario 
can be observed from the figure.  When gas production rate is small and entry occurs 
near the heel, the temperature changes are not significant enough to detect.  As gas 
production rate increases or gas enters farther away from the heel, the temperature 
changes become large.  Considering the fact that the inflow temperature of a gas is 
cooler than geothermal temperature, it is clear that we see more pronounced effects of the 
gas entry on the temperature profile than those of the water entry. 
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Fig. 5.18 Temperature difference contour (gas) 
 

5.3.5 Damaged skin effect 
With the existence of formation damage, the pressure profile in the reservoir changes.  
As a result, the inflow temperature increases proportional to the damage skin factor were 
shown in Fig. 3.13.  Inflow temperature changes caused by a near well damaged region 
are not as significant as the ones caused by water or gas entry.  However, while the 
occurrence of water or gas entry can be noticed at the surface once they have been 
produced, the distributions of formation damage are hard to profile.   

If formation damage is evenly distributed in the entire producing zone, there 
would be little chance to observe skin effects on temperature log since it would not leave 
any anomalies on the profiles.  In the following examples, we show the cases that 
formation being damaged in a particular zone, namely toe, middle, and heel.  We 
consider a single-phase oil production with uniform inflow (5 b/d/ft) while the pressure 



drawdown in the reservoir (300 psi) being fixed by adjusting the undamaged 
permeabilities.  We also assume that the damaged zone is extended radially into the 
formation for distance of 3 ft.  The reduced permeability ratios, kkd , of 0.1 
( ), 0.3 ( ), and 0.5 (6.24=s 4.6=s 7.2=s ) are considered. 

Fig. 5.19 shows the case of damage existing near the toe for 500 ft.  For small 
kkd  of 0.1 and 0.3, the temperature changes are measurable.  We can also observe the 

temperature slope change where the damage zone exists.  Fig. 5.20 displays a similar 
example but with the damage zone lying in the middle.  The inflow temperature effects 
are less observable because the difference in inflow temperature is smoothed by the 
wellbore temperature as have been seen in the water or gas entry examples.  Finally, the 
profiles of the damage zone at the heel are shown in Fig. 5.21.  The changes are not 
distinct for this case. 

 

181.3

181.4

181.5

181.6

181.7

181.8

181.9

182

182.1

0 500 1000 1500 2000

Distance from heel [ft]

Te
m

pe
ra

tu
re

 [F
]

No damage
kd/k = 0.1
kd/k = 0.3
kd/k = 0.5

 
Fig. 5.19 Temperature profiles with damaged zone (toe). 
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Fig. 5.20 Temperature profiles with damaged zone (middle). 
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Fig. 5.21 Temperature profiles with damaged zone (heel). 
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CHAPTER 6 

INVERSION METHOD 

6.1 INTRODUCTION TO INVERSION METHOD 
In this chapter, we develop an inversion method to analyze distributed pressure and 
temperature data.  The coupled model described in the previous chapters will be used as 
a forward model to calculate pressure and temperature profiles.  With the steady-state 
model, we perform production profile matching along a horizontal well.   

We also present the study of the effects by adding temperature data to flow rate 
and pressure data in reservoir property estimation.  Having more data as observations 
simply increases restrictions in parameter estimation and should decrease the uncertainty 
but possibly over-determines the problem.  Even though pressure data are commonly 
used as observation to be matched, the temperature change is often neglected in normal 
production system.  As discussed previously, that is a fair assumption especially for 
horizontal wells.  However, with the advanced technology to accurately measure 
temperature, it is important to give some insights into the effect of having temperature 
data additionally on the reservoir property estimation.  

6.2 INVERSION METHOD 
We regard the total flow rate, the pressure and temperature profiles as observation data, 
and productivity (inflow) distribution as parameters to be estimated. In synthetic 
examples, we generate observations from a forward model and invert them to obtain the 
productivity distribution along the horizontal well.  The discrepancy between 
observation and calculation is the error (objective) function to be minimized.   
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)

The relationships between productivity (or inflow rate) profile and observations 
(total flow rate, pressure, and temperature) are highly nonlinear.  Let the relationship 
between parameter vector  and model-generated observations be represented by 

.   is a function of both observation space  and parameter w , and 
maps N-dimensional parameter space into M-dimensional observation space.  The 
Levenberg-Marquardt Algorithm (1963) is a blending method of a least-squares 
estimation and a steepest descent method, and it outperforms both methods.  In what 
follows, we briefly show the derivations of both methods and of the Levenberg-
Marquardt algorithm. 

w
( )wx;f ( wx;f x

 



6.2.1 Least-Square Estimation 
We assume that the model-generated observation ( )wx;f  corresponding to a vector  
that differs slightly from  is a linear function of .  A linear approximation of 

 in the neighborhood of  is given by a truncated Taylor series as 

w
0w w

( wx;f )
)

)

)

)

0w

( ) ( ) ( 00;; wwJwxwx −+= ff ,       (6.1) 

where  is a Jacobian matrix given by J
( 0;wxJ f∇= .         (6.2) 

Now we define an objective function as a squared error of the model-generated 
observation  from the observations .  It is given as ( wx;f y

( ) ( )( 2; ywxw −= fE .        (6.3) 

Taking a derivative of the objective function with respect to the parameter vector , we 
have 

w

( ) ( ) ( )( ywxwxw −∇=∇ ;;2 ffE T ) .      (6.4) 

Substituting Eq. 6.1 into Eq. 6.4 gives 

( ) ( ) ( ) ( )( ywwJwxwxw −−+∇=∇ 00;;2 ffE T )

)

)

)

.     (6.5) 

Since we have assumed a linear approximation of ’s dependence on , we have f w

( ) (
J

wxwx
=
∇=∇ 0;; ff .        (6.6) 

We denote 

( )( ywxJd −= 0;fT ,        (6.7) 

and 

JJH T= .          (6.8) 
The letters  and  stand for the derivative and the Hessian respectively.  While  
is the actual derivative of ,  is the approximate Hessian obtained by neglecting 
the second order derivative.  The rigorous Hessian is estimated as (Duijndam, 1988) 

d H d
( )wE H

( )(∑
=

−+=
M

i
iii

T yxf
1

; TwJJH ,       (6.9) 

where  is the Hessian matrix of the residualiT ( )( )ii yxf −w;  at this observation point 
and is neglected here because of the linear assumption of f.  With Eqs. 6.7 and 6.8, Eq. 
6.5 becomes 

( ) ( ) dwwHw 22 0 +−=∇E .       (6.10) 
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With the optimal parameter vector , the gradient of the objective function 
 should be zero.  Therefore, we have 

optw
( )wE∇

( ) dwwH0 22 0 +−= opt .        (6.11) 

Solving for  yields optw

0
1 wdHw +−= −

opt .        (6.12) 

Because of the linear approximation of , Eq. 6.12 is approximately correct.  
That is , defined by adding the upgrade vector to the vector set , is not 
guaranteed to be the minimum of the objective function 

f

optw 0w
( )wE .  Therefore, the new set 

of parameters contained in  is then to be used as a starting point to determine new 
upgrade vector given by Eq. 6.12.  By repeating this procedure, we can supposedly 
reach the global minimum of .  The process of iteratively arriving at the minimum 
is depicted for a two-parameter problem in Fig. 6.1. 

optw

( )wE

 

 
Fig. 6.1 Image of least-square method’s iterative behavior. 

 

6.2.2 Steepest Descent Method  
The gradient vector of  can be written as ( )wE
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T .        (6.13) 

In the steepest descent method, the upgrade vector follows the direction of that the 
objective function decreases from the current parameter set .  Therefore, the 
upgrade vector will be computed from 

0w

gww η−= 0 ,         (6.14) 

where the constant η  is the upgrading parameter.  The negative gradient vector g−  is 
in the descend direction of the error function ( )wE  in which the current parameter set is 
supposed to move.  The upgrade vector, however, has to be damped by multiplying η  
so as not to overshoot the downhill direction. 

 

6.2.3 Levenberg-Marquardt Method 
The upgrade vector derived from the local linear assumption (Least-Square Estimation) 
should not allow the error function ( )wE  to increase from the current state.  Therefore, 
the angle between the upgrade vector derived from local linear assumption, , and 
the negative gradient vector, 

dH 1−−
g− , cannot be greater than 90 degrees.  If the angle is 

greater than 90 degrees, the upgrade vector leads ( )wE  to increase.  However, the 
upgrade vector, , can normally speed up the convergence toward the global 
minimum especially when the parameters are highly correlated even though  defines 
the direction of steepest descent of 

dH 1−−
g−

( )wE .  In such situations, since the descend 
direction becomes too sensitive to the parameters, we tend to wander between the valleys 
of the objective function near the minimum and the convergence speed becomes 
enormously slow.  This behavior is diagrammatically shown in Fig. 6.2. 
 



 
Fig. 6.2 Image of steepest descent method’s iterative behavior. 

 
The upgrade vector Eq. 6.12 is not always better because it assumes a local 

linearity of  and that is only valid near a minimum.  Marquardt (1963) invented 
a technique that involves ‘blending’ between least-square (Eq. 6.12) and steepest descent 
(Eq. 6.14) methods.  We take full advantage of steepest descent until we reach near the 
minimum and gradually shift the upgrading method into the least-square method.  
Introducing a blending factor 

( wx;f )

λ , the upgrade vector is given as 

( ) dIHww 1
0

−+−= λ .        (6.15) 

where I is the identity matrix.  If a small value for λ  is taken, Eq. 6.15 becomes 
identical to the least-square method.  And, as λ  gets large, Eq. 6.15 approaches to 

dww
λ
1

0 −= ,         (6.16) 

which is a steepest descent method. 
 

6.3 APPLICATION 
We now apply a Levenberg-Marquardt method to our problem, which has flow rate, 
temperature, and pressure data as observations.  Supposing downhole pressure and 
temperature profiles are measured at N points, we will obtain N points of pressure and 
temperature, respectively, in addition to the total flow rates of each phase.  In the 
following, we define the corresponding variables for the Levenberg-Marquardt method. 
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6.3.1 Variable definitions 
We denote the measured pressure data as 
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]

]

]

[ T
21 ,,, mNmmm ppp L=p ,        (6.17) 

And the temperature measurements as 

[ T
21 ,,, mNmmm TTT L=T .        (6.18) 

The flow rates of each phase (1 = oil, 2 = water, and 3 = gas) are 

[ T
321 ,, mmmm qqq=q .        (6.19) 

The parameters we wish to estimate from these data are the productivity profile 
along the well.  The productivity index J is defined as 

p
qJ
∆

= .          (6.20) 

From Eq. 3.63, we can solve for the productivity index of horizontal well.   Then we 
obtain 
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From Eq. 6.21, the productivity index is proportional to permeability if other parameters 
stay the same.  Therefore, the permeability profile along the well is chosen as the 
parameters to be estimated from production data.  To match the pressure and 
temperature data measured at N points, the forward model must divide the reservoir into 
N segments.  Following the notation of the previous section, the parameters can be 
written as 

( ) ( ) ( )[ ]
[ ]T21

T
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,,,

,,,

N

N

kkk

xkxkxk

L

L

=

=w
.       (6.22) 

From the forward model with N segments, we can calculate N pressures and N 
temperatures respectively.  The calculated pressure profile from the model is 

( ) [ T
21 ,,, cNccc ppp L=wp ]

]

]

,       (6.23) 

and temperature profile is 

( ) [ T
21 ,,, cNccc TTT L=wT .        (6.24) 

Additionally we have production of each phase 

( ) [ T
321 ,, cccc qqq=wq ,        (6.25) 

where subscript c stands for calculated. 



Now we define the objective function as a squared difference of the model-
calculated values and measurements.  However, we cannot treat temperature, pressure, 
and flow rate equally because they have different impacts on the permeability profile and 
have even different unit (temperature in oF, pressure in psi, and flow rate in b/d or 
MCF/d).  For this purpose we must weight each measurement in defining the error term.  
Hence, we define the error components as follows 

( mcpp ppDe −= 2
1 ) ,        (6.26) 

( mcTT TTDe −= 2
1 ) ,        (6.27) 

and 

( mcqq qqDe −= 2
1 )

)

.        (6.28) 

where , , and  are weights for each error element and are diagonal matrices.  
Then we can define the objective function as 
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Using the error components vector, the gradient vector  is given by d

qqTTpp eJeJeJd TTT ++= ,       (6.30) 

where Jacobian matrices , , and  are given by pJ TJ QJ
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and 
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Therefore, the kth component of the derivative vector  is given as d
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Similarly, the Hessian matrix H is 

qqTTpp JJJJJJH TTT ++= .       (6.35) 

The component of the matrix is estimated as 
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Each component of Jacobian matrices can be obtained numerically.  For instance, 
k

cj

k
p
∂

∂
, 

can be computed by perturbing kk while keeping other parameters constant.  The 
sensitivity of kk to  is approximated to cjp

( ) ( )
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kkkpkkkkp
k
p NkcjNkcj

k
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δ
δ LLLL ,,,,,, 11 −+

≅
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∂
.    (6.37) 

As obvious from Eq. 6.37, calculating a sensitivity of one parameter kk requires at least 
one forward model run.  Therefore, to compute the whole Jacobian matrix, we must 
generate a number of parameters (N) forward runs.   

