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Abstract

We propose a method for the direct inversion of the permeability field of a porous medium
from the analysis of the displacement of a passive tracer. By monitoring the displacement
front at successive time intervals (for example, using a tomographic method), the perme-
ability can be directly obtained from the solution of a non-linear boundary-value problem.
Well-posedness requires knowledge of the pressure profile or the permeability at the bound-
aries of the system. The method is tested using synthetic data in 2-D (and some 3-D)
geometries for a variety of heterogeneous fields and found to work well when the permeabil-
ity contrast is not too large. However, it is sensitive to sharp variations in permeability.
In the latter case, a modified approach based on the successive injection in both directions
and the use of an optimization technique leads to improved estimates. An important feature
of the direct method is that it also applies to anisotropic porous media. When the princi-
pal axes of anisotropy are known, a suitable procedure is proposed and demonstrated using

synthetic data.



I. INTRODUCTION

Permeability heterogeneity is a most important feature of natural porous media, as it
affects significantly flow and fluid displacement properties. These dictate flow paths, and
the migration and dispersion of in-situ or injected fluids in porous media, with applications
ranging from the recovery of in-situ fluids to the fate of environmental contaminants in the
subsurface [1]. Heterogeneity is manifested at various scales, from the laboratory (core) to
the megascopic (field) scale. Its ubiquitous and multi-scale nature has attracted the interest
of many investigators, and a variety of studies have been devoted to its characterization and
identification [2].

The classical approach for identifying permeability heterogeneity is based on the inver-
sion of pressure data, under single-phase flow conditions [3]. Given that the transient flow of
slightly compressible fluids obeys the diffusion equation, a variety of field tests (well tests)
have been devised to infer permeability features by matching pressure data at well locations
to the solution of the diffusion equation. While significant advances can be made with this
approach, the sparsity of data restricts the detail as well as the uniqueness of the characteri-
zation. Pressure transient methods have also been applied to characterize the heterogeneity
of laboratory cores, using mini-permeameters [4]. These devices conduct mini-well tests on
the surface of a laboratory core (by injecting a small pulse of air and monitoring the resulting
pressure transient) and essentially provide a map of the permeability heterogeneity at the
external surface of the sample.

An alternative approach to permeability identification is based on the analysis of the
arrival times during the injection of passive tracers (namely of tracers which do not affect
the fluid viscosity and density). Various efforts have been made at the field scale to relate
the arrival times to the permeability, and to match assumed permeability fields to such data
[5]. These techniques are usually indirect, based on optimizing arbitrary (or constrained)
initial guesses to match data at various, usually sparse, locations. As a result, they suffer
from non-uniqueness. Nonetheless, useful information can be extracted, which can be used
to constrain images of the subsurface permeability field.

When knowledge of the displacement front at successive time intervals is available, for

example through visual or tomographic techniques, arrival time methods should in principle
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be able to provide direct maps of the permeability heterogeneity. Brock and Orr [6] reported
one such attempt, using qualitative arguments, based on the visualization of displacements
in a 2-D heterogeneous bead pack. Withjack et al. [7] considered the application of X-ray
Computerized Tomography (CT). They proposed a model to infer the permeability hetero-
geneity from the analysis of CT-derived concentration contours. Their model is based on a
number of simplifying assumptions, the main of which is that each streamtube has constant
(but unknown) permeability and porosity, and is, thus, tantamount to an assumption of a
layered structure. Although restrictive, the work of Withjack et al. [7] was the first to point
out the potential of CT in identifying the permeability heterogeneity of porous media. CT
techniques are now routinely applied to monitor displacement fronts in porous media at the
laboratory scale. Advances in field scale tomography, for example by seismic methods or
cross-hole tomography, are also likely to lead to analogous results at the field scale [8]. Yet,
well-defined methods to invert such information to determine the permeability heterogeneity
are currently lacking.

In this paper, we propose a new method which focuses on this question, namely on how to
invert data on arrival times at various (and numerous) points in the porous medium to map
the permeability field. The method, elements of which were briefly described in [9], is based
on a direct inversion of the data, as will be described below, rather than on the optimization
of initial random (or partly constrained) guesses of the permeability field, to match the
available data, as typically done in the analogous problem of pressure transients. The direct
inversion is based on two conditions, that Darcy’s law for single-phase flow in porous media is
valid, and that the dispersion of the concentration of the injected tracer is negligible. While
the former is a well-accepted premise, the latter depends on injection and field conditions,
and may not necessarily apply in all cases. Based on these conditions, we formulate a non-
linear boundary value problem, the coefficients of which depend on the experimental arrival
time data. Because of the hyperbolic nature of the problem, uniqueness requires that either
the permeability or the pressure at the bounding surface of the porous medium be available.
This information is then combined to obtain a solution of the boundary-value problem from
which the permeability field can be directly calculated. An important feature of the method

is that it can be applied to determine the heterogeneity of anisotropic media, where the



permeability field is a tensor, as is often the case in many natural porous media. For this,
displacements in two (for 2-D) or three (for 3-D) different directions must be conducted, as
will be described below.

