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ABSTRACT

A composite reservoir model is used to analyze well-tests from a variety of
enhanced oil recovery projects, geothermal reservoirs, and acidization projects. A com-
posite reservoir is made up of two or more regions. Each region has its own rock and
fluid properties. Transient pressure behavior of a well in a two-region composite reser-
voir has been considered extensively in the literature, and several methods have been
proposed to estimate front (or discontinuity) radius, or swept volume. This study con-
siders transient pressure derivative behavior of a well in a two-region composite reser-
voir to establish the applicability and the limitations of different methods to estimate
front radius or swept volume. A finite-radius well with wellbore storage and skin is
assumed to produce (or inject) at a constant rate. Three outer boundary conditions are
considered: infinite, closed, and constant-pressure. A study of drawdown and buildup
responses has resulted in a set of correlating parameters for the pressure derivative
responses, and new design and interpretation relations for well-tests in composite reser-
voirs. Guidelines have been presented for the applicability of different methods to esti-
mate front radius. Producing time effects on buildup responses show that analyzing a
well-test after short producing (or injection) time may be difficult.

Dynamic phenomena, such as phase changes and multi-phase flow effects in a
region near the front, can cause a sharp pressure drop at the front. Such a sharp pres-
sure drop is modeled as a thin skin at the front in this study. An analytical solution
for the transient pressure behavior of a well in a two-region composite reservoir with a
skin at the front is obtained using the Laplace transformation. A thin skin at the front
can explain a short duration pseudosteady state even for small mobility and storativity
contrasts. The effects of a skin at the front are similar to the effects of storativity
ratio. Thus, neglecting a thin skin at the front can cause large errors in parameter esti-
mation using a type-curve matching method.

Pressure derivative behavior of a well in a homogeneous, or a three-region com-
posite reservoir is also discussed. Several well tests from composite reservoirs are

analyzed to establish the applicability and the limitations of the deviation time method
to estimate front radius.



1. INTRODUCTION

A composite reservoir is made up of two or more regions. Each region has its
own rock and fluid properties. A composite system can occur naturally or may be
artificially created. Aquifers with two different permeabilities forming two regions, oil
and water regions or gas and oil regions with different properties in a reservoir are
examples of naturally occurring two-region composite systems. Secondary or tertiary
recovery projects, like water flooding, polymer flood, gas injection, in-situ combustion,
steam drive, and CO, miscible flooding artificially create conditions wherein the reser-
voir can be viewed as consisting of two regions with different rock and/or fluid proper-
ties. A stimulation program, such as acidizing, can result in a permeability discon-
tinuity. Wattenbarger and Ramey (1970) treated a finite thickness skin region as a
composite system.

In a gas condensate or a geothermal reservoir, pressure reduction near the well
causes changes in relative permeabilities as the fluid changes phase, and in the case of
water, significant changes in compressibility (Horne et al., 1980; Grant and Sorey,
1979). Horne et al. (1980) state that the appearance of a flashing front in a water
region or the start of condensation in a steam region may result in a sharp discontinuity
in reservoir properties. Vaporization/condensation at a sharp discontinuity may also
resemble an apparent skin effect at the discontinuity. Mangold et al. (1981) studied
the effects of a thermal discontinuity on well test analysis in geothermal reservoirs.
They stated that the presence of different temperature regions in non-isothermal reser-
voirs may resemble permeability boundaries during well testing. Benson and Bodvars-
son (1986) state that falloff data from geothermal reservoirs can be analyzed with a
composite reservoir model. Thus, many well-test scenarios in geothermal and hydro-
carbon reservoirs may be modeled by a composite reservoir.

This study considers transient pressure derivative behavior of a well in a two-
region, composite reservoir with an infinitesimally thin skin at the discontinuity. The
effects of a thin skin at the discontinuity on the transient pressure and pressure deriva-
tive behavior of a well in a composite reservoir is considered important because a thin

skin at the discontinuity may be a practical approach to model the following physical
situations:

1.  Vaporization at the discontinuitvahjle injecting cold water in a hot geother-
mal reservoir,

2. Condensation at the steam front such as in steam injection projects,

3. Cases where a transition region is apparent. For in-situ combustion cases,
Onyekonwu (1985) observed a transition region. Pressure profiles presented
in Figs. 6.8 and 6.11 of Onyekonwu (1985) suggest that the system may be
modeled as a two-region reservoir with a thin skin at the discontinuity, and

4,  Simulated CO, flooding results show that about 60% of the overall pressure
drop occurs in a small region around the discontinuity (Tang and Ambastha,
1988). Such pressure drops at a discontinuity may be approximately
modeled as a thin skin at the discontinuity.

The mathematical model developed in this study is discussed in Chapter 4.
Chapter 2 presents the literature survey. Chapter 3 presents the problem statement and
the objectives of this study.
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Since a homogeneous reservoir is a special case of a composite reservoir, tran-
sient pressure derivative behavior of a well in a homogeneous reservoir is discussed in
Chapter 5. Chapter 5 presents drawdown and buildup pressure derivative type-curves
for a well producing at a constant rate from the center of a finite, circular reservoir.
The outer boundary may be closed, or at a constant pressure. Design relations are
developed for the time to the beginning and the end of infinite-acting radial flow. Pro-
ducing time effects on buildup responses are also discussed.

Chapter 6 presents transient pressure derivative behavior of a well in a two-
region, radial, infinite or finite composite reservoir. Both drawdown and buildup pres-
sure derivative responses are discussed in Chapter 6. Design and interpretation equa-
tions developed in Chapter 6 should help estimate the test duration required to observe
a particular feature in well test data and thus, establish the applicability of an interpre-
tation method to determine front radius or swept volume.

A number of well tests reported in the literature exhibiting composite reservoir
behavior have been analyzed in Chapter 7 to establish the applicability and the limita-
tions of different methods to estimate a discontinuity (or front) radius or swept volume.

Chapter 8 presents a discussion of results. Finally, Chapter 9 presents conclusions and
recommendations for future research.
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2. LITERATURE

Figure 2.1 shows a schematic diagram of a two-region, radial composite reser-
voir, The inner and outer regions of a composite reservoir have different, but uniform
rock and fluid properties, and are separated by a discontinuity. The distance R is the
front (or discontinuity) radius, which is an important parameter sought from well tests
in composite reservoirs. Strictly speaking, fronts in many composite reservoir
configurations, such as thermal recovery and CO, flooding, are usually not cylindrical
due to gravity and viscous fingering effects. Thus, the front (or discontinuity) radius
exists only in some average sense. It is perhaps better to speak of the volume of the
inner region, especially when pseudosteady data are available (Ramey, 1987).

In 1958, Hazebroek et al. analyzed pressure falloff data from water injection
wells assuming water and oil bank properties to be different. Hurst (1960) and Mor-
tada (1960) considered interference between oil fields sharing a common aquifer by
two regions of different properties. Hopkinson et al. (1960) presented a late time
approximation for the pressure drop in the inner region. Adams et al. (1968) analyzed
pressure buildup tests in a fractured dolomite reservoir using the Hurst (1960) solution.