Starting from an initial guess of the parameters, , the update rule follows the 
Levenberg-Marquardt method that is given as 

0w

( ) dIHww 1
0

−+−= λ .        (6.38) 

The schematic of the inversion process is shown in Fig. 6.3. 
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Fig. 6.3 Schematic of the inversion procedure. 

 

6.3.2 Observation weights 
In 6.3.1, we supposed that the production data measured were pressure and temperature 
profiles in addition to total flow rate of each phase.  Giving many types of input data to 
the objective function, however, might result in the problem being over-determined and 
the objective function losing the right path without making any improvements.  
Therefore, in this example, we go through a variety of numerical experiments with 
different input data combinations to evaluate the effects of each input data on the 
permeability inversion.  As observations we possibly obtain, we consider pressure and 
temperature profiles, and flow rates of each phase.  Plus, we consider the spatial 
derivative of pressure and temperature profiles ( dxdp  and dxdT ) because we have 
observed the slope of these curves sometimes indicating additional information. 

In Eqs. 6.26 – 28, we introduced the weights for each observation.  As stated, 
each observation has different physical properties and units.  Therefore, they should 
have different contributions to the objective function.  For instance, if the weight of flow 
rate is improperly high compared to the other inputs, the inversion problem becomes 
identical to the problem of simply matching the flow rate data only.  Although knowing 
the relative importance of different types of input data is essential, there is no explicit 
way to quantitatively calculate the weights.   

In this study, we approximately equalize the sensitivities of the input data to the 
permeability estimation with observation weights to quantify the relative importance.  
Also, we treat the input data of the same kind equally in further discussion.  Therefore, 
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for instance, the component of weight matrices ( )
jjpD  can be replaced with simply  

for all pressure observations.  Since each observation has different units, we introduce 
dimensionless observation as follows. 
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where  is the length of the segment.   x∆
The sensitivity of the dimensionless observation  to the permeability of the 

k
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th segment  can be written as kk jDk pk ,∂∂ .  To obtain similar contributions from 
different observations, we equate the sensitivities with the weights.  Then we have 
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where  and  are the weights for dpD dTD dxdp  and dxdT . 
From Eq. 6.43, the relative sensitivity of the dimensionless pressure observation 

to the flow rate can be written as 
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Therefore, the relationship between  and  is given by pD qD
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iDjD qp ,, ∂∂  is the sensitivity of to .  Flow rate of the phase i is given by iDq , jDp ,

( ) i

N

k
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=1

.        (6.46) 

To estimate the sensitivity, we consider small perturbations of pressure and flow rate 
caused by, say, permeability and the resulting changes can be written as 

jjj ppp δ+= 0 ,         (6.47) 

iii qqq δ+= 0 ,         (6.48) 

where  and  are the initial pressure and flow rate before perturbations.  The 
change in the flow rate is 
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Therefore, we have 
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In dimensionless form, the sensitivity becomes 
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Therefore, from Eq. 6.21 and 6.45, the relative weight then becomes 
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Similarly, the weight of dimensionless temperature observation is given by 
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From Eq. 4.61, the physical relationship between wellbore temperature and pressure can 
be approximated as 

dx
dp

K
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dT j
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From Eq. 6.54, we have 
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The dimensionless sensitivity is then 
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Therefore, the weight for the dimensionless temperature is 

( ) ppT DDD =−= 21 .        (6.57) 

What remain are the weights of ( ) jDD dxdp  and ( ) jDD dxdT .  From Eq. 6.43, 
we have 
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( jDD dxdp )  is actually calculated by the pressure difference across a segment divided 
by the length of the segment as 
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With a small perturbation, the changes of  and jDp , ( ) jDD xp ∆∆  result in 
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Solving for the perturbed change of ( ) jDD xp ∆∆  gives 
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Therefore, we obtain 
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Substituting into Eq. 6.56, the weight for  is then given as dpD
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Similarly to ( jDD xp ∆∆ ) , the weight for ( ) jDD dxdT  is 

( ) TDdT DxD 2∆= .         (6.65) 

 

6.4 SYNTHETIC AND FIELD EXAMPLES 
With the inversion method described above, we show synthetic and field examples in this 
section.  Synthetic examples include single-phase oil and gas examples to demonstrate 
the effects of each production data (pressure, temperature, etc.), and detections of water 
and gas entry.  In the field example, we use production log data measured from a 
horizontal well in the North Sea which is producing oil and water. 
 

6.4.1 Effects of Input Data Choice 
The possible candidates for input data are the pressure profile, the temperature profile, 
the flow rate, the pressure derivative, and the temperature derivative.  Total flow rate 
will be given as an observation for every case.  Through numerical examples, we 
evaluate the effects of each input data on the inversion results.  The experiments were 
conducted for single-phase oil production and single-phase gas production with a variety 
of permeability distributions. 
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Experiments for single-phase oil production.  “Observations” are generated from a 
forward model following the “true” permeability distribution that we set up, and then 
inversion of the true permeability distribution is performed by matching the observations 
that are generated from the model. 

As true permeability distributions, we consider four different distributions (cases 
A, B, C, and D) along the horizontal well as shown in Fig. 6.4 for the single-phase oil 
production example.  High permeability (500 md) zone and low permeability (50 md) 
zones are located alternately in different ways.  To obtain larger wellbore effects on the 
profiles, the well with small diameter described in Table 5.1 is used in the experiments 
and the bottomhole (heel) pressure is set for 3,600 psi.  The reservoir whose properties 
are listed in Table 5.2 is considered.  The measurement resolutions of the pressure, 
temperature and flow rate are assumed to be the order of 0.1 psi, 0.01 oF, and 1 b/d 
respectively.  The measurements are logged over 20 points located every 100 ft along 
the well.  As an initial permeability distribution, a homogeneous 300 md distribution is 
considered assuming we have no a priori information about the permeability. 
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Fig. 6.4 Four different permeability distributions along a horizontal well. 
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For all the cases, we evaluate the effect of input data given on the inversion 
calculation.  The combinations we give are: pressure only, temperature only, pressure 
and temperature, pressure and pressure derivative, temperature and temperature 
derivative, and all of them.  We will determine the best combination among them 
through numerical experiments.  As an example of additional input data effects, the 
generated observations of case A and the matched curves by using pressure only, 
temperature only, and all the observations are shown in Fig. 6.5. 
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Fig.6.5 Observation and matched curves with different input data (Case A, oil). 
 
Giving the pressure data only shows a close match with the pressure profile but 

the temperature curves did not match.  That indicates that pressure could be matched 
even if its temperature profile is off from the observation.  On the other hand, giving 
temperature only obtains a good match while the pressure profiles also match.  With 
more input data (giving all possible input), not significant difference can be observed in 
this example compared with the match from temperature only.   

Fig. 6.6 displays the inversion results from case A.  As pressure data only did 
not show a good match of temperature curve in Fig. 6.5, it is not surprising that inversion 
from pressure only did not match the true permeability field well.  However, other 
combination choices captured the features of the alternating permeability zone locations, 
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and their inversion results show good resemblance to the true permeability distribution.  
Inverted flow rate profile from temperature and pressure data were compared with the 
observed one in Fig. 6.6c.  They show very close match. 
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Fig. 6.6 Inverted results for case A, (a) permeability distributions from original data.  
(b) permeability distributions from derivative of the data,  
and (c) flow rate profile from temperature and pressure.  

 
The inversion results of case B are shown in Fig. 6.7.  Similarly to case A, the 

inversion with pressure data only or pressure and dxdp  did not produce better 
distributions than the ones with the other input data.  Using the choice of temperature 
and pressure gives the very close distribution to the true permeability distribution.  The 
inverted flow rate profile from temperature and pressure data is also shown in Fig. 6.7.  
The flow rate profiles are identically agreed. 
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Fig. 6.7 Inverted results for case B, (a) permeability distributions from original data.  
(b) permeability distributions from derivative of the data,  
and (c) flow rate profile from temperature and pressure.  

 
The inversion results for the permeability distribution case C are depicted in Fig. 

6.8.  Unlike the previous two cases, the choice of pressure data only performed well in 
this case.  Also, the choice of all input data including the derivative of the data as shown 
in Fig. 6.8b did not succeed in inverting the permeability distribution.  Considering the 
fact that we can obtain better permeability inversion from other input data combination, 
this result from all input data choice implies the error minimization process strayed away 
from the right direction because of too many restrictions.  The inverted flow rate from 
pressure and its derivative is shown in Fig. 6.8c. 
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Fig. 6.8 Inverted results for case C, (a) permeability distributions from original data.  
(b) permeability distributions from derivative of the data,  

and (c) flow rate profile from temperature and its derivative.  
 

The last example of single-phase oil production is Case D.  The inverted 
permeability distributions and flow rate profile are shown in Fig. 6.9.  Neither the 
choice of pressure only nor of temperature only show a good match with the true 
permeability distribution.  Similar behavior can be observed in the results including the 
derivative of the data.  However, the combination of temperature and pressure or all the 
data performances are improved compared with the other choices.  The inverted flow 
rate by temperature and pressure data is compared with the observation in Fig. 6.9c. 
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Fig. 6.9 Inverted results for case D, (a) permeability distributions from original data.  

(b) permeability distributions from derivative of the data,  
and (c) flow rate profile from temperature and pressure.  

 
In order to evaluate the inverted results, we calculated the l-2 norm of the 

discrepancy as 
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where  and  are the true and the inverted permeability of the position j 
respectively.  The obtained errors were normalized by dividing by the error of the result 
from pressure data for comparison reason and shown in Fig. 6.10.  In cases A, B, and D, 
the combination of temperature and pressure gives the best result.  While the 
combination of temperature and derivative of the temperature gives the best result in the 
case C, the result from the temperature and pressure combination is still better than the 
others.  The combinations that provided the lowest error are highlighted in the figures. 
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Fig. 6.10 Error comparisons (single-phase oil production). 
 
Experiments for single-phase gas production.  We perform the same experiments for 
single-phase gas production.  The permeability distributions used as true distribution are 
displayed in Fig. 6.11.  Similarly to the previous experiments, high permeability (100 
md) zone and low permeability (10 md) are located alternately.  Again, we examine the 
goodness of inversion results when using different combinations of input data while flow 
rate is always given.  As an initial permeability distribution, homogeneous 50 md 
distribution is considered. 
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Fig. 6.11 Four different permeability distributions along a horizontal well. 
 

We show an example of the observation and matched curves discrepancy.  The 
observed curves of case A and the matched curves are depicted in Fig. 6.12.  The choice 
of pressure data only shows a close match of the pressure curve while its temperature 
curve slightly deviates from the observation.  On the other hand, the matched curves 
from temperature data only show poor matches for both pressure and temperature curves.  
These discrepancies can be seen more clearly in the derivative of the data.  Interestingly, 
the choice of all input data provides better matches than these choices.   
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Fig.6.12 Observation and matched curves with different input data (Case A, gas). 
 

The inversion of permeability results are shown in Fig. 6.13.  As expected, the 
results from the choices of pressure data only and temperature data only did not capture 
the features of the permeability profile well while the combination of pressure and 
temperature and their derivatives gives a close match to the true permeability distribution.  
Obtained flow rate profile shows a very close match with the observed one. 
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Fig. 6.13 Inverted results for case A, (a) permeability distributions from original data.  
(b) permeability distributions from derivative of the data,  

and (c) flow rate profile from all input data.  
 

We performed the permeability inversions for other cases as well.  As we have 
observed in the experiments with single-phase oil production, there is no single best 
choice of the input data.  One combination performs better one time, and another choice 
performs better another time.  Fig. 6.14 summarizes the inversion results from single-
phase gas production.  Except for case C, including all the input data gave the best 
results. 
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Fig. 6.14 Error comparisons (single-phase gas production). 
 
The choice of input data.  Through these experiments to determine the best choice of 
input data combinations for single-phase oil and gas, we have seen most of the time 
giving multiple input data provides better permeability inversion than the single input 
data.  In order for us to determine the best choice, we took an average of normalized 
permeability distribution errors.  The comparison is shown in Fig. 6.16.  The 
combination of temperature and pressure provides the least error above all the choices.  
Therefore, we select temperature and pressure profiles as input data to the inversion 
process in addition to flow rate in further discussion. 
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Fig. 6.15 Average of normalized errors. 