In our approach, the experimental information on arrival times enters in the form of
spatial derivatives. As a result, the solution method is sensitive to errors in the estimation
of these derivatives, which are expected to increase when the variations in the permeability
are sharp and large. The errors are magnified around certain limiting streamlines, the width
of which increases in the downstream direction, and may lead to poor estimates of the
permeability in some regions. To circumvent this problem, we have modified the inversion
method in such cases, by considering a forth-and-back hybrid approach, in which arrival times
are recorded a second time by repeating the tracer displacement in the reverse direction.
This approach is then combined with an optimization technique to improve the resulting
estimates.

The paper is organized as follows: In section II we describe the inversion method for
isotropic media. Section III shows numerical examples which test the applicability of the
method for various forms of permeability heterogeneity and its sensitivity to permeability
variation and spatial correlation. Section IV describes the hybrid approach for inverting per-
meability fields with sharp and large contrasts. The extension of the method to anisotropic
media of known and fixed principal axes is presented in section V. We close with a related

discussion and concluding remarks.

II. DIRECT INVERSION ALGORITHM: ISOTROPIC MEDIA

We consider the injection in a heterogeneous and isotropic porous medium of a passive

tracer. In the absence of dispersion, the concentration C(x,t) satisfies the equation

¢(x)%—f+v.vo=o (1)

where ¢(x) is the porosity of the medium and v is the superficial fluid velocity. Under slow,

viscous flow conditions, the latter satisfies Darcy’s law

v=-K .- Vo (2)



where K (x) is the symmetric permeability tensor and @ is a flow potential, V& = %(Vp— P8),
where u is viscosity, here taken as a constant, p is pressure, p is density, also assumed
constant, and g is the acceleration of gravity. In this section, permeability is assumed to be
a scalar, K(x) = k(x)I, where I is the identity tensor. The anisotropic case is discussed in

Section V. Assuming incompressible fluids, the continuity equation reads

V.v=0 (3)

In the absence of dispersion, we define the front location by the equation

F(x,t)=t— f(x)=0 (4)

where, assuming constant or monotonic injection rates, the function f(x) is single-valued,
thus a single arrival time is associated with a given point x. Then, the concentration is given

by

C(x,t) = Ci(H)H(t - f(x)) (3)

where C;(t) is the injection concentration, and H is the Heaviside step function.
The direct algorithm is based on the following two steps: First, we equate the two
expressions for the normal velocity at the front, given by the kinematics and by Darcy’s law,

respectively. Noting that the normal at the front is given by

0 VF  Vf (6)
IVFL V]
we use (5) and (6) in (1) to obtain a kinematic expression for the normal velocity there,
namely
$(x)
Uy = ——= 7
M "

Darcy’s law (equations (2) and (6)) gives another expression for the same quantity

 Kx)VO-Vf
"= ®



Thus, (7) and (8) lead to the following result for the permeability

___9(x)
k(x) = YoV (9)

which, in principle, can be evaluated in terms of ® and f. The second step consists of
substituting the above expression in Darcy’s law and making use of the continuity equation

(3) to obtain a non-linear equation for @,

V. l%} =0 (10)

Equations (9) and (10) constitute the keys of the direct inversion method. Equation (10) is a
partial differential equation which determines @ given appropriate boundary conditions and
information on the porosity, ¢(x), and the arrival time function, f(x). From its solution,
the permeability field can be directly calculated using (9).

The following remarks are in order:

1. For the solution of (10), the porosity must be a known function of the spatial coordi-
nates. For applications using CT, this can be readily available.

2. Although at first glance equation (10) appears to be an elliptic (Laplace type) equation,

it is in fact a system of first-order hyperbolic equations. This can be readily shown, e.g. in

2-D, by defining

_ 0

in which case (10) becomes

9 [ﬁ_} 4+ 9 [M} ~0 (12)

3_:13 fx"'ufy Ey— fx"‘ufy

where subscripts indicate partial derivatives (and similarly for 3-D). These two equations
(11) and (12) form a pair of first-order hyperbolic equations. For their solution, and thus for
the solution of (10), information on the potential ® at the (no-flow) boundaries is necessary.
Equivalently, this information can be furnished from a knowledge of the permeability at
the boundaries (which, for instance, can be obtained by a mini-permeameter, as previously

noted). At no-flow boundaries (where in the normal direction % = 0), equation (9) becomes
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a partial differential equation for the variation of ® along the two tangential directions (for
the 3-D case), which can be integrated, given k and f at the boundary, to yield the required
profile. We must point out, however, that in all applications to be shown below, we solved
(10) assuming known pressure profiles at all boundaries. In this way, the numerical method
utilizes information from all boundaries, essentially solving an elliptic-like, rather than a
hyperbolic system.