Loucks and Guerrero (1961), and Jones (1962) published solutions for radial
composite reservoirs using Laplace transformation. Rowan and Clegg (1962) presented
approximate solutions for radial composite reservoirs. Bixel et al. (1963), and Bixel
and van Poollen (1967) considered the effects of linear and radial discontinuities in
composite reservoirs on pressure buildup and drawdown behaviors. Bixel and van
Poollen (1967) recommended a semi-log type-curve matching method to determine the
distance to the discontinuity. Barua and Horne (1987) used automated type-curve
matching with success to analyze thermal recovery well test data. Larkin (1963)
presented solutions to the diffusion equation for a line source located anywhere in a

region bounded by a circular discontinuity using a Green’s function presented by
Jaeger (1944).

Van Poollen (1964) used the concept of drainage radius, and related the drainage
radius (or the front radius in an in-situ combustion project) to a deviation time from
the semi-log straight line corresponding to the inner region mobility. Later, van Pool-
len (1965) used pressure falloff data from in-situ combustion projects to locate the
burning front radius using the deviation time method. Kazemi (1966) and Merrill et al.
(1974) also discuss the deviation time method. Kazemi et al. (1972) discuss the prob-

lems in the interpretation of pressure falloff tests in reservoirs with and without fluid
banks.

Carter (1966) presented the pressure transient behavior of a closed, radial compo-
site reservoir with the well producing at a constant rate. He noted that a pseudosteady
state period, yielding a straight line on a Cartesian graph of pressure vs. time,
developed after the end of the semi-log line corresponding to the inner region mobility,
but that the volume calculated from the Cartesian slope would be greater than the inner
region volume. Closmann and Ratliff (1967) presented a solution for a well producing
at a constant pressure from a closed, radial composite reservoir. Turki (1986)
presented solutions in Laplace space for a well producing at a constant pressure from a
radial, infinite or finite composite reservoir.

Wattenbarger and Ramey (1970) modeled a finite-thickness skin region as a com-
posite reservoir. They obtained pressure transient behavior for such systems using
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Figure 2.1:  Two-region, radial composite reservoir.
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finite-difference techniques. Their solutions correspond to a range of mobility ratio
between 0.1 and 3.6. Mobility ratio, M, for a two-region composite reservoir is:

_ (k)
(k/n),

2.1)

Odeh (1969) observed that pressure data measured at a shut-in well in a compo-
site reservoir may exhibit a semi-log straight line corresponding to the inner region
mobility, and then a transition followed by a second semi-log straight line correspond-
ing to the outer region mobility. He presented an equation relating the dimensionless
discontinuity radius, Rp, with the dimensionless intersection time, #5y, for equal stora-
tivity in both regions as:

2.25 ¢,
2 _ DX
Rp = MMM -1 (2.2)
where:
Rp ==L, and 2.3
rW

0.000264 k& ty

px = 2.4)
(O ry
Ramey (1970) presented a more general relation between Ry and #py as:
2.2458 ¢
2 DX
where the diffusivity ratio, 1, is:
kldc
_ (k/oc, 1)y (2.6)

= Whocwy,

Merrill et al. (1974) presented a graphical correlation for the dimensionless inter-
section time using a numerical simulator. Brown (1985) also discusses the Merrill et
al. correlation. The intersection time method depends on the observation of two semi-
log straight lines in pressure data. Sosa et al. (1981) studied the effects of relative
permeability and mobility ratio on simulated pressure falloff behavior in water injection
wells. Sosa et al. (1981) used the deviation time and the intersection time methods to
analyze simulated falloff tests.

Eggenschwiler et al. (1979) developed a pseudosteady state method to estimate
inner swept volume for composite reservoirs with large storativity and mobility con-
trasts between the ‘two regions, such as in in-situ combustion and steam injection
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projects. They presented an analytical solution in Laplace space for the transient pres-
sure behavior of a well producing at a constant rate from a two-region, radial infinite
composite reservoir. Horne et al. (1980) extended the Eggenschwiler et al. solution to
finite composite reservoirs. Eggenschwiler et al. observed that for large mobility and
storativity contrasts between the two regions:

1. ‘The initial wellbore storage effect dies quickly, and a semi-log straight line
* corresponding to the inner region mobility develops almost immediately on
shut-in, ‘

2.  The first semi-log straight line corresponding to the inner region mobility is
followed by a pseudosteady Cartesian straight line characteristic of the inner
swept volume. The slope, m,, of the Cartesian line may be used to calcu-

late the inner swept volume, V, through a relation expressed in field units

as:

c

5615¢B . g @

Vs o

3. Finally, a second semi-log straight line corresponding to the outer region
mobility may appear.

The pseudosteady state method is independent of the geometry of the inner swept
region, and has been applied by several investigators to field and simulated cases with
apparent success. Wailsh et al. (1981), Messner and Williams (1982a and b),
Onyekonwu et al. (1984 and 1986), Fassihi (1984), Da Prat et al. (1985), and
Onyekonwu (1985) have applied the pseudosteady-state method to well tests in in-situ
combustion and steam injection projects. Horne et al. (1980) analyzed geothermal well
test data using the pseudosteady state method. MacAllister (1987) used the pseudos-
teady state method to analyze well tests in CO, flooding projects. Tang (1982) and
Satman et al. (1980) extended the pseudosteady state method to cases where pseudos-
teady state did not develop completely due to insufficient mobility and storativity con-
trasts between the two regions. Teng (1984) studied the conditions for the existence of
pseudosteady state for rectangular shaped inner regions.

Stanislav et al. (1987) included the effects of heat losses on pressure behavior
during the period of falloff testing in a radial, two-region composite reservoir. They
found that under certain conditions, the net effect of heat losses on pressure behavior
may be significant and may dominate the pseudosteady state period of pressure
response. Abbaszadeh-Dehghani and Kamal (1987) studied pressure transient testing
of water injection wells using two-region and multi-region composite reservoir models.
They found that the assumption of a stationary front during falloff is generally accept-
able and that a waterflooding system is better represented by a multi-region reservoir.
Abbaszadeh-Dehghani and Kamal used a type-curve matching of pressure and pressure
derivative data simultaneously to analyze pressure transient tests in water injection
wells. Olarewaju and Lee (1987a) used type-curve matching of pressure and pressure
derivative data simultaneously to analyze well tests exhibiting composite reservoir
behavior due to acidizing and fracturing.

Olarewaju and Lee (1987b) presented an analytical solution in Laplace space for
two-region, radial composite reservoirs produced at either a constant bottomhole pres-
sure or a constant rate. They included a wellbore phase redistribution model suggested
by Fair (1981) in their solution. Olarewaju and Lee (1987b) analyzed field tests exhi-
biting composite reservoir behavior using an automatic type-curve matching procedure.
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Onyekonwu and Horne (1983) studied pressure transient behavior in reservoirs
with spherically discontinuous properties. Satman (1981) presented an analytical study
of transient flow in multilayered, radial, and infinitely large composite reservoirs with
fluid banks. Using the analytical solution for multilayered, composite reservoirs (Sat-
man, 1981), Satman and Oskay (1985) studied the effects of a tilted front on well test
analysis in radial composite reservoirs. Obut (1983), and Obut and Ertekin (1984)
presented a composite reservoir solution for an elliptical flow geometry. They assumed
that the swept volume in the presence of an infinite-conductivity vertical fracture at the
injection well can be idealized as an elliptical region. Stanislav et al. (1986) reported a
similar study.