 

6.4.2 Single-Phase Inversion 
In the determination of input data choice, we considered horizontal wells producing high 
flow rates to obtain substantial wellbore effects.  The inversions of permeability 
distribution were promising for those cases.  In this section, we use a well with large 
diameter described in Table 5.1 with larger bottomhole pressure to have small production 
rate (small wellbore effect) to generate “pessimistic” conditions that have small pressure 
drop and small temperature changes along the well.  We again invert the permeability 
distributions of cases A and B shown in Fig. 6.4 for single-phase oil production and in 
Fig. 6.11 for single-phase gas production.  For inversion of the permeability profile, we 
select pressure and temperature as observed data choice as determined in the last section. 

 
Single-phase oil production.  With large diameter well and bottomhole pressure 3900 
psi instead of 3600 psi, the generated observations of pressure and temperature profiles 
are shown in Fig. 6.16.  The total flow rate is 7767 b/d.  Overall pressure drop in the 
well is only about 7 psi and the temperature change is 0.04 oF as shown in the figures.  
The matched curves are also depicted in Fig. 6.16.  Because the resolution of 
temperature is restricted to 0.01 oF, temperature profile is discretized.  Yet, the observed 
and inverted profiles closely matched.  Fig. 6.17 shows the inverted permeability 
distribution and flow rate profile.  Despite the small changes of pressure and 
temperature profile, the inverted profile reproduced the feature of the true profile quite 
well. 
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Fig. 6.16 Observed and matched curves (case A, oil). 
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Fig. 6.17 Inverted (a) permeability distribution and (b) flow rate profile (case A, oil). 

 
Fig. 6.18 shows the observed profiles with the permeability distribution of the 

case B.  The total flow rate is 7842 b/d.  Also, the pressure drop (15 psi) and 
temperature changes (0.07 oF) are very limited.  The obtained matches are very close.  
The inverted permeability distribution and flow rate are compared with the true 
distribution and shown in Fig. 6.19.  In Fig. 6.19a, the low permeability zone near the 
toe is well represented but the inversion of the high permeability zone near the heel 
shows some differences.  However, the overall permeability prediction is good and 
obtained flow rate profile (Fig. 6.19b) shows a close match. 
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Fig. 6.18 Observed and matched curves (case B, oil). 
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Fig. 6.19 Inverted (a) permeability distribution and (b) flow rate profile (case B, oil). 

 
Single-phase gas production.  Now we perform the permeability inversion with single-
phase gas production.  The well used for the calculation is the same and the bottomhole 
pressure is set at 3980 psi this time.  Fig. 6.20 shows the observed pressure and 
temperature profiles with the inverted curves for case A permeability profile.  The total 
flow rate at the surface is 8449 MSCF/d.   

The pressure drop in the horizontal well is about 1.4 psi and the overall 
temperature change is 0.02 oF.  Both the inverted temperature and pressure curves give 
very close match to the observations.  The inverted permeability and flow rate profiles 
are shown in Fig. 6.21.  Even though the changes along the well are small, the inverted 
permeability and flow rate profiles capture the features of the true profiles well. 
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Fig. 6.20 Observed and matched curves (case A, gas). 
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Fig. 6.21 Inverted (a) permeability distribution and (b) flow rate (case A, gas). 
 
With the true permeability profile of case B, the total production is 8529 MSCF/d.  

The total pressure drop in the well is about 1 psi and the total temperature cooling is 0.02 
oF.  Fig. 6.22 shows the observed profiles and the matched curves.  Both pressure and 
temperature profiles are closely matched.  The inverted results are depicted in Fig. 6.23.  
The inverted permeability gives a profile close to the true except for the near heel region.  
Although the temperature profile is matched very well, the change itself is limited and is 
not captured by the measurement.  If the measurement resolution were high, the 
temperature drop caused by high permeability zone near the heel would appear clearly 
and better permeability distribution could be inverted.  However, this permeability 
difference near the heel does not affect much on the flow rate profile as shown in Fig. 
6.23b. 
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Fig. 6.22 Observed and matched curves (case B, gas). 
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Fig. 6.23 Inverted (a) permeability distribution and (b) flow rate profile (case B, gas). 

 

6.4.3 Water Entry Detection 
When water is produced, we can detect its entry from the wellbore temperature cooling if 
the water and oil are produced from the same level (same boundary temperature).  We 
show water entry examples of water entering from two regions (900 – 1100 ft, and 1600 
– 1800 ft from heel) and invert the permeabilities of these zones.   

For a first example, we consider a permeability profile as shown in Fig. 6.24.  
Two water entry zones are indicated in the figure.  Observations generated based on this 
permeability field are shown in Fig. 6.25.  The well with large diameter described in 
Table 4.1 is used and the bottomhole pressure is set as 3600 psi.  As depicted in Fig. 
6.25a, we have two water entry zones: one at the middle and the other at near the heel of 
the well.  For each water entry zone, the wellbore temperature is cooled as shown in 
Fig. 6.25c, while the pressure profile (Fig. 6.25b) does not show any signs of water 
entries.  For this case, both water entry zones have equal permeability.   
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Fig. 6.24 Permeability distribution and water entry zones. 
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Fig. 6.25 Generated o
 
 

bservations (a) flow rate, (b) pressure, and (c) temperature profiles. 
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Fig. 6.26 Observations and matched curves (water entry). 
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Fig. 6.27 Inverted (a) permeability distribution and (b) flow rate profiles (water entry). 



We inverted the permeabilities of the water entry zones and the permeabilities of 
the oil producing zone by matching the pressure and temperature profiles, and the flow 
rates of oil and water.  The matched temperature and pressure curves are displayed in 
Fig. 6.26 and the inverted permeability distribution and flow rate profile are in Fig. 6.27.  
Both the temperature and pressure profiles are closely fitted by the inversion method.  
As a consequence, we were able to reproduce very accurate permeability and flow rate 
profiles for the two water entry zones. 

In the next example, we consider the case in which water entry from the middle is 
smaller than the one from near the heel.  The permeability profile shown in Fig. 6.28 is 
considered as the true profile.  The generated flow rate and temperature profiles 
according to this permeability distribution are shown in Fig. 6.29.   
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Fig. 6.28 Permeability distribution and water entry zones. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 500 1000 1500 2000

Distance from heel [ft]

Fl
ow

 ra
te

 [b
bl

/d
] Oil

Water

180.2

180.4

180.6

180.8

181

181.2

181.4

181.6

181.8

0 500 1000 1500 2000

Distance from heel [ft]

Te
m

pe
ra

tu
re

 [o F]

a 

Fig. 6.29 Generated observations (a) flow rate and (b) temperature profiles. 
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Again, we can find the water entry zones by looking for temperature drop along 
the well.  The true permeability distribution is inferred by matching the production data.  
The matched curves are depicted in Fig. 6.30 and the obtained permeability and flow rate 
distributions are shown in Fig. 6.31. 

The observations were regenerated very precisely as depicted in Fig. 6.30.  As 
we have observed in Chapter 4, the wellbore temperature cooling by water entry are 
mainly determined by the location of the entry zone and the water production rate.  The 
cooling effect is more emphasized as its flow rate becomes higher and as it occurs closer 
to the heel.  Therefore, in this case, the temperature cooling at the middle is less 
significant than the previous water entry example.  The permeability inversion still 
shows a good match with the true permeability distribution.  Also, the flow rates in both 
water entry region  are precisely inverted.    

 
 

 
 
 
 
 
 
 
 

3590

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

0 500 1000 1500 2000

Distance from heel [ft]

Pr
es

su
re

 [p
si

]

Observed
Inverted

180.2

180.4

180.6

180.8

181

181.2

181.4

181.6

181.8

0 500 1000 1500 2000

Distance from heel [ft]

Te
m

pe
ra

tu
re

 [o F]

Observed
Inverted

 
 
 

Fig. 6.30 Observations and matched curves (water entry). 
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Fig. 6.31 Inverted (a) permeability distribution and (b) flow rate profiles (water entry). 
 
For a last example of water entry, we consider a smaller water flow rate near the 

toe as shown in Fig. 6.32.  The temperature drop near the toe, as can be expected, 
became less and at the middle it became more.  The observed profiles and the inverted 
profiles are shown in Fig. 6.33.  The inverted pressure and temperature curves are 
accurately matched with the observation.  The inverted permeability and flow rate 
profiles are shown in Fig. 6.34.  The obtained permeability distribution predicts both 
water entry zones’ permeability very closely.  The flow rates of both water and oil are 
closely matched as well. 
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Fig. 6.32 Permeability distribution and water entry zones. 
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Fig. 6.34 Inverted (a) permeability distribution and (b) flow rates profiles (water entry). 

6.4.4 Gas Entry Detection 
Similarly to water entry, gas entry cools the wellbore.  However, the cooling effect by 
gas is much larger than that of water because the gas temperature actually cools off below 
the geothermal temperature while oil and water warm up.  Therefore, the detection of 
gas becomes relatively easy as discussed in Chapter 4.  In this section, we show 
examples of permeability inversions when oil and gas are produced.  Again, we consider 
two gas entry regions: one is located near the toe (1,600 – 1,800 ft from heel).  The 
other one is at the middle (900 – 1,100 ft from heel).  The well properties are the same 
as the water entry example except for bottomhole pressure which is set at 3900 psi. 
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As a first example, we consider the two gas entry zones having the same 
permeability (20 md) while the oil permeability is 200 md as shown in Fig. 6.35.  The 
observations (flow rate, pressure, and temperature profiles) from this permeability 
distribution are also shown in Fig. 6.36.  As can be found from Fig. 6.36a, gas entered 
into the well from two regions.  Similarly, whereas we cannot see any indications of gas 



production on the pressure profile (Fig. 6.36b), the locations of gas entries can be found 
from the temperature profile by detecting the temperature drop as depicted in Fig. 6.36c.  
We give the total flow rates of each phase, and pressure and temperature profiles to the 
inversion process as input data in this case as well.   
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Fig. 6.35 Permeability distribution and gas entry zones. 
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Fig. 6.36 Generated observations (a) flow rate, (b) pressure, and (c) temperature profiles. 

 
The matched pressure and temperature profiles are shown in Fig. 6.37 and the 

inverted permeability and flow rate distributions are shown in Fig. 6.38 with the initial 
permeability distribution used to start the inversion.   
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Fig. 6.37 Observations and matched curves (gas entry). 
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Fig. 6.38 Inverted (a) permeability distribution and (b) flow rates profile (gas entry). 
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We slightly missed matching the pressure profile near the toe but the other zone 
and entire temperature profile are very closely matched.  The obtained permeability 
distribution is close to the true permeability distribution.  While the oil flow rate profile 
is successfully reproduced, gas flow rate replication shows slight off from the 
observation.  However, more importantly, the permeabilities of both gas entry zones 
were predicted accurately. 

The next example is the same as the first one except that the middle gas entry 
zone’s permeability is lower (10 md).  The matched pressure and temperature profiles 
are shown in Fig. 6.39 and the inverted permeability distribution and flow rate profile are 
shown in Fig. 6.40.  The temperature and pressure profiles are almost exactly matched.  
Also, Fig. 6.40a shows a very successful permeability inversion result.  High and low 
gas permeabilities of both gas entry zones are predicted correctly.  The obtained flow 
rates profiles are agreed well with the observations. 
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Fig. 6.39 Observations and matched curves (gas entry). 
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Fig. 6.40 Inverted (a) permeability distribution and (b) flow rate profiles (gas entry). 
 

For a last example, we invert the permeability distribution that has low 
permeability (10 md) gas entry zone near the toe (1600 – 1800 ft from heel) and high 
permeability (20 md) at the middle (900 – 1100 ft from heel).  The matched curves of 
pressure and temperature are shown in Fig. 6.41, and the inverted permeability 
distribution and flow rate profiles are shown in Fig. 6.42. 
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Fig. 6.41 Observations and matched curves (gas entry). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.42 Inverted (a) permeability distribution and (b) flow rate profiles (gas entry). 
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We can see in Fig. 6.41 that the observations were almost identically reproduced.  
The inverted permeability distribution is also fit to the true permeability distribution 
including gas entry zones so are the obtained flow rate profiles.  Compared with the 
examples of water entry, the inversion results are better.  This is because a gas entry 
tends to create a clearer effect on the temperature profile than a water entry does.  Both 
detection of entry locations and quantification of productivities are easier for gas entries. 
 