3. A notable feature of (9) and (10) is that they depend on the gradient of the front
arrival time rather than the arrival time itself. On the positive side, this reflects a desirable
sensitivity of the method to heterogeneity. However, this dependence also introduces nu-
merical instability which can lead to problems when the permeability contrast is sharp and
large. A technique to circumvent these problems is described later in Section IV.

In summary, supplied with boundary conditions on the potential, equations (9) and (10)
can be solved directly to yield the permeability field in a heterogeneous porous medium
based on information on arrival times and the porosity heterogeneity. The resolution of
the inverted permeability field depends, among others, on the resolution of the arrival time

contours.

A Streamfunction Approach for 2-D Geometries

Before proceeding, it is worthwhile to note that in 2-D geometries, an alternative inversion

method is possible, based on the use of the streamfunction ¥, where %‘-5— = v, and % = —v,.
Indeed, rearrangement of (7) leads to

afov  9f ov

dy 8z Oz By —9(x) (13)

which is a first-order, hyperbolic differential equation for ¥. The characteristics of the latter
are curves of constant f, namely of constant arrival time, which are available experimentally.
Therefore, the streamfunction can be computed by integrating along these contours, for
example

v
U= mp0+/ 2 dy (14)
Yo f T
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where, in the case of a rectilinear sample with a no-flow boundary at yo = 0, we can take
Wy = 0 without loss. To compute the potential we make use of the fact that in the isotropic

case, equipotentials are orthogonal to the streamlines, hence

ouoe  0v 00
0z 0z Oy Oy

This hyperbolic equation can also be integrated subject to appropriate boundary conditions.

=0 (15)

Then, the permeability can be estimated from (9), or from the alternative expression k =

ot %. Illustrative examples using this approach are discussed below.

ITI. APPLICATIONS USING SIMULATED DATA

The direct inversion method was subsequently tested based on simulated data. We used
a high-resolution finite-difference simulator (the main features of which are described in [10])
or a streamline-based method to simulate tracer displacement and provide data on arrival
times and the pressure profile at the boundaries. The displacement corresponds to constant-
rate injection in the absence of gravity. The boundary value problem (10) was solved using a
standard SOR finite-difference formalism, which was iterated until convergence. For example,

for the 2-D geometry we used the five-point scheme

m+1 m+1 m+1
z+1/2 Jq)z-}-l \J + 61, 1/2_7 i— 1 ] + @z ]+1/2®z 7+1 + ezj 1/2®z] 1

(®z+1/2] + 61—1/2] + G)z J+1/2 + 613 1/2)¢Z}+1 =0 (16)

where O is the conductivity coefficient at block (¢, j) at iteration level m. All other coeffi-
cients were evaluated using the harmonic average between O and its nearest neighbor. An
interpolation routine was used to interpolate the arrival times, when necessary. The spatial
derivatives of f were calculated using three-point differences. Equation (16) was solved using
the prescribed pressure profiles on both no-flow boundaries. Parenthetically, we note that
the forward problem belongs to the general class of problems recently discussed by Sethian
[11], and can benefit from the application of a Fast Marching Technique. Such was not

implemented here, however.



Figs. 1-3 show results of the application of the inversion method in three 2-D hetero-
geneity fields of a moderate permeability contrast, corresponding to a layered medium, a
medium with a smoothly varying heterogeneity and a permeability distribution following
fBm (fractional Brownian motion) statistics. Each figure shows true and directly inverted
permeability fields, along with true and directly inverted and potential profiles. In all these
examples, the direct inversion is found to give very good results.

Fig. 1 shows that the method handles well permeability contrasts transversely to the
direction of displacement, with some expected dispersion around the discontinuity. Potential
profiles are also reproduced well, again with some differences noted around the discontinuity.
We must emphasize that in this example, the success of the method rests on the availability
of the potential profile at the boundary, which removes the non-uniqueness of the problem.
(Indeed for a 1-D displacement with piecewise constant permeability at constant injection
rate, equation (10) becomes indeterminate). Likewise, good results were found when the
permeability contrast was in the direction parallel to the displacement. The ability of the
method to invert the permeability field in the presence of an arbitrary closed region of sharp
permeability contrast is discussed in a later section.

The permeability field of Fig. 2 is smoothly varying and contains two peaks and one
valley, with a permeability contrast of about 2. It was generated in a 64x 64 grid using
Franke’s test function from MATLAB [12]. This function often serves as a test for the
interpolation of scattered data. It is noted that the arrival times are much more sensitive to
the heterogeneity, than the pressure profiles, which are essentially parallel to the transverse
direction. This feature was noted in other cases as well, where the permeability variation
is relatively smooth. Fig. 2 shows that the comparison between actual and inverted fields
(in permeability and potential profiles) is very good. This example is characteristic of the
success of the method in smoothly varying permeability fields.