Satman (1985) presented an analytical study of interference in single-layer, radial,
and infinitely large composite reservoirs. Hatzignatiou et al. (1987) presented an
analytical study of interference in multi-layered, radial, and infinitely large composite
reservoirs with crossflow between layers.

Onyekonwu (1985), and Barua and Horne (1985) presented analytical solutions
for three-region, radially infinite, composite reservoirs. Thus, the transient pressure
behavior of composite reservoirs has been considered extensively. However, when a
straight line is sought on a pressure vs. a function of time graph, we seek a constant
slope. Thus, pressure derivatives can be used to identify this condition.

A pressure derivative graph can enhance a pressure signal, and may be more sen-
- sitive to disturbances in reservoir conditions (Bourdet et al., 1983a and b, and 1984).
_ Also, times of specific flow events from pressure derivative analysis can often be
different from those from pressure analysis (Aarstad, 1987). Larsen (1983) stated that
it is not appropriate to test the accuracy of design equations based on pressure deriva-
tives with those based on pressure responses. However, such a comparison may show
the need for improvements in well test design and interpretation. Appendix A shows
_the differences in the time to the beginning of infinite-acting radial flow for a line-
source and a finite-radius well from pressure and the pressure derivative analysis.
Vongvuthipornchai and Raghavan (1988) discuss several design relations for the end of
the storage-dominated period, and for the start of infinite-acting radial flow for a well
in an infinite reservoir. They concluded that for analysis techniques based on semi-log
methods, a criterion based on the pressure derivative response is the appropriate cri-
terion for determining the time at which the semi-log straight line begins. Design rela-
tions based on the pressure derivative responses also ensure that the slope is correct
within a specified tolerance.

Because of enhancement of detail on a pressure derivative graph, improved type-
curve matching may be possible using a pressure derivative type-curve. To use pres-
sure derivatives, design equations and type-curves based on pressure derivatives for the
system under consideration are necessary. Brown (1985) investigated drawdown pres-
sure derivative behavior of two-region, radial, and infinitely-large composite reservoirs.
He limited his study to mobility ratios of the order of 0.4 to 2.0, and storativity ratios
of the order of 0.3 to 3.0. Such mobility and storativity ratios are typical of cases with
finite-thickness skin regions around the wellbore. Storativity ratio, Fg, for a two-
region composite reservoir is:

_ (e M ' 2.8)

5 (9er)2 N n
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In summary, different methods have been proposed to estimate a front (or discon-
tinuity) radius from pressure-time data. These methods are:

Deviation Time Method,
Intersection Time Method,
Type-curve Matching Method, and
Pseudosteady State Method.

s

The deviation time method uses the time at the end of the semi-log pressure-time
line corresponding to the inner region mobility to calculate a front (or discontinuity)
radius, based on a theoretical dimensionless deviation time. The deviation time method
was proposed by van Poollen (1964 and 1965). The intersection time method uses the
intersection time of two semi-log lines corresponding to the mobilities of the inner and
outer regions to calculate a front radius, using a theoretical dimensionless intersection
time. The intersection time method was proposed by Odeh (1969), Ramey (1970), and
Merrill et al. (1974). A semi-log type-curve matching method was proposed by Bixel
and van Poollen (1967). Eggenschwiler et al. (1979) proposed a pseudosteady state
method for large mobility and storativity contrast situations. However, design relations
based on pressure derivative analysis of composite reservoirs have not appeared in the
literature. Accurate design relations. should help establish the applicability of the
interpretation methods to determine front radius or swept volume. A detailed study of
drawdown and buildup pressure derivative behavior for two-region, radial composite
reservoirs has not appeared in the literature to our knowledge. The effects of a thin
skin at the discontinuity on the transient response of a well in a two-region, composite
reservoir also does not appear to have been considered previously in the literature.
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3. PROBLEM STATEMENT

As discussed in Chapter 2, transient pressure behavior of composite reservoirs
has been considered extensively. However, transient pressure derivative behavior of
composite reservoirs has attracted little attention. Therefore, this study investigates

drawdown and buildup pressure derivative behavior of two-region, radial composite
reservoirs. The objectives of this study are:

1. To develop an analytical solution, similar to the Eggenschwiler et al. (1979)

solution, for two-region, radial composite reservoirs with an infinitesimally
thin skin at the discontinuity,

2. To develop design and interpretation relations based on pressure derivative
behavior for well tests in either homogeneous or composite reservoirs,

3. To develop new pressure derivative type-curves for type-curve matching
analysis of well tests in either homogeneous or composite reservoirs, and

4. To analyze well tests reported in the literature exhibiting composite reser-
voir behavior to establish the applicability and the limitations of different
methods to estimate a discontinuity (or front) radius, or swept volume.
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4. MATHEMATICAL MODEL FOR A TWO-REGION COMPOSITE
RESERVOIR WITH A SKIN AT THE DISCONTINUITY

Eggenschwiler et al. (1979) presented an analytical solution in Laplace space for
a well with storage and skin, and producing at a constant rate from a two-region,
radial, and infinitely large composite reservoir. Horne et al. (1980) extended the
Eggenschwiler et al. solution to finite composite reservoirs with a closed or a
constant-pressure outer boundary, but with no wellbore storage or skin.

In this section, a mathematical model for a two-region, radial composite reservoir
with wellbore storage and skin at the active (injection or production) well, and an
infinitesimally thin skin at the discontinuity is presented. The surface production or
injection rate at the active well is assumed constant. The outer boundary may be
infinite, closed or at a constant pressure. Other assumptions include:

1. The formation is horizontal, of uniform thickness, and homogeneous on
each side of the discontinuity,

2. The front (or discontinuity) is of infinitesimal thickness in the radial direc-
tion, and can be considered stationary throughout the test period,

3.  Flow is laminar and radial,

4.  Single phase flow of a fluid with slight, but constant compressibility occurs
in each region,

5. Gravity and capillarity effects are negligible,

4.1 MATHEMATICAL DEVELOPMENT

The governing equations and boundary conditions in dimensioniess form for a
radial, two-region composite reservoir are:

Governing equations:

1 o Pp1 oPp1
= = <rp <
o 3rp [r g ] 7 for 1<rp <Rp ,and 4.1)
1 o opp2 9Pp2 -
—_ = fi Rp < < oo ) 4.
> orp ["D g } n F7e or p <rp Srp (or< e ) (4.2)
Inner boundary conditions:
dpwp opp1
C - =1, and 4.3
s [ orp ry=1 “-3)

dpp1
Pwbp =Pp1— S [ . (4.4)
TD =1
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Conditions at the discontinuity:

aPl)z M oppi

for rp=Rp and t, >0,and (4.5)

arD arD
3
rp 2oL __ 1 [le—puz] for rp=Rp and 1p>0.  (46)
arD Sf

Outer boundary conditions:

Infinite:  Pparpotn)),, =0+ %)