6.4.5 Skin Factor Inference 
Existence of formation damage changes the pressure profile of the reservoir with a fixed 
flow rate.  This results in, as demonstrated in Chapter 3, inflow temperature increase.  
Temperature increases are mainly determined by the damaged formation permeability.  
The effects of the damage zone’s radius are limited as shown in Fig. 3.11.  We also 
demonstrated the wellbore temperature profile with existence of formation damages in 
Chapter5.  Fig. 5.18 – 5.21 showed more pronounced formation damage effects as the 
damage lies closer to the toe. 

We apply the inversion method developed to infer the formation damage 
permeability.  Similarly to the examples shown in Chapter 4, we consider a 
homogeneous reservoir having formation damage near the toe, middle, and heel with 
various ratios of reduced permeability.  Then we study about the predictability of 
formation damage from temperature profile.  The permeability of the reservoir is 
considered to be 200 md and the well with large diameter with 3600 psi bottomhole 
pressure is used in the calculation. 

Fig. 6.43 shows the observed temperature profiles from the reservoir with 
formation damage extending 3 ft into the formation over the zone of 1500 – 2000 ft from 
the heel for 3ft from the wellbore.  The ratios of reduced permeability ( kkd ) 
considered are 1, 0.5, 0.3, and 0.1.   
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Fig. 6.43 Wellbore temperature profiles with different formation damage. 
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Fig. 6.44 Matched temperature profiles (toe) of (a) kkd  = 0.5, (b) kkd  = 0.3, 

 and (c) kkd  = 0.1 
 
We inverted the damaged permeability by matching the temperature profiles.  

The matched temperature profiles are shown in Fig. 6.44 and the inverted damage skin 
factors are shown in Fig. 6.45.  We can see that the inversion result becomes better as 
the damage becomes more severe.  The more the reservoir is damaged, the more the 
temperature profiles are affected and therefore, the more chance we have to infer the 
damage skin factor.  For kkd  = 0.5 and kkd  = 0.3 cases, even though the 
temperature profiles are closely matched, we obtained different skin factor results. 
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Fig. 6.45 True and inverted damage skin profiles (toe) of (a) kkd  = 0.5, (b) kkd  = 0.3, 

and (c) kkd  = 0.1 
 

If the damage zone is located closer to the heel, its effect on temperature profile 
becomes smaller.  We next show the prediction of skin factor for the reservoir with 
damage zone at the middle (800 – 1300 ft from the heel).  The observed and matched 
temperature profiles are shown together in Fig. 6.46 and the inverted skin factor profiles 
are shown in Fig. 6.47.   
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Fig. 6.46 Observed and matched temperature profiles (middle) of  
(a) kkd  = 0.5, (b) kkd  = 0.3, and (c) kkd  = 0.1 
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Fig. 6.47 True and inverted damage skin profiles (middle) of (a) kkd  = 0.5, (b) kkd  = 

0.3, and (c) kkd  = 0.1 
 

The observed temperature profiles are precisely reproduced as shown in Fig. 6.46.  
For kkd  = 0.5 case, the profile of damage skin factor is not predicted well.  However, 
the skin factor profiles of kkd  = 0.3, and kkd  = 0.1 are reasonably predicted from 
the temperature profile despite the small changes of temperature. 

The last example contains the cases of damage zone being near the heel (0 – 500 
ft from the heel).  The true and inverted skin factor profiles are depicted in Fig. 6.48.  
Large skin factor can be detected by the temperature profile.  However, for the 
temperature change caused by formation damage to distinguish, the damage cannot be 
uniformly distributed.  In other words, if the damage is segregated and large, we can 
infer the damaged zone and quantify the reduced permeability. 
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Fig. 6.48 True and inverted damage skin profiles (heel) of (a) kkd  = 0.5, (b) kkd  = 0.3, 

and (c) kkd  = 0.1 
 

6.4.6 Field Example 
We use the temperature and pressure profiles measured in a horizontal well in the North 
Sea which is producing oil and water to test the inversion method with actual well data.  
While zonal production data for each phase are known, the continuous profiles of 
production rate have not been measured.  We apply the inversion method to the field 
data and obtain flow rate profiles of oil and water by matching the temperature and 
pressure data. 

The well is not perfectly horizontal and has slight deviations along its path.  The 
trajectory of the well is shown in Fig. 6.49.  The total oil production rate is 12,699 b/d 
and the water production rate is 8,554 b/d.  From the measured depth 10689 ft to 9785 
ft, the oil is being produced with 4,101 b/d and water with 2,201 b/d.  From 9,705 ft to 
8712 ft, the oil production rate is 8,598 b/d and the water production rate is 6,553 b/d.  
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About 65% of the total production is produced from the upper zone.  The measured 
temperature and pressure profiles in this upper zone are shown in Figs. 6.50 and 6.51 
respectively. 

 

6900

6905

6910

6915

6920

6925

6930

6935

6940
7500 8000 8500 9000 9500 10000 10500 11000

Measured depth [ft]

Tr
ue

 v
er

tic
al

 d
ep

th
 [f

t]

wire wrapped screens

Zone 1

Zone 2

 
Fig. 6.49 Trajectory of the well. 
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Fig. 6.50 Measured temperature profile. 
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Fig 6.51 Measured pressure profile. 

 
From the temperature profile (Fig. 6.50), we can detect the temperature drop.  

We consider this zone (about 9,200 – 9,600 ft, measured depth) as a water producing 
zone.  Also, considering the total flow rate of oil and water (21,253 b/d), the wellbore 
pressure drop is very small (about 14 psi).  Therefore, this well must be producing most 
of the fluid near the heel so that it has less frictional pressure drop inside the wellbore.  
The available properties given for this well are listed in Table 6.1.  For the other 
properties we need for calculations, we use the values listed in Tables 4.1 – 4.3.  The 
inverted temperature and pressure profiles are shown in Figs. 6.52 and 6.53 respectively.   

 

ID [in]
Total Length [ft]

Reservoir height [ft]

T at outer boundary [oF]

Specific gravity of gas

Oil API
Disolved GOR [SCF/STB]

Reservoir pressure [psi]

Table 6.1 Field properties

2917

89

179.6

5

37.8

1250

0.85

197
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Fig. 6.52 Inverted temperature profile. 
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Fig. 6.53 Inverted pressure profile. 

 
Although the inverted temperature deviated from the observation around 8500 ft 

of the measured depth, overall inversion is good.  The pressure curves also show close 
agreement.  Therefore, we can consider that the inverted profiles represent the actual 
profile.  Obtained flow rates of oil and water are depicted in Fig. 6.54.  As can be seen 
from the figure, oil is produced mainly from 9,000 – 9,200 ft and 8,400 – 8,500 ft.  The 
first oil production corresponds to the temperature increase of the temperature 
measurement on this zone.  The second oil producing zone is resulted from the fact that 
the wellbore pressure drop is extremely small for this high flow rate. 
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Fig. 6.54 Inverted flow rates. 
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CHAPTER 7 

BUILD SECTION AND JUNCTION 

7.1 INTRODUCTION TO BUILD SECTION AND JUNCTION 
The build section is a section of wellbore that is closed to the formation and that connects 
the productive lateral to the main wellbore or to another lateral.  The temperature and 
pressure profiles of these build sections are needed to relate the temperature and the 
pressure at the junction locations to the temperatures and pressures of the source laterals. 
 

7.2 WORKING EQUATIONS FOR BUILD SECTION 
To determine the temperature profile of a build section where the well inclination is 
changing, we apply the energy balance equation developed for the wellbore (Eq. 4.60) to 
a control volume of the build section as shown in Fig. 7.1.   
 

 
 

Fig. 7.1 Differential volume element of a build section. 
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With no production ( 0,0 == γIv ), a temperature of a jth control volume along z-
direction is given as 

( )
P

jje
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j
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dp

K
dz

dT θα
ρ

sin2
, −−+= ,     (7.1) 

or 
( )
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jjej
JT
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C
g

A
TT
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K
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dT θsin, −
−

+= ,      (7.2) 

where A is called the relaxation parameter (Hasan and Kabir, 2002) which is defined as 

απ

PwC
RA 21 =− .         (7.3) 

eT is the earth (environment) temperature.  With no production, formation temperature is 
equal to the environment temperature and is a function of depth, z.  With the 
environment temperature of previous control volume,  is given by jeT ,

( ) θsin1,, Gjeje gzLTT −−= − ,       (7.4) 

where  is the geothermal temperature gradient. Gg
 

7.2.1 Single-Phase Liquid 
The following assumptions were made to develop the equation for single-phase liquid: 
fluid is incompressible, and flowing friction becomes.  For single-phase liquid flow, the 
static head loss nearly equals the total pressure gradient.  Therefore, we obtain 

θρ sing
dz
dp

= .         (7.5) 

Since we assume an incompressible fluid, the Joule-Thomson coefficient can be defined 
as 

p
JT C

K
ρ

1
= .         (7.6) 

Substituting Eqs. 7.5 and 7.6 into Eq. 7.2, we have 
( )

A
TT

dz
dT jjej −

= , .         (7.7) 

With the substitution of Eq. 7.4 into Eq. 7.7, we have a first order linear differential 
equation as 
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( ){[ θsin1
1, Gjej

j gzLTT
Adz

dT
−−−= − }].      (7.8) 

The solution of the differential equation is given by 

( ) ( )
A

LzCAggzLTT IGGjej
−

++−−= − expsinsin1, θθ ,    (7.9) 

where  is the integration constant to be estimated from boundary condition.  The 
boundary condition for this system is that the temperatures are the same at the boundary 
between the segments.  At 

IC

Lz = , Eq. 7.9 is 

IGjj CAgTT ++= − θsin1 ,        (7.10) 

Therefore, we have 
θsinGI AgC = ,         (7.11) 

Putting back into Eq. 7.9 gives 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

−−−−= − A
A

LzzLgTT Gjej exp1sin1, θ .    (7.12) 

7.2.1 Single-Phase Gas 
For single-phase gas flow, the static head loss is not the same as the total pressure 
gradient but is negligible at low pressure. Therefore, the solution of Eq. 7.2 is given as 

⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= − A

LzC
C

ggATT I
p

Gjej expsinsin1,
θθ .    (7.13) 

Similarly, applying the same boundary condition at Lz = , the integration constant is 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

p
GI C

ggAC θθ sinsin .       (7.14) 

Substituting into Eq. 7.14 yields 

⎟
⎟
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⎜
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⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−+= −
p

Gjej C
gg

A
LzATT θθ sinsinexp11, .    (7.15) 

 

7.3 WORKING EQUATIONS FOR WELLBORE JUNCTION 
For the case of modeling wellbore junctions that have commingled fluids with different 
properties, the mixing method is reviewed (Hill, 1990). An enthalpy balance applied to 
the mixing of two streams of fluid at different temperature into one combined stream is 
used to determine the relative flow rates of those streams.  
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Applying an energy balance to the wellbore junction, considering no heat loss and 
gain during the mixing, yields 

( ) ( ) 0222111 =−+− TTCwTTCw mpmp       (7.16) 

where  and  are the temperatures of streams 1 and 2 respectively.   is the 
temperature of a mixture defined by 

1T 2T mT

2211

222111

pp

pp
m CwCw

TCwTCw
T

+

+
=         (7.17) 

The following equation is used to calculate the heat capacity of a mixture: 

2
21

2
1

21

1
pppm C

ww
wC

ww
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⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=       (7.18) 

When the two streams commingling at the junction are the same fluid, so that all 
heat capacities are the same, combining Eq. 7.18 with the mass balance at the junction 

21 wwwm +=          (7.19) 

From Eq. 7.17, we have 
( )

2211

2111
2

pp

p
m CwCw

TTCw
TT

+

−
=−         (7.20) 

Then we have 

2211
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21

2

pp

pm

CwCw
Cw

TT
TT

+
=

−
−         (7.21) 

If a well is producing a single-phase fluid, the heat capacities are the same.  Therefore, 
Eq. 7.21 becomes 

m

m

w
w

ww
w

TT
TT 1

21

1

21

2 =
+

=
−
−

        (7.22) 

Eq. 7.22 is very easy to use to infer the flow rates from each lateral.  Thus, if there are 
measurable temperatures differences between ,  and , the fraction of the total 
flow from each lateral can be determined by measuring these temperatures.  This 
describes the mixing method used for temperature log interpretation. 

1T 2T 3T

 

7.4 SENSITIVITY STUDIES AND RESULTS 
In this chapter, results of temperature profiles along the build section with different 
trajectories were calculated.  First, the temperature profile for the variable angle 
trajectory was obtained and compared to a temperature profile with a constant angle of 
45o.  Additionally, temperature profiles for multilateral wells with two single-phase 
liquid laterals, and temperature profiles for multilateral wells with two single-phase gas 
laterals were calculated using the model for single-phase liquid and gas, as well as 
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junction mixing, to determine whether the mixing method used in temperature log 
interpretation could be used to interpret the relative flow rates from different laterals.  