A more stringent test is shown in Fig. 3 with a similar permeability contrast. The
permeability field is of the fBm type with a Hurst exponent H = 0.8, and it is a typical
example of a self-affine field, containing large-scale correlations [13]. We remark that fBm
statistics with a Hurst exponent larger than 0.5 are often assumed to describe the hetero-

geneity in the horizontal permeability of natural rocks [14]. Fig. 3 shows that the match



between actual and inverted data is also quite good. Potential profiles are closely matched.
The inverted permeability reproduces well the main features of this field, namely the regions
where the permeability is respectively high, medium or low. However, discrepancies can also
be detected in the point-by-point variation of the permeability, where the inverted field is
somewhat smoother than the actual. The ability to capture long-wavelength, as opposed to
high-frequency, variations is typical of the technique and was noted in other examples, as
well. Fig. 4 shows a statistical analysis of the actual and inverted permeabilities. Histograms
and the correlation structure (the semi-variograms) match quite well, and the scatter plot
is satisfactory. The dispersion around the 45° line indicates a small degree of point-by-point
mismatch, as also evidenced in Fig. 3.

The direct inversion technique is equally well applied to 3-D geometries. Before we
proceed, however, it is instructive to compare inversion results using the 2-D streamfunction
method. Figs. 5 and 6 show the resulting permeability estimates, along with the associated
streamfunctions, corresponding to Figs. 2 and 3, respectively. Although the streamlines are
well reproduced, it is evident that the inverted permeability fields, although maintaining the
large correlation features, miss significant details. There are also notable defects extending
along slice-shaped regions, which arise from the integration along the arrival time contours.
A statistical analysis, not shown here for lack of space, shows that the inverted permeability
reproduces reasonably well the semi-variograms. However, the histograms, and to a greater
degree, the scatter plot, have large errors in several places. The streamfunction method is
prone to relatively large numerical errors, because it involves a threefold interpolation for
spatial derivative estimation and the integration of hyperbolic equations (for determining the
streamfunction). These weaknesses make the method unfavorable compared to the direct
solution of (9) and (10) (as seen in the comparison of Figs. 2 to 5 and 3 to 6). Advantages
of the method, on the other hand, are that the permeability is inverted fast, compared to
the previous, while one also readily obtains the streamfunction profile, which may be useful
in other applications.

To demonstrate the applicability of the direct inversion method to three dimensions, we
considered the 3-D permeability field shown in Fig. 7a, consisting of a log-normal distribution

generated by Sequential Gaussian Simulation, with a natural logarithmic mean of 2.0, a
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standard deviation of 0.2 and a dimensionless correlation length (with respect to the sample
size) of 0.5. The permeability variation is somewhat larger than before. Characteristic
arrival time contours from the simulation of the forward problem in a 16 x16x16 lattice are
shown in Fig. 7b. The direct inversion algorithm was applied by using a 3-D version of
(16) along with boundary conditions supplied from the forward problem. The results of the
permeability inversion in Fig. 8 appear to be in relatively good agreement with the actual
(Fig. 7a). A more quantitative comparison is shown in the statistics of Fig. 9, which is
calculated by GSLIB [15]. In general, the comparison is good. The inverted field shows a
smaller range of variation than the actual, as reflected in both the semi-variogram and the
histogram. Notably, the spatial correlation structure of the former is well captured in the
inverted data. The scatter plot indicates somewhat larger dispersion, compared to the fBm
field of Figs. 3-4, which is expected, given the larger permeability contrast in this example.

In the above examples, where the permeability contrast is not too large, or where the
permeability has relatively large spatial correlations, the direct inversion method gives good
results. When the contrast increases and variations in permeability are sharper, however, the
method is subject to increased errors. These primarily arise from the approximation of the
spatial gradients of the arrival time in regions where the latter varies sharply. For example,
Fig. 10 shows arrival time contours, calculated analytically (see Appendix), for flow around
an embedded sphere of lower permeability. Even though the permeability contrast is rela-
tively modest (0.6:1), there exist two layers, extending downstream of the sphere, where the
arrival times have sharp spatial variations. These layers are centered around the two limiting
streamlines tangent to the sphere. In these regions, the evaluation of the coefficients of (10)
is likely to introduce errors, and accordingly poor estimates for the permeability in some
places. These limiting streamlines also exist in any other field containing regions of sharp
permeability contrast. Because these zones extend downstream of the region of the sharp
contrast, however, the associated errors in permeability estimates are different depending
on the direction of displacement. We have conjectured, therefore, that the estimates of the
direct method could be improved substantially, if we were to combine information from two

different displacements, one in the forward and the other in the reverse direction.
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IV. A HYBRID ALGORITHM

To circumvent the problems posed by high permeability contrasts we propose the follow-
ing hybrid procedure:

1. Carry out a tracer displacement in the forward direction and directly invert to obtain
one permeability estimate, ks(x).

2. Carry out a tracer displacement in the reverse direction and directly invert to obtain
a second permeability estimate, k;(x).