~ dppy _ _
Closed: =0 at rp=rp, (4.8)

arD
Constant—pressure:  ppa(r.p tp) =0. 4.9)
Initial conditions:

pp1(rp,0) =0, and (4.10)
pDZ(rD ,O) = 0 . (4.11)

The dimensionless variables used in Eqs. (4.1) through (4.11) are:

k1h

P01=m(m -P1)> 4.12)
. 4.13
Pp2= 1175 B @i—pr2> (4.13)
I ' 4.14
[k 1 ne]
n=-+— J1, (4.15)
[k 1 6uc,)
2
_ k)

- , 4.16
(k 1 n), (*:16)



rp = -, (4.17)
rW
rp = 5, (4.18)
rW
Rp =&, (4.19)
rW
0.000264 k
tp=—— 1 -1, (4.20)
(9pe ) |
5.615 C
L = __é_z , 4.21)
21 (bc)ihry,
. N d (4.22)
' T 1412 4Bp, T '
kih
(4.23)

- Ap .
¥ T a1z g By P

Following the approach of Eggenschwiler et al. (1979), a general solution to Egs.
(4.1) and (4.2) with appropriate initial and boundary conditions was obtained using the
Laplace transformation. A general solution for the dimensionless pressure drops in
Laplace space for regions I and II are:

p_Dl(rD,l)=C1 IO(rD‘/T)+C2K0(rD‘JT) fOI' ler SRD s (4.24)
Ppalrp 1) = C3 Io(rpVIM) + C4 Ko(rpVim)  for Rp < rp < rop (or @25).

In Eqgs. (4.24) and (4.25) and all subsequent equations, the transformed time variable is

identified by the symbol, /. The dimensionless wellbore pressure drop in Laplace
space is:

Fup (1) = Cy [10(«11") ~ sV 11(41')] +C, [Ko(«lf Y+ sV Kl(«li)] X (4.26)

The constants C; through C, are obtained by solving the following system of equa-

tions resulting from the use of boundary conditions (Eqs. (4.3) through (4.9)) in
Laplace space:

Using Eqs. (4.3) and (4.4): 0y Cy + 0y C = % , (4.27)



-13 -

USing Eq. (46) 01 Cl + Oy CZ + O3 C3 + Oy C4 =0 , (428)
Using Eq. 4.5): O3y Cl + O3y Cz + O33 C3 + Olay C4 =0, and (4.29)
Using Eq. (4.7) or (4.8) or (4.9: Olys C3 + Oy C4 =0, (4.30)

The term oy; denotes the coefficient of C; in the ith equation. Equation (4.27) is the

first equation, and Eq. (4.30) is the fourth equation in the system of equations. The
terms oc,-j are:

oy =Cp I[IO(\/T y—sVI 11(«/7)] -1 1,(NT, (4.31)
oy =Cp I[KO(\II-) + sV Kl(«ll‘)] +1 K,(VY, (4.32)
0y =IoRp V1) +s¢ Rp NI I1(Rp V1), (4.33)
Oy = Ko(Rp V1) =55 Rp VI Ky(Rp V1), (4.34)
094 =— Ko(Rp VIM) , (4.35)

o, = MNI I(Rp V), (4.36)

O3y =—MNT KyRp VI), and (4.37)

oge = VI K1(Rp VIM) . (4.38)

The remaining o’s depend on the specified outer boundary condition and are given by:

Infinite outer boundary:

A bounded solution for ppy (rp —> =, 1) is obtained from Eq. (4.25) provided
C3 =0, as Ig(rp VIN) = o as rp — . Therefore, O3, 033 and 0y3 in Eqgs. (4.28)
through (4.30) are set to zero. Also, 0 = 0, as K (rp VIn) in Eq. (4.25) approaches
zero as rp — oo, Thus:

Olp3 = Olg3 = Olgg = Ogg = 0 . (4.39)
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Closed outer boundary:

o3 == IoRp VIm), (4.40)
o3 = = Vin I,(Rp VIm), (4.41)
Oy3 = I1(r,p IM), and (4.42)
Ogg = — Ky(rop NIM) (4.43)

Constant-pressure outer boundary:

0g3 =—Io(Rp VIM), | (4.40)
o33 =—VIn I,(Rp VIN) , (4.41)
Oz = Io(r,p VM), and (4.44)

gy = Ko(rop VIM) . (4.45)

This completes the solution of the transient pressure problem for a radial, two-
region composite reservoir with a thin skin at the discontinuity. Transient pressure and
pressure derivative responses for different cases were generated by inverting the solu-

tion numerically from Laplace space to real space using the Stehfest (1970) inversion
algorithm.

4.2 VERIFICATION OF SOLUTION

The solution presented in Sec. 4.1 includes a thin skin at the discontinuity. In the
absence of a thin skin at the discontinuity (sf = 0), the solution presented in Sec. 4.1 is
identical to the Eggenschwiler et al. (1979) solution for an infinitely large reservoir.
The solution presented in Sec. 4.1 is identical to the Horne et al. (1980) solution for
finite composite reservoirs if sg = Cp =5 = 0. Eggenschwiler et al. checked their
solution against Agarwal et al.” (1970), and Wattenbarger and Ramey (1970) solutions
for a well in a homogeneous reservoir. For a homogeneous reservoir, the two regions
have the same properties and thus, M =1 = 1. For a homogeneous reservoir with
s =0, Rp is arbitrary, and the subscript 1 may be dropped from the definitions of the
dimensionless variables in Eqgs. (4.12) through (4.22). Tang (1982) also discusses the
Eggenschwiler et al. verification efforts. No further verification seems necessary.
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5. HOMOGENEOUS RESERVOIR

This chapter presents design equations for a well producing from the center of
either an infinitely large or a finite, circular, homogeneous reservoir. This chapter also
presents drawdown and buildup pressure derivative type-curves for a well producing at
a constant rate from the center of a finite, circular, homogeneous reservoir. Early time
response (wellbore storage and skin effects) is correlated by Cp e® and late time
response (outer boundary effects) by rEZD/CD. The outer boundary may be closed, or at
a constant pressure. Producing time effects on buildup responses of a well in a finite,
homogeneous reservoir are also discussed. Transient pressure or pressure derivative
responses for a well in a homogeneous reservoir have been generated using the solu-
tion presented in Chapter 4.1 by setting M =1 = 1, s, = 0, and an arbitrary Rp.
Several pressure derivatives used in this chapter are given as:

d
P L [pp 1 (5.1)
dtp
d d
PwD PwD , and (52)
dln tp dtD

(5.3)

5.1 INFINITELY LARGE RESERVOIR

Design equations are developed based on the drawdown pressure derivative
behavior for a well with or without wellbore storage, and producing from an infinitely
large, homogeneous reservoir. The well is assumed to produce at a constant rate.

As shown in Appendix A, the time to the beginning of infinite-acting radial flow
with an error in slope of 2% for a well with no wellbore storage is:

tp = 140 . (5.4)

The time in Eq. (5.4), though correct, is of little practical importance because of
storage and skin. However, it is much larger than the time based on a 2% error in
pressure, and this emphasizes an important result of this study. Pressure and pressure
derivatives may appear to indicate greatly different event times.