 

7.4.1 Different trajectories 
Temperature profiles for several constant angles (90o, 45o, 25o, and 10.5o) and variable 
angles along the build section were calculated for an oil flow rate of 3000 STB/d, as 
shown in Fig. 7.2, using Eq. 7.12.  Table 7.1 summarizes other important characteristics 
of the reservoir used.  As the well deviates from the vertical, the temperature at the top 
of the build section decreases.  This is because of the increased length of the wellbore in 
the build section as the deviation increases, which in turn increases the length of time for 
the relatively hot wellbore fluid to be cooled by the surrounding formation.  
 

Geothermal gradient [ oF/ft] 0.0274
Oil heat capacity [ Btu/lb oF] 0.485

Wellbore diameter [in] 7.5 in
Outside casing diameter p [in] 5.5 in

Inside casing diameter [in] 5.047 in
Thermal conductivity of cement [Btu/hr ft oF] 4.02

Thermal conductivity of earth [Btu/hr ft oF] 1.4
oAPI 35

Table 7.1 Properties used for single-phase liquid examples.
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Fig. 7.2 Temperature profiles along the build section (3000 STB/d). 
 
The temperature profile for the variable angle trajectory was surprisingly close to 

the profile obtained with a constant angle of 45o.  Even though these trajectories are 
quite different (see Fig. 7.3), the net heat transfer from the wellbore fluid to the formation 
was similar. 

 

 
Fig. 7.3 Constant radius of curvature and constant angle trajectory.  

 
At a much smaller flow rate (200 STB/d), the wellbore cools much more (see Fig. 

7.4) than at a larger flow rate (3000 STB/d), as shown in Fig. 7.2, because of the 
increased length of time for the relatively hot wellbore fluid to be cooled by the 
surrounding formation.  

For the vertical case, the temperature at the top of the build section is less than 10 
oF higher than the geothermal temperature; a highly deviated (10.5 oF from the 
horizontal), constant angle build section has a temperature at the top of the build section 
that is only 2 oF different from the geothermal temperature. 
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Fig. 7.4 Temperature profiles along the build section (200 STB/d). 

 

7.4.2 Dual-lateral with single phase liquid 
Data from Zuata Field in the Orinoco heavy oil belt (Ramirez et al., 2004; Robles 2001) 
were used to calculate the temperature profiles for multilateral wells with two single-
phase liquid laterals, using the model for single-phase liquid and junction mixing.  In 
this area, dual-laterals are expected to achieve a target oil production rate per single well 
of approximately 3000 STB/d by increasing the contact area between the wellbore and 
the reservoir.  Because of the depth of the reservoir (1500 ft – 2000 ft), the temperatures 
were moderately low.  Down-hole temperature at the total vertical depth was measured 
to be approximately 120 oF, corresponding to an approximate temperature gradient of 
0.02 oF/ft.  For the three cases studied, lateral 1 produced 2000 STB/d and lateral 2 
produced 3000 STB/d, with an oil gravity of 10o API for both laterals.  The other 
properties listed in Table 7.1 were used. 

 
To determine whether the mixing method used in the temperature log 

interpretation could be used to interpret the relative flow rates from different laterals, we 
simulated dual laterals produced from different depths as shown in Fig.7.5.  The mixing 
method depends on the fact that fluids entering a well at different depths have different 
temperatures because of the geothermal gradient.  Similarly, if fluids from two branches 
of a multilateral have different temperatures before commingling at a junction, the 
resulting intermediate temperature of the mixed stream should be proportional to the rates 
from each lateral. 
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Fig. 7.5 Dual lateral geometry for the examples. 

 
Figs. 7.6 – 7.8 show the predicted temperature profiles for laterals completed at 

the same depth, laterals completed 500 vertical feet apart, and laterals completed 1000 
vertical feet apart.  For laterals completed at the same depth (see Fig. 6.6), the streams 
from the two laterals arrive at the junction at slightly different temperatures because of 
the different flow rates in each lateral.  However, the difference is so small (about 0.5 
oF) that interpretation of the junction mixing is probably impossible.  When the two 
laterals are spaced at a significant distance (see Figs. 7.7 and 7.8), the difference in the 
temperatures of the fluid from the two laterals is significant enough that the mixing 
method can be applied.  The mixing temperature in these cases is different enough from 
the temperature of the lateral (1 oF or more) to be readily measured with current 
distributed temperature sensor devices. 
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Fig. 7.6 Build section temperature profiles with liquid production at the same depth. 
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Fig. 7.7 Build section temperature profiles with liquid production  

at depths spaced 500 ft apart. 
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Fig. 7.8 Build section temperature profiles with liquid production  

at depths spaced 1000 ft apart. 
 

When one lateral is producing at a much smaller rate than the other, a sizable temperature 
difference at the junction may occur during production from the same depth at both 
laterals.  Fig. 7.9 shows the temperature profiles for production rates of 500 STB/d for 
lateral 1, and 3000 STB/d for lateral 2, both produced at the same depth.  The difference 
in the temperatures of the streams arriving at the junction is significantly greater than the 
case with similar rates shown in Fig. 7.6. 
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Fig. 7.9 Build section temperature profiles with different rates of  

3000 STB/d and 500 STB/d. 
 

7.4.3 Different fractions of total production 
Several cases were used for calculations for different fractions of the total production 
from each lateral, for example if the total production of the well was 5000 STB/d, 20% - 
80% means, lateral 1 is producing 1000 STB/d and lateral 2 is producing 4000 STB/d.  
In these examples, lateral 1 was always kept at the same level, and lateral 2 had a 
changing depth (0 ft, 500 ft, and 1000 ft) from lateral 1, and the difference of temperature 
is calculated at the junction.  

The difference in temperature at the junction was calculated in the following 
fashion: lateral 2 minus lateral 1.  Therefore, when the difference is positive it is because 
lateral 2 has a higher temperature than lateral 1.  The total flow rate was kept constant 
and the fraction flow rate of each lateral changed, and calculations were made for 
different total flow rates. 
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When there is a difference in lateral production, we can see that the difference in 
temperature between the laterals increases as the total flow rate increases, as is illustrated 
in Figs. 7.10 – 7.12, but there is one point when this difference starts decreasing as the 
flow rate increases.  All the differences in depth between the laterals are 0 ft, 500 ft and 
1000 ft.  This is because of the fact that after certain flow rates (especially high flow 
rates), the lateral which is producing less increases temperature in a more rapid manner 
than the lateral which is producing more.  This effect is delayed when there is a 
difference in depth between the laterals.  Even though lateral 1 increases rapidly 
temperature, lateral 2 also increases because it is deeper than lateral 1.  However, 
eventually the difference in temperature will decrease, even for very high flow rate.  For 



very high flow rate the difference in temperature between the laterals at the junction 
would have a small value, but for those cases where there is a difference in depth, the 
resulting effect would be delayed.  
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Fig. 7.10 Fraction of total production from each lateral: 20% - 80%. 
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Fig. 7.11 Fraction of total production from each lateral: 30% - 70%. 
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Fig. 7.12 Fraction of total production from each lateral:40% - 60%. 

 
 

When the two laterals produce the same flow rate and are at the same level, there 
is not difference in temperatures at the junction.  Therefore, the mixing method can not 
be applied (as can be seen in Fig. 7.13).  The mixing method can be applied when there 
is a difference in depth between the laterals, and the total flow rate is large enough to 
have an appreciable temperature difference at the junction measurable by a sensor. 
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Fig. 7.13 Fraction of total production from each lateral: 50% - 50%. 
 

When a lateral which is producing more is kept at the same level while the other 
lateral which is producing less is moved to changing depths, there is one instant when 
there is no difference in temperature at the junction (as shown in Figs. 7.14 – 7.16).  
This level is reached when the effect of having a high flow rate from lateral 1 has the 
same effect as having a difference in depth from lateral 2, which has a lower flow rate.  
If the laterals have a significant difference in flow rate, this effect will not be visible. 

From Figs 7.14 – 7.16 we see that the absolute difference in temperature at the 
junction for different total flow rates can be seen to be smaller for all cases, because the 
effect of having a higher flow rate is larger than having depth differences between the 
laterals.  Also, in this case lateral 1 will always have a higher temperature than lateral 2, 
because of its higher flow rate.  However, when the total flow rate increases, there is a 
point where lateral 2 has a higher temperature than lateral 1. 

When there is a difference in the lateral’s production, it can be seen that the 
difference in temperature between the laterals usually decreases as the total flow rate 
increases.  However, there is one point where this difference begins to increase as the 
flow rate increases for all the differences in depth.  These differences between the 
laterals are 0 feet, 500 feet and 1000 feet as shown in Figs.7.14 – 7.16.  This is because 
of the fact that above certain flow rates (high flow rates), the lateral producing less 
increases in temperature in a more rapidly manner than the lateral producing more.  
When there is a difference in depth between the laterals, the lateral which has less 
production but a changing depth will increase in temperature even more rapidly than if 
the laterals are at the same level.  Also, when both laterals are at the same level, the 
difference in temperature decreases for high flow rates.  Therefore, for high flow rates 

 125



and laterals at the same level, the difference in temperature at the junction has a low 
value. 
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Fig. 7.14 Fraction of total production from each lateral: 60% - 40%. 
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Fig. 7.15 Fraction of total production from each lateral: 70% - 30%. 
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Fig. 7.16 Fraction of total production from each lateral: 80% - 20%. 
 

7.4.4 Dual-lateral with single phase gas 
Typical data from the Parks Field Unit in west Texas (Owodunni, 2003) shown in Table 
7.2 were used to calculate the temperature profiles for multilateral wells with two single-
phase gas laterals, using the model for single-phase gas in the build section and mixing at 
the junction.  Wells are design to produce gas from the upper and lower porosity lenses 
of geologically constrained Devonian limestone.  The results from temperature profiles 
for this case are shown in Figs. 7.17 – 7.19, where lateral 1 produces 700 MSCF/d and 
lateral 2 produces 1.7 MMSCF/d. The geothermal temperature gradient used was 
0.016oF/ ft.  
 

Geothermal gradient [ oF/ft] 0.016
Oil heat capacity [ Btu/lb oF] 0.3

Wellbore diameter [in] 7.5 in
Outside casing diameter p [in] 5.5 in

Inside casing diameter [in] 5.047 in
Thermal conductivity of cement [Btu/hr ft oF] 4.02

Thermal conductivity of earth [Btu/hr ft oF] 1.4

Specific gravity of gas 1.04

Table 7.2 Properties used for single-phase gas examples.

 
 

The results for these gas production cases are similar to those for an oil producing 
dual lateral.  The larger the vertical separation between the laterals, the bigger the 

 127



temperature difference between the produced streams arriving at the junction.  For a 
vertical spacing of 500 or 1000 feet, the temperature difference between the streams is 
easily discernible, allowing the application of the mixing method to interpret the relative 
flow rates from the laterals. 
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Fig. 7.17 Build section temperature profiles with gas production at the same depth. 
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Fig. 7.18 Build section temperature profiles with gas production  

at depths spaced 500 ft apart. 
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Fig.7.19 Build section temperature profiles with gas production  

at depths spaced 1000 ft apart. 
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CHAPTER 8 

Numerical Temperature Model of Two-Phase Flow 

8.1 INTRODUCTION TO NUMERICAL TEMPERATURE MODEL OF TWO-PHASE FLOW. 
Chapter 4 presented an inflow temperature model that resulted from analytically solving 
the mass and energy balances of single-phase flow in a box-shaped isotropic reservoir 
with no-flow lateral boundaries.  The model predicts wellbore temperature under the 
assumption that gas, oil, and water are flowing at the same geothermal temperature or 
from the same depth.  Based on this assumption, the model predicts that water enters at 
a lower temperature than oil because of its larger heat capacity.  The prediction seems to 
be in conflict with field observation where we commonly see water entering at the higher 
temperature than oil (Foucault et al., 2004).   

This chapter further studies the temperature behavior in a horizontal well 
subjected to bottom water drive.  Water in this case is initially located in a deeper and 
warmer zone below a horizontal well. 

Unlike the previous analytical temperature model, this model numerically solves 
mass and energy balances for two-phase flow both in the reservoir and wellbore.  The 
fluid properties also vary with temperature and pressure while flowing.  The key 
difference from typical thermal oil recovery simulators is that the model includes a 
temperature change caused by pressure drops, which is usually neglected by those 
simulators.  Since the temperature change in the context of monitoring a production well 
is expected to be small, all of the subtle energy changes in the reservoir must be included.  
Neglecting the Joule-Thomson effect for liquid flow will result in an underestimation of 
the size of the temperature change. 