3. Retain the estimates in places, where they differ in absolute value by no more than a
prescribed value and discard in all others. Assign estimates in these regions by an interpo-
lation algorithm (known in the geostatistics literature as kriging).

4. Use an optimization algorithm (to be briefly described below) to fine-tune the so
obtained composite permeability estimates.

The optimization algorithm is based on standard gradient methods [16] and will not be

discussed here in any detail. We briefly note that we use the objective function

1 (& Mz -
7= 3 {SWlA0 - P+ S Walk P+ S Wl - 0gT] (07

=1 =1

where, the first term in the RHS is the weighted sum of the squares of the differences
between the front arrival times obtained from the simulator response, f;, and the data, f,
and the third is the analogous term for the differences between the potential at the no-flow
boundaries obtained from the simulator, ®;;, and the data, ®;?. The second term represents
the mismatch between the current permeability estimate and its prior. It is a regularization
term, as required by Tikhonov’s theory [17], and restricts the parameters being optimized to
not deviate greatly from the prior information. Numerical experience has demonstrated the
necessity of this term for stable and convergent solutions. Nonetheless, the accuracy of the
initial guess plays a pivotal role in the convergence to the true solution. It is in this context,
that the hybrid algorithm offers an important advantage. Here, the prior information is
supplied using the direct inversion method, outlined in steps 1-3 above, which is generally

close to the true permeability field. As a result, in many of the cases tried, the optimization

method converges close to the true values. By contrast, in many related inverse problems, the
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prior permeability is typically generated by a geostatistical algorithm constrained to (usually)
sparse measurements, and its convergence to the true solution is generally uncertain (e.g.
see [26]). At the same time, we must stress that we have also encountered many problems
involving sharp permeability contrasts, which cannot be successfully handled even with the
hybrid algorithm. Such an example will be shown below.

Applications of the hybrid algorithm using simulated data are illustrated in Figs. 11-14
for three different examples. The medium in Fig. 11 contains two blocks of low permeability
with a 1:5 contrast. This particular configuration corresponds to the experimental Hele-
Shaw cell used in [19], and was discretized by a 22 x 10 lattice. The top of Fig. 11 (panels
a,b) shows the prior estimate fed to the optimization algorithm, following the steps 1-3.
Due to the sharp permeability contrast between low and high permeable regions, the spatial
derivatives of the arrival times have significant numerical errors in certain regions, and lead to
a mismatch between true and inverted values in various places after steps 1 and 2. Through
step 3 (where estimates were discarded when they differed by more than 30%), these errors
have been minimized and the directly inverted field (Fig. 11, a,b) has the main trends of
the true field, although it is obvious that the contrast is not as sharp as the actual, and
is in need of fine-tuning. The results of the application of the optimization algorithm of
step 4, using 40 iterations, and based on the initial guess after kriging (top of Fig. 11), is
shown in the middle of Fig. 11 (panels c,d). The results are much improved and, with a few
exceptions, they are very close to the actual. Although not shown, potential and arrival time
profiles are also matched very well. By contrast, if an uniform initial guess, instead of the
one after the direct method on the top of Fig. 11, was used in the optimization algorithm,
the resulting estimate of the permeability field (after the same number of iterations) is poor
in many places, as shown in the bottom of Fig. 11 (panels e,f). This, despite the fact that
arrival times and potential profiles were found to match very well. We conclude that, at least
for this example, the application of the hybrid method gives a substantial improvement.

Fig. 12 shows the application of the algorithm to a correlated log-normal distribution
with a logarithmic mean of 2.0, a standard deviation of 0.5 and a dimensionless correlation
length of 0.25. In this example, the block-to-block permeability variation is much larger than
in the fBm field of Fig. 3 or the 3-D field of Fig. 7, the largest contrast being of an order of

12



magnitude. The application of the direct inversion method followed by kriging leads to the
results shown in the middle of Fig. 12 (panels c,d). Although capturing the general features
of the true field, the estimates are generally coarser and smoother than the actual values.
Comparison of arrival time and potential profiles based on the inverted field (not shown for
lack of space) indicates a mismatch with the actual in some places. To fine-tune the results
and recover some of the high-frequency variations, we applied the optimization algorithm of
step 4. Results after 40 iterations are shown on the right of Fig. 12 (panels e,f). Although
the algorithm does not reproduce exactly the actual field, and some errors around large
variations of permeability are detectable, it is obvious that a significant improvement has
been achieved. Fig. 13 shows the corresponding statistical comparison. The mean and the
variance from the hybrid algorithm agree very well with the actual. (By contrast, in results
that are not shown, the variance from kriging is underestimated by about 20%, although
the mean is the same.) The two histograms are roughly equal, while the semi-variograms
have the same correlation structure. The scatter plot shows that good agreement exists over
a good range of lower permeabilities, although an increasing scatter can be seen at larger
permeabilities. In this example, these are typically associated with large contrasts. We
need to reiterate that the success of the hybrid algorithm depends to a large extent on the
accuracy of the initial guess, which is here provided by the direct method and positions the
optimization scheme close to the true solution. By contrast, the estimates resulting from
the application of the same optimization algorithm after bypassing steps 1-3 and utilizing
a uniform initial guess were quite poor, even though arrival times and potential matched
nearly perfectly with the true values.