Agarwal et al. (1970) presented a log-log type-curve for the drawdown pressure
behavior of a well with wellbore storage and skin, and producing at a constant rate.
They used Cp and s as the parameters on their type-curve. Earlougher and Kersch
(1974) first used Cpe®, but Gringarten et al. (1979) presented storage and skin type-
curve with Cp e? as it is now popularly used. This appears to be the type-curve that
will be used in the future. Bourdet et al. (1983a) presented a drawdown pressure
derivative type-curve with Cp e* as the correlating parameter.
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Transient pressure response for a well in an infinitely large, homogeneous reser-
voir exhibits the following flow regimes as time grows longer:

1. Storage-dominated period,
2.  Transition period, and
3. Infinite-acting radial flow period.

During the storage-dominated period, the dimensionless wellbore pressure drop and the
semilog pressure derivative are:

pwp =1tp/Cp , and (5.5)
apyp p
dlnty, Cp (56)

During the transition period, the pressure derivative response shows a maximum for
Cp e >1 (Fig. A.1). At late time, wellbore storage effects cease to be important,
and an infinite-acting radial flow develops. During the infinite-acting radial flow

period, the dimensionless wellbore pressure drop and the semilog pressure derivative
are:

Pup = % [ln (tp) + 0.80907 + ZS] , and 6.7
dwa
—=1/2 . .
dIn p 69

Design equations for the time to the end of storage-dominated period and the
time to the beginning of infinite-acting radial flow are developed in Appendix B.
Appendix B also reports the development of additional design equations to be

presented elsewhere in this study. The dimensionless time to the end of storage-
dominated period is:

Ip

0.048 log (Cpe®) — 0.03 . (5.9)
Cp

Equation (5.9) describes the time by which the slope of a log-log graph of pressure vs.
time has decreased by 2% from the initial value of unity.

Agarwal et al. (1970) approximated the time to the end of storage-dominated
period as the time at which the sandface rate is equal to 20% of the surface rate. They
approximated the time to the end of storage-dominated period by:

— =04 fors =0, and

=02s fors>0 . (5.10)
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Gringarten et al. (1979) presented the time to the end of storage-dominated period as:

Iy
2 —aln [3oche23] for Cpe® > 10°
Cp

(5.11)

Equation (5.11) was derived by comparing the p,p values from the rigorous solution
for the drawdown response for a well with storage and skin, and located in an infinite
homogeneous reservoir with those from Eq. (5.5). The parameter o is the tolerance, in
fraction, defining the difference between the two solutions. Gringarten et al. (1979)
used three values of o 0.01, 0.05, and 0.1.

Table 5.1 presents a comparison of the times forecast from Egs. (5.9), (5.10), and
(5.11) for selected values of Cp e*, Cp, and 5. The results from Eq. (5.11) presented
in Table 5.1 are obtained using o = 0.02 and 0.1.

Table 5.1 - A comparison of design relations for
the time to the end of storage-dominated period

tp/Cp from
Cpe* |. Cp s
This Study Agarwal et al. Gringarten et al.
Eq. (5.9) Eq. (5.10) Eq. (5.11) Eq. (5.11)
with o = 0.02 with o0 = 0.1
10% 1.15 0.23
10° 102 2.30 022 0.46 0.17 1.03
10 3.45 0.69
10 4.61 0.92
10° 5.76 1.15 ‘
1010 10;‘ 6.91 0.47 1.38 0.4 2.18
10 8.06 1.61
10 10.36 2.07
10° 17.27 3.45
10% 10‘; 18.42 0.97 3.68 0.86 4.48
10 20.72 4.14
10 21.87 438

Table 5.1 shows that the results from Eq. (5.9), and Eq. (5.11) with o = 0.02 are
comparable, even though 5 /Cp from Eq. (5.9) is always slightly larger than that from
Eq. (5.11) with o = 0.02. Thus, the results from the design relations based on the
pressure derivative analysis [Eq. (5.9)] and the pressure analysis [Eq. (5.11) with o =
0.02] are the same for the time to the end of storage-dominated period. Vongvuthi-
pornchai and Raghavan (1988) also discuss this observation. Using the preceding
observation, Vongvuthipornchai and Raghavan also showed that the time for the end of
storage-dominated period from Eq. (5.10) should be the same as the time from Eq.
(5.11) with o = 0.1. Though the results from Eq. (5.10), and Eq. (5.11) with ot = 0.1
are not exactly the same in Table 5.1, it is apparent that for a given Cp e, the results
from Eq. (5.10), and Eq. (5.11) with o = 0.1 would be approximately the same, if s
were large.
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Appendix B shows that the time at which the semilog pressure derivative is
within 2% of 0.5 is:

t
CL = 280 + 180 log (Cpe®) , (5.12)
D

and the time at which the semilog pressure derivative is within 5% of 0.5 is:

t .
L =30+11010g (Cpe?) . (5.13)
Cp |

The dimensionless time estimates from the design equations (5.12) and (5.13) are con-
siderably larger than the dimensionless time estimates from the presently available
design equations derived from an analysis of pressure responses such as
tp/Cp > (60 + 3.5 s) of Ramey et al. (1973), and t,/Cp > 50 %4* of Chen and
Brigham (1978). Again the pressure derivative results are quite different from pressure
results. The Chen and Brigham results were based on times when slopes of the pres-
sure graphs were approximately valid.

5.2 FINITE RESERVOIR

Transient pressure response for a well producing from a finite reservoir of circu-
lar, square, and rectangular drainage shapes has been studied by van Everdingen and
Hurst (1949); Miller et al. (1954); Aziz and Flock (1963); Earlougher et al. (1968);
Ramey and Cobb (1971); Kumar and Ramey (1974); Cobb and Smith (1975); and Chen
and Brigham (1978), among others. Mishra and Ramey (1987) presented a buildup
derivative type-curve for a well with storage and skin, and producing from the center
of a closed, circular reservoir. Their type-curve applies for large producing times such
that t,p > tppe. This chapter presents drawdown and buildup pressure derivative
type-curves for a well producing at a constant rate from the center of a finite, circular
reservoir. The outer boundary may be closed, or at a constant pressure. The
differences between the responses for a well in a closed, circular reservoir (fully-
developed field), and a well in a circular reservoir with a constant-pressure outer boun-
dary (active edgewater drive system, or developed five-spot fluid-injection pattern) are
discussed. Design relations are developed to estimate the time period which
corresponds to infinite-acting radial flow, or to a semilog straight line on a pressure vs.
logarithm of time graph. Producing time effects on buildup responses are studied
using the slope of a dimensionless Agarwal (1980) buildup graph.