We will focus our study only on a bottom water drive reservoir, in which water 
coning is prone to occur.  Although there are pressure-based models that can predict 
water breakthrough time for water coning toward horizontal wells, what we are seeking 
here is an alternative way to detect water breakthrough by assuming that the DTS are 
permanently installed in a horizontal well.  We will develop a basis to detect water entry 
and breakthrough time based on temporal changes of the temperature profiles.  A similar 
basis could also detect gas entry in a gas-cap drive reservoir because gas properties are 
much different from oil.  The size of the temperature decrease for gas flowing into the 
well should be larger and the gas inflow easier to locate than for oil-water flow.   

 

8.2 PHYSICAL DESCRIPTION OF THE MODEL  
Fig. 8.1 shows a schematic of the reservoir and well geometry.  We consider a 

horizontal well fully penetrated through a box-shaped reservoir with no-flow boundaries 
at the top and the sides of the reservoir.  Initial pressures are at static equilibrium at 
which the water pressures are function of the elevation only.  For convenience, water in 



the reservoir is initialized at irreducible water saturation.  Temperature of the five 
boundaries is fixed at its initial geothermal temperature.  We assume that an active 
aquifer at the bottom of the reservoir gives a constant pressure and temperature boundary 
(4,000 psi, 180 oF) located at the original water-oil contact.  A straight horizontal well is 
placed in the center of the oil reservoir having horizontal to vertical permeability ratio of 
five (kh/kz = 5).  The horizontal well is modeled as an open hole over its entire length. 
 

 
Fig. 8.1 Schematic of bottom water drive reservoir and well at the initial condition. 

 
For two-phase flow in a reservoir, we are required to have a capillary pressure 

model and a relative permeability model.  Although these models are not the main 
causes of temperature changes, they are commonly used to describe two-phase flow in 
reservoir simulation.  In this study, we have chosen a model and consistently used it 
throughout example cases. 

Capillary pressure is expressed as a function of interfacial tension, permeability, 
porosity and saturation.  For water and oil flow, the capillary pressure curve is modeled 
as  

( E
wcow S

k
Cp −= 1φσ ) ,       (8.1) 

where  is the geometric mean of permeability in the , ,  directions.  The 
parameters  and 

k x y z
C E  are usually determined from matching a water/oil experimental 

capillary pressure curve.  Here we choose 10=C  and 3=E .  σ  is the interfacial 
tension between water and oil.  

Relative permeability for the water and oil flow is calculated from Corey’s model 
(Corey, 1986). 
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where  and  are the end point relative permeabilities of water and oil 
respectively.  Subscripts ew  and  are the relative permeability exponents. 
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8.3. FINITE DIFFERENCE FORMULATIONS AND CALCULATION PROCEDURE 
Mathematical formulations of mass and energy balances for oil and water flow in 

the reservoir and the wellbore are developed in this section.  Although the formulation 
of mass balance is not new and commonly appears in reservoir simulation literature, it is 
presented here for showing the steps taken in obtaining results (temperature, pressure, 
and inflow rate profiles).  The formulation of the energy balance is relatively new 
because it includes the heat resulting from fluid expansion, viscous dissipation, 
convection, and conduction.   

 

8.3.1 Mass balance 
Reservoir flow.  For two-phase flow in a reservoir, the differential form (strong form) of 
the mass balance can be written as follows. 
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t
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( ) ( wwww S
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The divergence operator on the left side of the above equations could be expanded 
into any coordinate system.  φ  is the porosity of the reservoir and assumed constant in 
this study.   is the Darcy velocity that is extended to describe the two-phase flow by 
relative permeability.  The subscripts w and o denote the water and oil phases, 
respectively.  The right side of above equations can be rearranged and expressed in term 
of phase pressure and fluid compressibility. 
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For water: 

 132



( )
t

p
cS

t
S w

ww
w

ww
w ∂

∂
+

∂
∂

=⋅∇− φφρ
ρ

u1 ,      (8.7) 

Eqs. 8.6 and 8.7 are added to eliminate the time derivative term of the saturations 
so that the IMPES (implicit pressure explicit saturation) formulation can be used. 
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For three-dimension flow in a Cartesian coordinate system, Eq. 8.8 can be 
integrated over a box-shaped control volume ( zyx ∆∆∆ ).  This leads to the mass balance 
before taking the limit as zyx ∆∆∆ ,,  approach zero.  Then we have 
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Eq. 8.9 is approximated by finite differencing.  Details are given in Appendix C.  
With the auxiliary relations of capillary pressure ( woc ppp −= ) and saturation 
( 1), the finite-difference form of Eq. 8.9 is =+ wo SS
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where the subscripts , i j , and  refer to spatial coordinates.  The coefficients (k A , 
B , , , C D E , , , ) resulting from doing a typical finite difference are 
presented in Appendix C.   

F G RHS

 
Well grid blocks.  For grid blocks containing a wellbore, Eq. 8.10 has to include the 
source/sink terms on the left side as written below.   
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where the subscripts and J K denote the well grid blocks.  The production term, , 
represents volume produced at reservoir condition, per unit time.  The relationship 
between volumetric flow rate, grid block pressure, and wellbore pressure is expressed as 
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where  is the phase productivity index.  We use an expression developed by 
Peaceman (1983), which is 
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Once we substitute Eqs. 8.12 and 8.13 into Eq. 8.11, the unknowns are the pressure in the 
grid blocks and the wellbore pressure.  Thus, the wellbore flow is required to describe 
the pressure in the wellbore.  
 

Wellbore flow.  For wellbore flow, we use the equation derived in Chapter 4 given as 
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The right side of Eq. 8.16 is evaluated from a previous iteration.  The finite-
difference form of Eq. 8.16 is  
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Eq. 8.17 only describes the difference between pressure at two points, so we need 
another equation, which is a well constraint.  In a total rate-constrained well, we have an 
additional equation written as 
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where is the maximum number of grid blocks in x-direction (along the well).  
is the maximum number of grid blocks in y-direction (perpendicular to the well).  
 is the maximum number of grid blocks in z-direction (vertical depth).   

maxI

maxJ

maxK
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Set of linear equations.  In solving a set of linear equations, the total number of 
unknowns must be the same as the total number of equations.  In this set, the unknowns 
are water pressure of each grid block and wellbore pressure.  Below is the summary of 
equations and unknowns. 

Unknowns: 
 1.  Water pressure in grid blocks = maxmaxmax KJI ××  unknowns 
 2.  Wellbore pressure =  unknowns maxI
 Total number of unknowns = maxmaxmaxmax IKJI +××  
Equations: 
 1.  Reservoir flow in all grid blocks = maxmaxmax KJI ××  equations 
     [from Eqs. 8.10 and 8.11] 
 
 2.  Wellbore flow = 1max −I  equations 
     [from Eq. 8.17] 
 
 3.  Well constraint = 1 equation 
     [from Eq. 8.18] 
 Total number of equations = maxmaxmaxmax IKJI +××  
 
Once grid block and wellbore pressure are known, water saturations are 

determined explicitly from the water mass balance equation (Eq. 8.7).  This solution 
method is also known as Implicit Pressure Explicit Saturation (IMPES). 

 

8.3.2  Energy balance 
Reservoir flow.  For non-isothermal flow in a reservoir, the general energy balance that 
describes multi-phase flow is given in the literature (Lake, 1989).  We begin with this 
general energy balance, and rearrange the equation to express it in terms of temperature 
and pressure.  The general energy balance without kinetic energy is written as below. 
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           (8.19) 
where Np is the number of phase. 

To avoid writing unnecessarily long equations, we first simplify the Eq. 8.19 to 
single-phase flow and then present a derivation.  Eq.8.16 for =1 is  pN
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On the right side of Eq. 8.20, we can replace the internal energy by enthalpy from 
the relation, pHU −= ρρ .  The equation becomes 
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Substituting the mass balance , ( )
t∂

∂
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We assume that the temperature of the flowing fluid is the same as the 
temperature of the rock ( ).r  The internal energy of the rock can be expressed in 
terms of the temperature as 

sTT =
TCHU psss ∆=∆≅∆ .  The fluid enthalpy is also replaced 

by the definition of  and Maxwell’s relation of thermodynamics.  Eq. 8.22 becomes pC
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For oil-water flow, the final equation to be discretized is 
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Eq. 8.24 will be approximated using finite difference.  Details are given in 
Appendix D.  The finite-difference form of the Eq. 8.24 is 
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where the subscript , i j , and  refer to spatial coordinates.  The coefficients (k A , 
B , , , C D E , , , ) resulting from doing a typical finite difference presents 
in Appendix D.   

F G RHS

 
Well grid blocks.  For grid blocks containing a wellbore, Eq. 8.25 must include 
source/sink terms on the left side as written below. 
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Once we substitute Eq. 8.27 into Eq. 8.26, the only unknowns are the temperature 
in the grid blocks and the wellbore temperature.  Thus, a non-isothermal wellbore flow 
model is required to describe the temperature in the wellbore. 

 
Wellbore flow.  For non-isothermal wellbore flow, the steady-state energy balance is 
derived in Chapter 4 that is 
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An additional equation comes from the fact that inflow temperature is equal to 
wellbore temperature at the toe end ( 1=i ) of the horizontal well. 

JKwell TT ,11, = .         (8.30) 

 
Set of linear equations.  In solving a set of linear equations, the total number of 
unknowns must be the same as the total number of equations.  In this set, the unknowns 
are temperature of each grid block and wellbore temperature.  Below is the summary of 
equations and unknowns. 

 
Unknowns: 
 1.  Temperature in all grid blocks = maxmaxmax KJI ××  unknowns 
 2.  Wellbore temperature =  unknowns maxI
 Total number of unknowns = maxmaxmaxmax IKJI +××  
 
Equations: 
 1.  Reservoir flow in all grid blocks = maxmaxmax KJI ××  equations 
     [from Eqs. 8.25 and 8.26] 
 
 2.  Wellbore flow = 1max −I  equations 
     [from Eq. 8.28] 
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 3.  A constraint = 1 equation 



     [from Eq. 8.30] 
 Total number of equations = maxmaxmaxmax IKJI +××  
 
Note that is the maximum number of grid blocks in the x-direction (along the 

well).  is the maximum number of grid blocks in the y-direction (perpendicular to 
the well).   is the maximum number of grid blocks in the z-direction (vertical 
depth). 

maxI

maxJ

maxK

 

8.3.3 Calculation procedure 
The calculation procedure is presented in Fig. 8.2.  We first initialize water 

pressure at static equilibrium at which the water pressures are functions of the elevation 
only.  Water in the reservoir is initialized at irreducible water saturation.  Initial 
temperature is at geothermal temperature with a gradient of 0.01 oF/ft, ( dzdT ).  The 
initialization is for all grid blocks and inside the wellbore.  Next, we calculate fluid 
properties, and velocity and friction factor inside the wellbore.  After that, water 
pressure is calculated from the total (water and oil) mass balance, Eq. 8.8.  After the 
water pressure solution is obtained, the water saturation is explicitly updated by 
substituting the results into the water mass balance, Eq. 8.7, and the capillary pressure is 
calculated according to the new water saturation.  When all the pressures and saturations 
are known, the temperature is explicitly calculated from the energy balance, Eq. 8.24.  
The procedure is then repeated for the next time step. 
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Fig. 8.2 Flow chart of the calculation procedure. 

 
In solving the mass balance for the next iteration of pressure, we used the 

Newton-Raphson method.  The method is discussed below. 
Let x~  be an unknown column matrix.  We are seeking the solution, 1~ +nx .  

We have an equation in the following form. 