At the same time, we must point out that we have also encountered several cases where
the hybrid algorithm was not as successful as desired. Fig. 14 (panels a,b) is an example of
a “checkerboard”-pattern heterogeneous field, with a permeability contrast of 1:4. A pattern
similar to this was used in some tracer displacement experiments [20]. The results of the
algorithm at the end of the kriging step are shown in the middle of Fig. 14 (panels c,d).
The mismatch with the true data is quite apparent. The 2-D projection in the middle of
Fig. 14 reproduces roughly the places of maximum permeability variation, but the picture is

clearly “out of focus”. The results of the application of the optimization method are shown
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in the right of Fig. 14 (panels e,f). We note a clear improvement, compared to the previous
step, and a better focused image. Yet, there is also clear evidence of mismatches in various
places, including the smoothing of the sharp contrast around the edges of discontinuity and
of other defects, which altogether preclude an exact matching. Thus, although overall the
hybrid algorithm appears to be a promising alternative in cases involving large contrasts,
we caution that this is not uniformly true and that many counter-examples can readily be

constructed where the algorithm will not be as successful.

V. DIRECT INVERSION ALGORITHM: ANISOTROPIC MEDIA

On the other hand, a strong attribute of the technique proposed is that it can be readily
applied to anisotropic porous media. In this section, we consider for simplicity 2-D geome-
tries, where the principal directions of the permeability tensor are constant and coincide

with the rectangular coordinates  and y, namely we will assume that

| ke(x) 0
= k(%) 15)

An extension to the more general case is under consideration and will be presented elsewhere.

Under these conditions, the equations analogous to (9) and (10) read as follows

(K-V®)-Vf = —¢(x) (19)

and

V(K-V®) =0 (20)

Using scalar notation, and substituting from (18), we further have

09 0f 00 of B
and
0 od 0 0o
3z [k”’—é_;;] + 5_y [ky—ég] =0 (22)
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Equations (21) and (22) constitute a pair of two equations in three unknowns (k;, k, and
®) and require additional information for their solution. One possible approach to furnish
this information is by conducting two tracer displacements, one in the z-direction with no-
flow boundaries perpendicular to the y-axis, and another in the y-direction with no-flow
boundaries perpendicular to the z-axis. If we denote the arrival time functions and the
potentials of the two displacements by fr and fr7, and ®; and ®;;, respectively, Eq. (21)

becomes

6@1 afl 8<I>1 afI
k5 9z T oy By

0%y Ofn 0% 0fn
e oz 0Oz ks dy Oy

-, (23)

—¢ (24)

for the respective displacements. Thus, the permeability components can be determined

_ ¢ |0%udfn 0%9:0f1
ke = A [ dy Oy Jy 8y] (25)
and
¢ |0%;0fr 0%y dfn
b=y {E%‘a_x“é}?] (26)
where
A= 00;0f10%u0fn  OPudfud®10f1 27)

T 0z 0z dy Oy Oz Oz Oy Oy
in terms of the given data f; and fr, and the calculated potentials ®; and ®;. The latter
can be obtained by solving equation (22), with k, and k, given by (25)-(27), and with the
appropriate boundary conditions corresponding to the two different displacements. To solve

the resulting coupled system, we implemented the following iterative algorithm:

1. Based on the v-level estimates for the potentials ®7 and ®7%;, use Eqgs. (25) and (26)
to estimate the v-level iterates £ and ky. At the initial iteration (v = 0), an initial

guess, typically in the form of a linear variation, is supplied for the potentials.

2. Based on explicit (v-level) estimates for k7 and k;, integrate (22) twice, using SOR

finite differences to calculate the potentials at the next iteration level, ®5*! and ®%;.
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This algorithm was found to work well for the various cases tested so far.

The method was subsequently applied to the anisotropic permeability field shown in
the left of Figs. 15-16 (panels a,b). Its statistics are similar to Fig. 7, and involve a log-
normal spatially correlated distribution with the same mean and standard deviation. By
simulating tracer displacements in the two directions, z and y, respectively, we obtained
the respective arrival time functions and potentials at the no-flow boundaries, which were
used for the inversion according to the above scheme. The directly inverted fields are shown
in the right of the two Figs. 15-16 (panels c,d). Considering the coupled nature of the
problem, the reconstruction of the two permeability components is generally good. The
method reproduces relatively well the regions of high and low permeability. Compared
to the isotropic case under the same permeability contrast, however, the reconstruction is
not as sharp, and the projections of the inverted images appear slightly “out of focus” in
certain places. This mismatch reflects an underlying slight mismatch in the arrival times
and the potential profiles, which is not shown here. Further work is under way to improve
the algorithm and fine-tune the direct inversion method, including the implementation of a

hybrid algorithm as in the isotropic case.