5.2.1 Drawdown Response

Table 5.2 shows the dimensionless wellbore pressure drop and the semilog pres-

sure derivative expressions for a well in a finite, circular reservoir during specific flow
periods.
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Table 5.2 - Dimensionless wellbore drawdown pressure and derivative
expressions for a well in a finite, circular homogeneous reservoir

Flow period PwbD p'wD = dwa /d In tD
Wellbore storage tn/Cp tn/Ch
Infinite-acting 0.5 [In (p/Cp) + C4] 0.5
radial flow
Pseudosteady state
(No wellbore storage, 2R tpy + Cy 2T tpy
and closed reservoir)
Steady state
(Constant-pressure In(r,p)+s 0
outer boundary )

Cy=In(Cpe®) +0.80907 , and C,=051n [———2-2458214] +s
ATw

All expressions in Table 5.2 may be written as combinations of #,/Cp, Cp e®, and
r5/Cp. For example, o

’ 2

’

In(rpp)+s = 1 In |-2 Cp e®| ,and (5.14)
2 Cp

Cpe® (5.15)

2

1 22458 A 1 22458 ® TeD
Cr=—In|————|+s=—In|==2"= =
2 2 [ CAr‘E ] 2 [ CA CD

Thus, if the dimensionless drawdown pressure and the Eressure derivative responses
: 2s

are graphed against ¢5/Cp, the parameters Cpe” and r,5/Cp may be selected as the

correlating parameters. A verification of Cpe? and rezD/CD as the correlating parame-

ters is also shown in Fig. 5.1 for both closed and constant-pressure outer boundary

cases. The individual values of Cp, s, and r,p used to generate the pressure deriva-

tive responses are shown on Fig. 5.1.

Figure 5.2 shows the drawdown pressure derivative type-curve developed in this
study. Both closed and constant-pressure outer boundary cases are shown. From
Appendix B, the dimensionless times at which the semilog pressure derivative is within
2% of 0.5 are:

, ;
2| =280+ 180 log (Cpe®) |, and (5.16)
Cp start

t 0.175 r3

L 77D (5.17)

CD end CD
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Figure 5.1:  Verification of Cpe* and r’p/Cp as comelating parameters for

drawdown responses.
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Design Eqgs. (5.16) and (5.17) apply for both closed and constant-pressure outer boun-
daries. Equations (5.16) and (5.17) yield a condition for the development of at least
half a log cycle of semilog straight line as:

rX/Cp > 5060 + 3250 log (Cpe®) . (5.18)

5.2.2 Buildup Response

The dimensionless buildup pressure is:

h (Pws ~ Pwr)
Pups (8p) =~ = pup (1) + Pup (819) = Pup (G + 80, (5.19)

where p,,; is the shut-in pressure at time At, and p, is the bottomhole flowing pres-
sure at the instant of shut-in. The slope of a dimensionless MDH (Miller, Dyes, and
Hutchinson, 1950) buildup graph is:

dp wDs (AtD )

dwas
MDH Slope = —2¥P5s__ _ py
ope D g ()

T, (5.20)

For large producing times such that t,p > tpps, Mishra and Ramey (1987)
presented a type-curve as a log-log graph of MDH slope vs. Atp/Cp with the correlat-
ing parameters as Cp e® and reD /Cp. Their type-curve applies for a well in the center
of a closed, circular reservmr For large producing times such that ¢, > fpg, Fig.
5.3 verifies that CDe and reD/CD are correlating parameters for the bulldup pressure
derivative responses of a well in the center of a circular reservoir with a constant-
pressure outer boundary. Figure 5.4 presents a buildup derivative type-curve for a well
in the center of a circular reservoir with a constant-pressure outer boundary. From

App. B, the dimensionless times at which a semilog buildup pressure derivative is
within 2% of 0.5 on Fig. 5.4 are;

At
-—2] = 280 + 180 log (Cpe®) , and - (5.21)
Cp start
Atp _ 0475 rh 5.22)
Cp Cp '

Equations (5.21) and (5.22) yield a condition for the development of at least half a log
cycle of semilog straight line, the same as Eq. (5.18).

Figure 5.5 shows buildup derivative responses for a well in a circular reservoir
with two dlfferent outer boundary cond1t1ons closed and constant-pressure. Figure 5.5
applies for CDe = 1000 and r}/Cp = 10° Figure 5.5 shows that for the same
values of Cpe® and r.}/Cp, the semilog straight line is longer for a well in a circular
reservoir with a constant-pressure outer boundary than for a closed outer boundary.
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From Appendix B, the dimensionless times at which the slope of a dimensionless
MDH buildup graph for a well in a closed reservoir is within 2% of 0.5 are:

Aty o
o = 280 + 180 log (Cpe®) (5.23)
Start
At 0.01 r2
—c’l =— @ g rj)/CD <10° , and
CD end CD )
0.005 r5 ) s
= for rp/Cp 210’ . (5.24)
D

Equation (5.23) is the same as Eq. (5.21). The criterion for Az, /CD]M . presented by

Mishra and Ramey (1987) corresponds to a dimensionless time at which the slope of a
dimensionless MDH buildup graph is approximately within 14% of 0.5. A comparison
of Egs. (5.22) and (5.24) shows that a semilog straight line on a MDH buildup graph
for a constant-pressure outer boundary is about one to one-and-a-half log cycles longer
than a semilog straight line on a MDH buildup graph for a closed reservoir, with all
other conditions being the same. Thus, if buildup pressure derivative data for a well in
a circular reservoir with a constant-pressure outer boundary is matched on a type-curve
for a closed reservoir (Fig. 2 of Mishra and Ramey, 1987), the value for rEZD/CD may
be overestimated. Similarly, if the buildup pressure derivative data for a well in a

closed reservoir is matched on a type-curve shown in Fig. 5.4, re?‘D/CD may be
underestimated.

5.2.3 Producing Time Effects on Buildup Response

The Horner (1951) method is widely used for analysis of buildup data. The
slope of a dimensionless Horner (1951) graph is:

dp,, t,p + Atp)At d At
Horner Slope - PwDs - (pD D) D DywDs ( D) (525)
d 1n tPD -+ AtD tPD d (AtD)
Aty \

Agarwal (1980) presented the concept of an equivalent drawdown time for
analysis of buildup data using drawdown type-curves for a well in an infinite reservoir,
The dimensionless equivalent drawdown time is: :

tpD AtD

At,p =
t,p + Atp

(5.26)

Agarwal (1980) showed that a graph of p,p, vs. Az, correlated buildup
responses for a well in an infinite reservoir with a drawdown response. The correlation
was reasonable for producing times larger than the time for storage effects to become
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negligible. For producing times less than the time for storage effects to become negli-
gible, early time buildup responses did not correlate well. The slope of a dimension-
less Agarwal (1980) buildup graph is:

dwas ( pD +AtD )AtD . dwas (AtD)

Agarwal Slope =
BaTWat SIOPE = T (Atp) o d (Atp)

(5.27)

A comparison of Eqs. (5.25) and (5.27) shows that the Horner slope is equal, but
opposite in sign to the Agarwal slope. Thus, producing time effects on buildup
responses may be studied by using either the Agarwal or the Horner slope.

Aarstad (1987) presents the Agarwal (1980) slope as a function of dimensionless
shut-in time, Atp, , for several producing times, #,p4, for wells without storage or skin,
and located in a square or a rectangle. Aarstad showed that a graph of the Agarwal
slope vs. Atps does not result in a single curve for all producing times, if a well is
located in a square or a rectangle. Therefore, Aarstad used t,p4 as a parameter to

present producing time effects on buildup responses for a well in a square or a rectan-
gle.