    Solve energy balance 
 and obtain new temperature, Tl+1

 Solve water mass balance and 
obtain new water saturation, Sw

n+1

Output results



bxA ~~~
= ,          (8.31) 

where 
A~ ; square matrix 
x~ ; column matrix 
b~ ; column matrix 
The structure of square matrix A~  in this case is the banded matrix including 

extra bands from wellbore flow equations as show below. 
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We first rearrange Eq. 8.31 and solve for the changes in x~ . 

bxAf ~~~~
−= ,         (8.32) 

The column matrix, f~ , contains , , …, , which are in terms of , , …, 
.  The changes in 

1f 2f maxf 1x 2x

maxx x~  are obtained from inverting the equation below. 
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The matrix that contains the partial derivatives is called the Jacobian matrix.  
Instead of taking the derivatives analytically, we numerically calculate each derivative 
from 
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where ε  is a small increment = .  Finally, we can obtain 310− 1~ +nx  from 

xxx nn ~~~ 1 δ+=+ .         (8.35) 

8.4 VALIDATION OF THE NUMERICAL MODEL DEVELOPED 
A common practice in developing a numerical model is to validate the numerical result 
against an analytical solution.  Validating the model is an important step, and can 
consume as much time as the program coding itself.  Validation is necessary to ensure 
that the program coding, the mathematical formulations, and the numerical solution 
techniques are correct.  However, we do not have a direct analytical solution for 
temperature and pressure profiles of a horizontal well in a bottom water drive reservoir.  
We will validate the numerical model developed here with the analytical model 
developed in Chapter 5.  We simplify the numerical model to match the flow geometry 
of the analytical model as the followings: 
1) Permeability 

0=xk  
mdkk zy 50==  

2) Relative permeability 
1=rok  
0=rwk  

3) Capillary pressure is set to be zero ( 0=cp ). 
4) Irreducible water saturation is set to be zero ( 0=wrS ). 
5) No gravity effect ( ). 0=g
6) Reservoir fluid properties are evaluated at the same conditions as the analytical model, 
at 4,000 psi and 180 oF. 
7) Boundary conditions 
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• No-flow for the bottom and top boundaries 
• Pressure and temperature at external boundaries are 4,000 psi and 180 oF. 

8). The accumulation terms on the right side of mass and energy balances are set to zero 
so that the flow is a steady-state flow. 

The results from the numerical model were compared with the analytical solutions 
as shown in Fig. 8.3.  The temperature, pressure, and inflow rate profiles from both 
analytical and numerical models agree well with each other.   
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Fig. 8.3 Comparison of numerical and analytical results. 
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Another approach that was used to validate the numerical model under the water 
and oil flow in a bottom water drive reservoir sketched in Fig. 8.1 is to check the 
numerical model’s mass balance calculation on the water component.  We verify within 



the 5 percent of error that amount of water influx from the bottom is equal to amount of 
water produced and water remaining in reservoir for each time step. 

 

8.5 RESULTS 
Under the physical model described in Section 8.2, the oil reservoir is bounded with no-
flow boundary except at the bottom of the boundary, which is initially in contact with 
water.  The pressure and temperature at the bottom boundary are maintained at 4,000 psi 
and 180 oF.  The temperature of the reservoir is initialized according to the geothermal 
gradient of 0.01 oF/ft.  The reservoir is initially filled with oil while water is immobile at 
irreducible water saturation.  We use fluid property correlations presented in Appendix 
A.  Oil and water properties are correlated based on the oil gravity, the dissolved gas-oil 
ratio, the gas specific gravity, and the salinity of the water.  The parameters of the 
numerical model are summarized in Tables 8.1 and 8.2. 
 

Well rate (base case) [b/d] 5,000
Horizontal length [ft] 1,000

Well inside diameter [in] 6
Relative pipe roughness 0.027

Skin factor 0
Pressure at WOC [psi] 4000.00

Temperature at WOC [oF] 180

Reservoir thickness 110

Reservoir dimension [ft x ft x ft] 1000 x 2150 x 110

Grids [ft x ft x ft] 100 x 10 x 10

Table 8.1 Reservoir and wellbore parameters
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Porosity 0
Horizontal permeability (base case), [md] 50

Vertical permeability (base case), [md] 10
Irreducible water saturation 0.25

Residual oil saturation 0.1
Capillary pressure at Swr [psi] 11.00

Threshold capillary pressure [psi] 0

Total thermal conductivity  [Btu/hr ft oF] 2

Rock density [lb/ft3] 165

Rock heat capacity [Btu/lb oF] 0.22

Tempeature gradient [oF/ft] 0.01

Salinity of water [wt %] 5

Low density oil (base case)
Oil API 45

Disolved gas-oil ration [SCF/STB] 800

Specific gravity of gas 0.75

High density oil (base case)
Oil API 35

Disolved gas-oil ration [SCF/STB] 500

Specific gravity of gas 0.75

Table 8.2 Rock and fluid parameters

 
 

In the following sections, we will present example cases using the developed 
numerical temperature model.  We focus the study on how the temperature changes 
along a horizontal well before and after water breakthrough from a bottom water aquifer.  
Since the application of the study is to use DTS for monitoring a production well, we are 
interested in examining the temperature changes over the span of several days, a length of 
time that is much greater than the response time of the DTS.   

We will show three main effects on the time-varying temperature profiles.  A 
base case is fixed at a total (oil+water) rate of 5,000 b/d, horizontal permeability of 50 
md, vertical permeability of 10 md, and an oil gravity of 45 oAPI.  We then compare the 
base case results with other cases, which are (1) total rate of 3,000 bbl/day, (2) a large 
permeability zone in the middle section of the reservoir, (3) an oil gravity of 35 oAPI 

 

8.5.1 Effect of flow rates on the temperature profiles 
For the base case, Fig. 8.4 shows snapshots of temperature, pressure and inflow 

water rate profiles along the horizontal well at three elapsed times.  The toe-to-heel 
pressure drop is about 12 psi, most of which occurs around the heel section (first 300 ft of 
horizontal wellbore).  Because of this additional drawdown imposed on the reservoir, 
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the inflow profiles of water and oil also increase toward the heel as shown in Fig. 8.5.  
Similar plots for the case of 3,000 bbl/d total rate are shown in Figs. 8.6 and 8.7.  Here, 
a smaller pressure drop is observed.  As a result, the size of a temperature change is 
smaller than for the base case.  The temperature change for 5,000 b/d case is in the 
range of 179.4-180.6 oF while the temperature change for the 3,000 b/d case is in the 
range of 179.4-180.2 oF.  The size of the temperature change is a strong function of flow 
rate.  The strong sensitivity of the temperature changes to production rate demonstrates 
that it is possible to evaluate the amount of inflow rate from the temperature profiles if 
the rate is large.  However, the results also show that it will be difficult to detect a 
temperature change in a small rate well.   
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Fig. 8.4  Temperature, pressure, and inflow water rate profiles  

for 5,000 b/d total (oil/water) production rate. 
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Fig. 8.5  Inflow rates along the horizontal well  

for 5,000 b/d total (oil/water) production rate (at 450 days). 
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Fig. 8.6 Temperature, pressure, and inflow water rate profiles 

 for 3,000 b/d total (oil/water) production rate 
 
To compare the two cases in time, we plotted temperature, pressure and inflow 

rate at the mid point of the horizontal well in Fig. 8.8.  After a few days of production, a 
relatively small pressure drop with time is observed.  When the water breaks through, 
the reduction of total fluid mobility increases the drawdown to maintain a constant total 
rate of production.  The distinguishing feature is the temperature versus time plot that 
shows different slopes before and after water breakthrough time.  The slope of the 
temperature after breakthrough is less than the one before breakthrough.  This is because 
water has a greater density and heat capacity than oil, causing the Joule-Thomson 
coefficient of water to be less than oil.  The water-oil mixing property has caused the 
slope to decrease, at least for this type of fluid.  This feature can be used to tell when 
water breakthrough occurs.  Next, we reduced the total production rate to 4,000 b/d and 
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3,000 b/d.  For the 3,000 b/d case we do not see the change in temperature slope because 
water production is not large enough to cause a significant change.  The temperature 
gradually increases with time because friction (viscous dissipative heating) is always 
created when there is flow.  This is similar to entropy generation in thermodynamics. 
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Figure 8.7  Inflow rates along the horizontal well for 3,000 b/d total (oil/water) production 

rate (at 450 days). 
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Fig. 8.8  Wellbore temperature, wellbore pressure and inflow rate changes with time for 

different production rates. (at center of horizontal well) 
 

8.5.2 Effect of large permeability zone on the temperature profiles 
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In this section, we will examine the wellbore temperature behavior where a large 
permeability compartment is in the middle 300 ft of the reservoir (kh=100 md, kz=20 md), 
from the interval from 400 to 700 feet from the heel of the well.  The rest of the 
reservoir is the same as the base case (kh=50 md, kz=10 md).  Fig. 8.9 illustrates this 
case by showing the water saturation distribution in the reservoir at 170 days of 
production when the warm water from the bottom of reservoir reaches the middle 
intervals of the well, but water has not arrived in the rest of the intervals.  Fig. 8.10 
shows snapshots of temperature, pressure, and inflow water rate profiles along the 
horizontal well at three elapsed times.  Fig. 8.11 shows the details of water, oil, and total 



inflow profiles at 450 days.  As time progresses, the pressure profiles do not show an 
abrupt change along the well, which suggests that the snapshots of pressure profiles alone 
for this case cannot identify the high permeability zone.   

On the other hand, the temperature profiles show a noticeable change in slope.  
For this example case, we therefore can conclude that the location of a high permeability 
zone (also the large flow rate) is certainly identified as the zone over which the slope of 
the temperature profiles is greater than the rest of the horizontal intervals that are 
producing at smaller inflow rates.  This implies that locations of fractures (i.e. large 
permeability zone) can also be detected by the temporal change of the temperature 
profiles.   

 
Fig. 8.9  Water saturation distribution around a well at 170 days of production.  Middle 

interval (400-700 ft shaded) kh = 100 md/ kz = 20 md; end intervals  kh = 50 md/ kz = 10 md 
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Fig. 8.10  Temperature, pressure, and inflow water rate profiles for large permeability in 
middle section (400 -700 ft) of well.  Middle interval  kh=100 md/ kz=20 md, end intervals  

kh=50 md/ kz=10 md. 
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Fig. 8.11 Inflow rates along horizontal well for large permeability in middle section  

(400-700 ft) of well (at 450 days).  Middle interval  kh=100 md/ kz=20 md,  
end intervals  kh=50 md/ kz=10 md. 

 
Fig. 8.12 shows the plots of wellbore temperature, wellbore pressure and inflow 

water rate versus time at different locations along the well.  We can see different slopes 
 before and after water breakthrough time in the near toe curve, but the slope 

differences are difficult to see in the middle and near heel curves.  This is because the 
wellbore temperature contains the combined information both from inflow and from the 
upstream wellbore flow.  The upstream wellbore flow tends to be dominant when 
moving toward the heel of the horizontal well. 

)/( dtdT
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Fig. 8.12 Wellbore temperature, wellbore pressure and inflow rate changes  

with time for different locations.   
Middle interval kh=100 md/ kz=20 md, end intervals  kh=50 md/ kz=10 md. 

 

8.5.3 Effect of oil type on the profiles 
The purpose here is to assess the size of the temperature change resulting from different 
types of oil.  We model the oil properties by using commonly known correlations based 
on the oil gravity (oAPI), dissolved gas-oil ratio, and gas specific gravity.  Two oils of 
different densities are chosen for this purpose.  Table 8.2 provides the fluid properties.  
Fig. 8.13 shows profiles for an oil gravity of 35oAPI.  Compared to the base case (Fig. 
8.4), the shapes of the profiles are similar, but the magnitude of changes is larger by a 
factor of two.   
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Fig. 8.14 is a comparison of the base case (45 oAPI) and the denser-oil case (35 
oAPI) with time.  As production time progresses, wellbore pressure for the 35 oAPI oil 
case drops about 120 psi more than for the base case.  The reduction of mobility caused 
by the larger viscosity oil results in greater drawdown to maintain a constant well rate. 
Temperature gradually increases with time, and the temperature increase reflects the 
pressure drop, notably where the wellbore pressure drops when water breaks through.  
After water breakthrough, the rate of temperature increase is smaller than before water 
breakthrough when only oil flows into the wellbore.  The temperature difference 
between the two cases is quite large, which means that fluid properties have a great 
impact on temperature profiles.  This suggests that a good description of fluid properties 
is required to quantitatively infer inflow rate profiles from temperature profiles. 
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Fig. 8.13 Temperature, pressure, and inflow water rate profiles for an oil gravity of 35 oAPI. 
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Fig. 8.14 Wellbore temperature, wellbore pressure, and inflow rate changes (at center of 

horizontal well) with time for different oils.  
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 CONCLUSIONS 
We have derived the equations governing the heat and mass transfer along the path of a 
producing wellbore. We have also derived the governing equations that describe reservoir 
fluid flow and heat transfer, and solved them analytically in one-dimensional (1D).  
Results from the 1D analytical reservoir solution indicate that the inflow temperature in a 
horizontal well can change from the geothermal temperature by a few degrees.  The size 
of this change depends on the types of fluids flowing and on the pressure drawdown 
between the reservoir and the wellbore.  Inasmuch as we must account for heat transfer 
from wellbore to formation, we have coupled the wellbore and reservoir equations and 
solved them numerically. 