VI. CONCLUDING REMARKS

In this paper we presented a method for the direct inversion of the permeability of
porous media, based on arrival time contours and information on the pressure profiles at
the boundaries. The former can be obtained in real systems using techniques of visualiza-
tion, computerized tomography or cross-hole tomography. The method utilizes Darcy’s law
for flow in porous media in combination with the kinematics of flow, as expressed in the
arrival times, to derive a boundary-value problem, the solution of which leads to a direct
reconstruction of the permeability field. An important feature of the technique is that the
information from the pressure at the boundaries is used to formulate and solve an elliptic-like
formulation, rather than the two hyperbolic equations, which formally describe the problem.
The algorithm developed is a rigorous tool for the analysis of arrival time contours.

Using simulated data, the method was found to work well for cases, where the permeabil-

ity contrast is not very large, and the field is spatially correlated. In general, the technique
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captures well variations corresponding to larger wavelengths, but not as well the fine-scale
details. For sharper contrasts, a hybrid version of the algorithm was developed, in which the
direct method is used to generate the initial guess in an optimization algorithm. The hybrid
version minimizes the sensitivity of the method to errors in spatial derivatives, which are
augmented in the presence of sharp contrasts. Examples in two and three dimensions using
simulated data demonstrated that the hybrid algorithm works well and that it is superior to
the more conventional case, where the initial input is a uniform distribution. However, other
examples can also be constructed, involving sharp contrasts, where the inversion technique
is not as satisfactory and requires further improvement. A second advantage of the direct
inversion technique is its potential to invert the permeability tensor in anisotropic porous
media. Preliminary results for the case where the principal axes of anisotropy are fixed and
known were presented and found to be promising. Further work is currently under way to
fine-tune the method and to also extend it to the more general case, where the permeability
tensor is full.

The applicability of the technique to real systems relies on several conditions: the avail-
ability of pressure profiles at the system boundaries, the absence, or the minimization, of
dispersion during the tracer displacement and the availability of an adequate resolution in
arrival time contours. The first requirement appears to be the most difficult to meet, in
practice, in view of the demand for adequate spatial resolution, which presently available
tools may not possess, and the need to enforce Darcy’s law near no-flow boundaries. Alterna-
tively, this profile can be obtained by locally probing the surfaces with a mini-permeameter
to construct a surface permeability map, from which the pressure profile can be computed.
A certain amount of dispersion is also unavoidable, in real porous media, where the disper-
sion coefficient is proportional to the velocity, thus leading to a constant Peclet number and
a finite amount of dispersion. However, for relatively small dispersivities, dispersion effects
could be minimized. Sufficient spatial resolution on arrival times would allow to capture fine-
scale variations, at the expense of increased computational time in the optimization routine
of the hybrid algorithm, and possible instabilities as the degree of resolution increases. How-
ever, it must also be remarked that in our experience, so far, a coarse-grid reconstruction can

adequately capture the large-scale features of the permeability field, both in the isotropic
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and the anisotropic cases. The process of validation of the method with actual experimental

data is currently under way.
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APPENDIX:

Arrival Times For Circular Permeability Heterogeneity

In this appendix, we provide analytical solutions for a simple 2-D problem involving
tracer displacement in an infinite domain of constant permeability 1, in which a circular
inclusion of radius r = 1 and permeability « is embedded. Thus, the permeability is the step

function

k=(1-r)H(r—1)+=« (A-1)

Subtracting the homogeneous solution (—z) from the potential, we next consider the solution

of

V- [kV(z + )] =0 (A-2)

where ¥y = —® + z. Thus,

V. (kVY) = —(k + 1)6(r — 1)-‘; (A-3)

where ¢ denotes the Dirac delta function. To solve (A-3) we use polar coordinates (r,6) and

the following interface conditions at the permeability discontinuity

¢lr=1+ = ")blr:l_ (A'4)
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and

0 0
m% - — 6_1;[-) 1+ = (1 — &)cosé. (A-5)

The solution is obtained in straightforward fashion

P = (1;Z>rc030 ; r<l1 (A-6)
1-— 1
P = (1 n Z) ;cos@ ;or>1 (A-7)

from which the velocity components can be calculated. We find,

2
Vpy = ~ ; <1
1+«
1—rk\ y?—2?
e = 1 ; 1
? +<1+KJ> (2% + y?)? T
and
Uy = 0 ;T S 1
k(l — k) 2zy
= — . 1
Finally, the streamlines are the solution of
dy
= = Cor <
dz 0 Il r —_
d 2(1 —
- - (1 = r)oy ; r>1
de (1+r) (22 +y?)? + (1 — k) (y* — 2?)