Figure 5.6 presents an investigation of #,p4 as a correlating parameter for buildup
behavior of a well m the center of a closed, cucular reservoir. Figure 5.6 apphes for
Cpe® = 10* and r/Cp = 10%. The values of Cp, s, t,p, and rp used for various
~ Tesponses _are shown on Fig. 5.6. From Fig. 5.6, the early time Tesponses for
L tpa S 1073 do not agree with the responses for t,p4 2 107, For oA < 1075, the pro-
ducing time is less than the time for storage effects to become neghglble Thus the
- lack of correlation at early times is consistent with Agarwal's (1980) finding. At late
times, the buildup responses for all producing times do not form a single curve which

is consistent with the work by Aarstad (1987). The lack of correlation at late times is
due to the finite reservoir size.

For buildup derivative data analysis, a log-log graph of d (p,s; — pws)/d In (At,)
vs. At may be matched with a type-curve such as Fig. 2 of Mishra and Ramey (1987).
But Fig. 5.6 shows that a type- curve matching without considering producing time
effects may yield an overestimated r,_,D/CD for smaller producing times.

Figure 5.7 shows an investigation of f,54 as a correlating parameter for the
buildup behavior of a well in the center of a cucular reservmr with a constant-pressure
outer boundary. Figure 5.7 applies for CDe = 10* and r D/CD = 105, The remarks
for Fig. 5.6 also apply to Fig. 5.7. Thus, producing time effects may not be ignored in

a type-curve matching analysis of buildup derivative data obtained from a well in a
finite, circular reservoir.
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6. COMPOSITE RESERVOIR

As discussed in Chapter 1, a composite reservoir represents a number of well test
scenarios. Front (or discontinuity) radius, or swept volume is an important parameter
sought from well tests in composite reservoirs. A brief description of the methods pro-
posed to estimate a front (or discontinuity) radius, or swept volume appears in Chapter
2. This section considers drawdown and buildup responses for two-region composite
reservoirs. Both infinitely large and finite reservoirs are considered. Implications of
this study on different methods to estimate a front radius or swept volume are dis-
cussed. The effect of an infinitesimally thin skin at the discontinuity and the responses
for three-region composite reservoirs are also considered.

6.1 TWO-REGION COMPOSITE RESERVOIR

Figure 2.1 shows a schematic diagram of a two-region, radial composite reser-
voir. - Chapter 6.1.1 considers drawdown responses. Chapter 6.1.2 describes buildup
responses. Chapter 6.1.3 discusses the effect of a thin skin at the discontinuity on the
pressure derivative responses for a two-region composite reservoir.

6.1.1 Drawdown Response

When the outer region is sufficiently large, a two-region composite reservoir may
be considered infinitely large. Since the pressure derivative is not affected by the pres-
ence of wellbore skin as long as wellbore storage is negligible, the parameters for
drawdown pressure derivative responses in the absence of wellbore storage are M, F S
and Rp. A consideration of wellbore storage and skin introduces two additional
parameters: Cp and s.

Satman et al. (1980) and Tang (1982) graphed p,p — In (Rp/500) vs. tp, to
correlate pressure responses for all front radii with the response for R, = 500. The
choice Rp = 500 is arbitrary. Satman et al. and Tang correlated pressure responses
neglecting wellbore storage or skin. Their approach suggests that a graph of
dpwp / d 1In tp vs. tp, should apply for all front radii. An example of such a correla-
tion is shown in Fig. 6.1. Figure 6.1 shows semilog pressure derivative behavior for

several dimensionless front radii. Mobility and storativity ratios are 10 and 100,
respectively, ‘ ‘

Curves for Rp = 50, 100 and 1000 appear to form a single curve for all times.
The curve for Rp = 10 is also shown on Fig. 6.1. The curve for Rp = 10 is slightly
different from the other curves for ¢p, < 0.5. Thus, the correlation is valid for practi-

cal purposes. It is likely that wellbore storage and other practical matters could affect
results for Rp < 50 and 75, < 0.5. -

Figure 6.2 shows the effect of mobility ratio on the semilog pressure derivative
behavior for a fixed storativity ratio of 100 neglecting wellbore storage. The semilog
pressure derivative behavior for a homogeneous reservoir (M = 1, Fg = 1) is also
shown on Fig. 6.2. The first semilog straight line of slope 1/2 develops on a dimen-
sionless graph of p,,p vs. In (#p). After the end of the first semilog line, the pressure
derivative rises for M > 1. During the transition period, the pressure derivative goes
through a maximum above the slope of the second semilog line corresponding to the
outer region mobility, if mobility, or storativity ratio, or both, are greater than unity.
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Even in the case of unit mobility ratio, there is a long transition between the two semi-
log straight lines. The second semilog line slope is M /2. For large mobility and stora-
tivity ratios, the inner region may behave like a closed reservoir for some time during
the transition period after the end of the first semilog line. Pseudosteady state behavior
of the inner region during the transition was found by Eggenschwiler et al. (1979).
Thus, during the early transition period, a Cartesian graph of pressure vs. time may
contain a straight line, whose slope is related to the volume of the inner region. From
Fig. 6.2, the following is apparent for a storativity ratio of 100:

1. The first semilog line ends at 7, of about 0.18, for all values of mobility
ratio studied.

2. There is a long transition period between the end of the first semilog line
and the beginning of the second semilog line.

3. The transition period is longer for larger mobility ratios. This translates to a

longer time to the beginning of the second semilog line for large mobility
ratios.

4. The time to the maximum derivative and the magnitude of the maximum
derivative is affected by mobility ratio.

Brown (1985) reports a minimum transition time of approximately two log cycles
for composite reservoirs. Long transition periods are also observed in the solution
presented by Wattenbarger and Ramey (1970) for pressure transient behavior for a sin-
gle well with wellbore storage and a finite skin thickness in an infinitely large reser-

voir. The skin region was treated as the inner region, and the formation as the outer
region.

Figure 6.3 presents the effect of storativity ratio on semilog pressure derivative
behavior for a mobility ratio of 10. For storativity ratios greater than unity, the pres-
sure derivative rises above the value M/2 during the transition period, and passes
through a maximum slope. Thus, a hump occurs in the pressure derivative behavior

for mobility and storativity ratios larger than unity. Figure 6.3 shows the following for
a mobility ratio of 10: :

1. Storativity ratio does not affect the time to the end of the first semilog line
corresponding to the inner region mobility, and mildly affects the time to
the beginning of the second semilog line corresponding to the outer region
mobility. - The transition time between the two semilog lines is approxi-
mately three log cycles in duration.

2. Storativity ratio affects the derivative behavior at intermediate times. The
storativity ratio mildly affects the time to maximum slope, and the magni-
tude of the maximum slope.

Figure 6.4 presents a graph of semilog pressure derivative vs. zp, with mobility
and storativity ratios as parameters. Figure 6.4 is a pressure derivative type-curve for
composite reservoirs in the absence of wellbore storage. Analysis of Fig. 6.4 results in

several empirical well test design equations for composite reservoirs. These design
equations are summarized in the following.