Based on the coupled model predictions we see little changes on the temperature 
profiles if the liquid flow rate is small or if the pressure drop along the well is small.  
We found that temperature and pressure profiles are sensitive to the well trajectories, 
meaning that an accurate well survey is needed to interpret temperature and pressure 
profiles when significant elevation changes occur.  The other finding from the 
prediction model is that temperature decreases when water or gas enter into horizontal 
wells if the boundary temperatures are the same.  Where the production of one fluid 
starts and another ends is clearly observed under certain production conditions.  We also 
presented a sensitivity study to show the effect of flow rate and water or gas zone 
location on temperature behavior.   

The second part of this report presented an inversion method that interprets 
distributed temperature and pressure data to obtain flow rate profiles along horizontal 
wells.  We have applied the inversion method, which is based on the Levenberg-
Marquardt algorithm, to minimize the differences between the measured profiles and the 
profiles calculated from the prediction model developed.  Through numerical 
experiments, we inferred the relative importance of the input data and determined the best 
combination of input data. 

We have shown synthetic and field examples to illustrate how to use the inversion 
model to interpret the flow profile of a horizontal well. The synthetic examples showed 
that even with single-phase oil production, the inflow profile can be estimated in many 
cases.  The method is even more robust when water or gas is produced along discrete 
intervals in an oil production well because of the unique temperature signature of water 
or gas production.   

We have applied the inversion method to temperature and pressure profiles 
measured with production logs in a horizontal North Sea producer well. With the 
inversion method developed, we have successfully matched the profile of temperature 
and pressure. 



We have also developed a model to predict temperature profiles in the variable 
angle build sections of a multilateral well by applying the method developed by Ramey to 
this geometry, and a model of junction where two flow streams are commingled.  In 
addition, we have solved the governing equations of the reservoir and wellbore 
numerically to simulate horizontal well water coning.   

9.2 RECOMMENDATIONS 
The forward (prediction) model study is intended to establish a basic understanding of 
temperature behavior under specific examples, and to assess the potential uses of a 
distributed temperature sensor (DTS) in monitoring a horizontal production well.  A 
more advanced and detailed modeling could be further done as follows: 

1. Represent the viscous dissipation ( vτ ∇: ) by a different model from the one 
used in this study. 

2. Develop a model to account for the fact that horizontal wells have bends and 
curves, and may not be in the center of a reservoir. 

3. Generalize the fluid properties by using the Peng-Robinson or Redlich-
Kwong-Soave equations of state, as normally practiced in numerical reservoir 
simulation, and study the temperature behavior when the reservoir pressure is 
dropped below the bubble point pressure and gas evolves from oil. 

4. Approximate a water coning model to an analytical or semi-analytical model 
so that we can have a fast estimate at the inflow temperature with time. 
Implement the model in an inversion model. 

 
For the inversion part, we recommend following: 
 

5. Construct or approximate Jacobian (sensitivity) matrices analytically or semi-
analytically. Computation of Jacobian takes about 90% of total computation 
of the inversion process. 

6. Study the effects of data noise on water or gas profile entry information 
(Deploy a Gaussian based random error.). 

7. Study the effects of grids size by using finer grids for synthetic data 
generation and courser grids for inversion. The latter results in only a few 
pressure points observations. 
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APPENDIX A: OVERAL HEAT TRANSFER COEFFICIENT 

When a fluid expands at constant enthalpy (an isenthalpic process) because of pressure 
drop, the temperature of the fluid changes.  This phenomenon is named the Joule-
Thomson effect.  The temperature change per unit pressure change is called the Joule-
Thomson coefficient, .  An expression for  can be derived as follows: JTK JTK

For non-flowing isenthalpic process, 
0=∆H .          (A.1) 

For a pure fluid, the fluid enthalpy is a function of pressure and temperature.  The above 
equation can then be expanded in the following manner. 
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Apply the definition of the heat capacity and Maxwell’s relation of thermodynamics. 
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Replace the specific volume with the fluid density, ρ1=V .  The above equation 
becomes 
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Substitute definition of thermal expansion coefficient into the equation. 
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Rearranging the above equation gives the expression for . JTK
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For an ideal gas, T1=β , and the Joule-Thomson coefficient is zero, which means that 
when an ideal gas expands at constant enthalpy, there is no temperature change.  As real 
fluids expand, cooling occurs if  is positive, while warming occurs if it is negative.  
For natural gases up to pressures of about 5,000 psi,  is positive in the range of 0.01 
to 0.06 

JTK

JTK
oF per psi (McCain, 1990).  For liquids, a general rule is that  is negative 

for temperatures smaller than 80-90% of the liquid’s critical temperature and positive 
JTK
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otherwise.  This rule does not apply, however, for pressures below the liquid’s vapor 
pressure.  Water has a negative  for temperature below 500 JTK oF; and it warms up 
approximately 0.002-0.003 oF per psi pressure drop, as do most oils (Steffensen and 
Smith, 1973). 

Fluid flow in a reservoir can be approximated as an isenthalpic flow (no heat nor 
work done on fluid).  During production, the Joule-Thomson effect is a dominant factor 
causing the inflow temperature of the fluid to be different from the geothermal 
temperature at that depth.   

If we were to use the energy equation in porous media (Eq. 3.20) to describe the 
Joule-Thomson experiment, which is a steady-state isenthalpic process with no heat 
conduction, we would arrive at   

ppTTC p ∇⋅+∇⋅−∇⋅= uuu βρ0 .      (A.7) 

All of the terms are products of , so the equation can be rearranged as  u
( )pTpTC p ∇⋅−∇+∇⋅= βρu0 .       (A.8) 

If  is not zero, we can divide both sides by .  The equation becomes u u
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 An example of this kind of process is a flow through an expansion valve 
illustrated in Fig. A.1.  Thus, we can fairly conclude that the governing equation of the 
reservoir flow (Eq. 3.20) intrinsically includes the Joule-Thomson effect.  
 

 
Fig. A.1 Sketch shows flow through an expansion valve. 

 
The meaning of Eq. A.7 is that there are two main causes of thermal energy 

change; fluid expansion, ( pT )∇⋅−uβ , and viscous dissipation, ( )p∇⋅−u .  Note that 
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)the term  is always positive.  For most gases, ( p∇⋅−u ( )pT ∇⋅−uβ is greater than 
, and the temperature of a flowing gas decreases.  On the other hand, if 
 is greater than 

( p∇⋅−u )
) )( p∇⋅−u ( pT ∇⋅−uβ , the temperature of a flowing liquid increases.  

If there is no change in pressure or ( ) ( )ppT ∇⋅−=∇⋅− uuβ  such as a flow of ideal gas 
(i.e. low pressure gas) in which T1=β , the temperature of a fluid is constant. 

It should be emphasized that the thermal energy balance can only be simplified to 
describe the Joule-Thomson effect if we model the viscous dissipation, , as 

 and u is not zero.  For example, if we modeled that 
( )uτ ∇− :

( p∇⋅−u ) ( ) ( pa )∇⋅−=∇− uuτ :  
where  is a constant, Eq. A.7 could not be simplified to the Joule-Thomson 
coefficient.  

a

 



APPENDIX B: OVERAL HEAT TRANSFER COEFFICIENT 

The object of this appendix is to derive the overall heat transfer coefficient used in this 
study.  For a cased and cemented wellbore, the temperature profile near the wellbore 
will look like as shown in Fig. B.1.  The wellbore is surrounded by casing material and 
cement.  Fluid arrives with temperature, .  At the inside of the cement, the 
temperature is  and the temperature is  at the inside of casing.  The bulk 
average temperature inside the well is given as .   
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Fig. B.1 Temperature profile near a wellbore. 

 
For steady state with constant thermal conductivity, the radial temperature 

distribution is given as 
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Solving this differential equation for the casing yields 
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For the cement, 
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The heat flow rates are 
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The heat flow from wall to flowing fluid is given by 
( ) ( bchfl TTCRQ −−−= )γπ 12 .       (B.6) 

where  is a heat transfer coefficient that would be determined experimentally.  From 
boundary layer analysis with a constant wall temperature, the laminar flow heat transfer 
coefficient is 
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For turbulent flow, Gnielinski’s formula46 is widely used. The heat transfer coefficient is 
given as 
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 When liquid-gas two phase flow occurs, the heat transfer coefficient will become 
flow regime dependent.  Kim and Ghajar47 presented a simple flow regime dependent 
correlation as 
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lhC ,  is the liquid heat transfer coefficient and is based on the in-situ Reynolds number. 
The constants are given in TableB.1. 

 
Table B.1 Constant values for calculations of the heat transfer 

coefficient. 
 C  m  n  s  t  
Slug and Bubbly 2.86 0.42 0.35 0.66 -0.72 
Annular 1.58 1.4 0.54 -1.93 -0.09 
Stratified 27.89 3.1 -4.44 -9.65 1.56 

 
At steady state, heat flows are equal. Then, we have 

QQQQ flcemc ≡== .        (B.11) 

Summation of the relationships gives 
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Therefore, the overall heat transfer coefficient for the wellbore is 
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Considering a partly opened well, the total energy entering the wellbore 
neglecting kinetic energy and viscous shear is then 
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Equating with the total energy from the formation is 
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Equating Eqs. A.14 and A.15 and considering the difference of convection 
term ( )
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This is the fourth boundary condition of the reservoir solution (Eq. 3.35).  For the open 
hole case, . RRcem =

 164



APPENDIX C: FINITE-DIFFERENCE FORMULATION OF MASS 
BALANCE 

For three-dimension flow in a Cartesian coordinate system, the mass balance over a box-
shaped control volume ( ) can be written as below.    zyx ∆∆∆
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An example shows how the finite differences were done.  Here we show the 
finite difference of the third term on the left side.   
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Substituting Darcy velocity gives 
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Note that if the spatial indicators ( i , j , ) are left out, the defaults are either ,k i j , or . k
Now, expanding Darcy velocity, we have 
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Applying upstream weighting and rearranging the terms yield 
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Therefore, the coefficients in Eq. 8.10 are 
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APPENDIX D: FINITE-DIFFERENCE FORMULATION OF 
ENERGY BALANCE 

The energy balance from Eq. 8.24 is 
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An example shows how the finite differences were done over a box-shaped control 
volume ( ).  Here we show the finite difference of the first term on the left side.  
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Therefore, the coefficients used in Eq. 8.25 are 
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NOMENCLATURE 

Symbol   Description 

   compressibility of fluid c

D

D

e

e

H

hC   heat transfer coefficient 

pC   heat capacity 

  weight matrix for observations 

  wellbore diameter 

d   derivative vector 

  total energy flux 

   total energy 

of   friction factor 

   friction factor with wall flux f

g   gravity acceleration vector 

g   gradient vector (Ch. 5) 

g   gravity acceleration 

  Hessian matrix 

  enthalpy H

h   reservoir thickness 

  identity matrix I

k

J   Jacobian matrix 

J   productivity index 

   permeability tensor 

  thermal conductivity K

JTK   Joule-Thomson coefficient 
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uK   Kutateladze number 

   permeability k

   damaged permeability dk

  well length L

  mass M

ReN   Reynolds number 

wN Re,   wall Reynolds number 

PrN   Prandtl number 

p   pressure 

   pressure at external boundary of reservoir ep

   reservoir pressure Rp

Q   heat transfer rate 

q   conductive heat flux 

   conductive heat flux (Ch. 2) q

   flow rate q

 R   pipe inner diameter 

   wellbore radius wr

   damaged radius dr

   skin factor s

T

t

  temperature 

   bulk temperature bT

   temperature at external boundary of reservoir eT

   inflow temperature IT

   time 

   internal energy U

 172
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u

u

v

v

w

w

x

   Darcy velocity vector 

  Darcy velocity 

ou   drift flux 

   specific volume V

   velocity vector 

   velocity 

   superficial velocity of gas sgv

   superficial velocity of liquid slv

   superficial velocity of oil sov

   superficial velocity of water swv

   reservoir width W

  parameter vector 

  mass flux 

  observation space 

y   observations 

y   holdup 

 

Greek 

α   overall heat transfer coefficient 

Iα   combined overall heat transfer coefficient 

β   coefficient of isobaric thermal expansion 

γ   pipe open ratio 

δ   Kronecker delta 

ε   relative pipe roughness 

η   upgrading parameter 
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Φ

Φ

Φ

  combined convective and molecular momentum tensor 

  combined convective and molecular momentum 

  flow potential (Ch. 4) 

φ   porosity 

λ   Marquardt parameter 

θ   wellbore inclination 

µ   viscosity 

ρ   density 

σ   surface tension 

τ   shear stress tensor 

τ   shear stress 

   

Subscripts 

c

c

cem

  calculated (Ch. 5) 

  casing (Appendix A) 

  cement 

fl   fluid 

g   gas 

  inflow I

i   phase index 

kj,   position index 

l   liquid 

m

m

o

  mixture 

  measured (Ch. 5) 

  oil 
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T

TP

w

  total 

  two phase 

  water 
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