from which the arrival times are obtained by integrating along the streamlines

t—to= /x —¢—dac' (A-8)
@0 Uz (2',Yy)
where ¢ is the porosity. These results were used to compute the streamlines and the arrival

time contours of Fig. 10 in the text.
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Figure 1: Application of the direct inverse method to a layered system shown in the left
side: (a)-(b) actual permeability plots; (c) actual arrival times; (d) actual (solid lines) and

inverted (dotted lines) potential profiles; (e)-(f) inverted permeability plots.
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Figure 2: Application of the direct inverse method to a smoothly varying field shown in the
left side: (a)-(b) actual permeability plots; (c) actual arrival times; (d) actual (solid lines)
and inverted (dotted lines) potential profiles; (e)-(f) inverted permeability plots.
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Figure 3: Application of the direct inverse method to an fBm field with H = 0.8 shown
in the left side: (a)-(b) actual permeability plots; (c) actual arrival times; (d) actual (solid
lines) and inverted (dotted lines) potential profiles; (e)-(f) inverted permeability plots.
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Figure 4: Statistical comparison between actual and inverted permeabilities of Fig. 3: (a)

histogram of actual permeability; (b) histogram of inverted permeability; (c) semivariogram

in two different directions of the actual (solid lines) and inverted (circles) data; (d) scatter

plot of actual and inverted data.
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Figure 5: Application of the streamfunction approach to the medium of Fig. 2: (a)-(b)

inverted permeability plots; (¢) actual (solid lines) and inverted (dotted lines) streamlines.
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Figure 6: Application of the streamfunction approach to the medium of Fig. 3: (a)-(b)

inverted permeability plots; (c) actual (solid lines) and inverted (dotted lines) streamlines.
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Figure 7: A 3-D permeability field and corresponding arrival times: (a)-(b) the actual per-
meability field in different cross-sections; (c) the arrival time distribution; (d) arrival time

isosurface at ¢ = 0.07.

* b4

Figure 8: Application of the direct inverse method to the 3-D field of Fig. 7: (a)-(b)

representation of the inverted data in different cross-sections.
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Y Y Variable: mean 7.035
. std. dev. 1.352

correlation 0.960
rank correlation 0.954

Variogram

Inv. K

6.0

T T T
0.0 40 8.0 120 20 6.0 X
Distance

Figure 9: Statistical comparison between actual and inverted permeabilities of Fig. 8: (a)
histogram of actual permeability; (b) histogram of inverted permeability; (c) omni-direction

semivariogram of the actual (solid lines) and inverted (dash lines) data; (d) scatter plot of

actual and inverted data.
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Figure 10: Streamlines and arrival time contours corresponding to a medium of uniform
permeability in which a circular inclusion of lower permeability is embedded (permeability
contrast is 0.6:1). The contours are calculated analytically (see Appendix). Displacement is

from left to right.
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Figure 11: Application of the hybrid algorithm to a system with block discontinuities in per-
meability (permeability contrast is 1:5): Top two plots (a)-(b) show permeability estimates
after steps 1-3 (Kriging). Middle two plots (c)-(d) show permeability estimates after step 4
(optimization). Note the closeness to the actual data. Bottom two plots (e)-(f) show per-

meability estimates using the optimization method but with a uniform permeability initial

guess.
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Figure 12: Application of the hybrid algorithm to a field with log-normal distribution with
maximum contrast of about 10: (a)-(b) actual permeability plots; (c)-(d) plots of perme-
ability estimates after steps 1-3 (Kriging); (e)-(f) plots of permeability estimates after step

4 (optimization). Note that the cut-off value of the colorbars in the image plots is set at 25.
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Figure 13: Statistical comparison between actual and inverted permeabilities of Fig. 12: (a)
histogram of actual permeability; (b) histogram of inverted permeability; (c) omni-direction
semivariogram of the actual (solid lines) and inverted (dash lines) data; (d) scatter plot of

actual and inverted data.

33



(@)

0 8 8
0.2 7 7
6 B
0.4
0.6
4 4
0.8 3 3
1
0 0.5 2 2

(b) @ ®

Figure 14: Application of the hybrid algorithm to a checkerboard permeability pattern
(contrast is 2:8): (a)-(b) actual permeability plots; (c)-(d) plots of permeability estimates
after steps 1-3 (Kriging); (e)-(f) plots of permeability estimates after step 4 (optimization).

Note that the cut-off value of the colorbars in the image plots is set at 8.
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Figure 15: Application of the direct inverse method to an anisotropic field with known and
fixed principal axes of anisotropy. Results for k;: (a)-(b) plots of the actual permeability

component values; (c)-(d) plots of the inverted permeability component values.
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Figure 16: Application of the direct inverse method to an anisotropic field with known and
fixed principal axes of anisotropy. Results for k,: (a)-(b) plots of the actual permeability

component values; (c)-(d) plots of the inverted permeability component values.
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