From Fig. 6.4, the time to the end of the first semilog straight line is:

(tpe)ona = 0.18 . (6.1)
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-34 -
From Appendix B, the time to the maximum derivative in the transition is:
(*Dedmax = (1.8 + 04 log Fg) M , and (6.2)
the time of start of the second semilog line is:
(pedir =90 (1 +1log Fg) M . (6.3)

Equations (6.2) and (6.3) apply if mobility and storativity ratios are greater than unity.
From Appendix A, the time to the beginning of the first semilog line corresponding to
inner region mobility is:

tp > 140 (6.4)

which is the same as the time to the beginning of the semilog line for a finite-radius
well with no wellbore storage in an infinitely large homogeneous reservoir. Design
equations presented in Eqs. (6.1) through (6.4) are accurate to within 2% in pressure
derivative. The time to the end of the first semilog straight line, (¢p, )., is approxi-
mately 0.21 for a 5% change from the slope of 1/2. Several investigators have
developed criteria for (tp,),,; and (¢p,); using pressure data to certain precision. In
the following, we compare Eqgs. (6.1) and (6.3) with other design criteria.

The time to the end of the first semilog line, also called deviation time, has been

used widely to calculate front radius. The appropriate equation in field units to calcu-
late the front radius is:

_ _\/ 0000264 &; Tond

2 6-5
((N*lct )1 (tDe )end ( )

where ¢,,; is the time to the end of the first semilog line on a pressure vs. log (time)
graph, in hours, and (tp, ), is the dimensionless deviation time based on front radius.
Equation (6.5) is the basis of the deviation time method to estimate a front (or discon-
tinuity) radius. Previous investigators have proposed a number of values for dimen-
sionless deviation time. Dimensionless deviation time values were derived by either
the drainage-radius concept, or a graphical analysis of numerical or analytical pressure
responses from composite reservoirs. A summary of dimensionless deviation times,
(2De )end » Proposed by several authors is presented in Table 6.1.

Table 6.1 - Dimensionless deviation times presented in the literature

Reference (tpe )end

Tek et al. (1957) 0.054

Hurst (1960) 0.143
Jones (1962) 0.063
Van Poollen (1964) 0.25

Merrill et al. (1974) 0.13 - 1.39 (Average = 0.389)

Tang (1982) 0.4
This study (1988) 0.18
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Van Poollen (1965) used a value for (#p, ).,q derived on the basis of the radius of
drainage concept in an earlier paper (Van Poollen, 1964). Merrill et al. (1974) derived
a value for (fp,).nq Dy generating a large number of pressure falloff curves for two-
zone, radial composite reservoirs using a numerical simulator. They found the dimen-
sionless deviation time to lie between 0.13 and 1.39 by running several cases. The
arithmetic average dimensionless deviation time was 0.389. They stated that the range
of error using the arithmetic average value of (tp,)gng = 0.389 would be:

R using (tp, )ena = 0.389 in Eq. (6.5)

0.58 < <139 . (6.6)
Actual R

They felt that this range of error was too large, and advised against indiscriminate use
of deviation time to calculate the radius of a fluid bank. Sosa et al. (1981) used an
average dimensionless deviation time of 0.389 to analyze simulated falloff tests in
water injection wells. Sosa et al. observed that the front radius using the deviation
time method was not an accurate estimate for the radius of the water-flooded region.

Tang (1982) approximated (tp, ). to be 0.4 by observing the pressure response
from the Eggenschwiler et al. (1979) analytical solution. Figure 6.5 shows the semilog
~ pressure derivative responses from the Eggenschwiler et al. solution for several values
of mobility and storativity ratios. Figure 6.5 also includes the responses for M < 1
and Fg < 1. Figure 6.6 shows the pressure responses on a log-log graph for the same
combinations of M and Fg as used in Fig. 6.5. The dimensionless deviation time of
0.4 on Fig. 6.6 corresponds to approximately 2% departure of the pressure response
from the semilog line corresponding to the inner region mobility. However, Fig. 6.5
shows semilog pressure derivatives of 0.80 for M = Fg = 100, and 0.33 for M = Fg =
0.1 at the dimensionless time #p, = 0.4. Thus, on a derivative graph, tp, = 0.4 may
correspond to approximately +60% or -34% change in slope compared to 1/2, depend-
ing on the mobility ratio. Also, though (fp, ).,y of 0.18 and 0.4 are not dramatically
different, a front radius calculated by using (¢p, )..q = 0.4 will be approximately 0.67
times a front radius calculated by using (fp,)e.q = 0.18, with all other parameters
remaining the same. This is a significant difference in answers for front radius, indi-
cating the need for accurate specification of deviation time to obtain meaningful results
from the deviation time method.

Using (tp, )ena = 0.18 in Eq. (6.5), a convenient expression in field units to calcu-
late R is: '

kl Lend
R = 6.7
(GHc,); 6818 ©7
Using (tpe)ena = 0-4 in Eq. (6.5) yields:
; T
R = \/ 1 end (6.8)
(bpc,); 15152

Mobility, or storativity ratio, or both should be about one order of magnitude away
from unity to obtain a deviation time precisely, and thus obtain reasonable results from
the use of Eq. (6.7) or (6.8). Equation (6.7) or (6.8) can be used if the assumptions of
the analytical model are reasonably satisfied, and wellbore storage does not mask the
first semilog line corresponding to the inner region mobility.
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As will be shown in Chapter 7, the geometry of the swept region is also a critical
factor in the application of the deviation time method. If the swept inner region is not
cylindrical, then the deviation time should correspond to the closest discontinuity
affecting the transient response at the well. Thus, deviation time could correspond to a
"minimum" front radius, and an underestimated swept volume. The swept region may
not be cylindrical because of:

1.  Gravity override and underride, as in case of thermal processes.

2. Viscous fingering, as in the case of unfavorable mobility ratio processes,
such as CO, flooding.

The time to the beginning of the second semilog line has been of interest to many
investigators. Development of a second semilog line is required for the intersection
time method to determine front radius. Odeh (1969) investigated reservoirs with
mobility ratios equal to diffusivity ratios (i.e, Fg = 1), that varied from 0.25 to 50
using an analytical solution. He found, by graphical methods, that the second semilog
line starts at:

(p )y =17M ,  for Fg=1. (6.9)

By comparing the pressure response from the Eggenschwiler et al. (1979) analyti-
cal solution with Ramey’s (1970) approximate solution, Tang (1982) obtained:

2 - 1F;
(tpednr = 0¥ for MI/Fg 21,
Fg
2
= 0.44 + wFM ., for MIFg<1. (6.10)
S

Substituting Fg = 1 in Eq. (6.10) for M/Fg 2 1 results in:
(tpedir = 10M . 6.11)

Thus, Eqgs. (6.9) and (6.11) produce a time to the beginning of the second semi-
log line in the same range, for Fg = 1. Equation (6.9) is accurate to within 9%, and
Eq. (6.11) to within 5%. The late time dimensionless wellbore pressure-drop for a
well in an infinitely large composite reservoir is:

) 2.2458 1, ;
PwD =—§' M In ——-""ﬁ— +In [RD] +5 . (612)

Although a brief derivation of Eq. (6.12) is presented in the paper by Ramey
(1970), Eq. (6.12) is derived starting from Ramey's (1970) approximate solution in
Appendix C. A late time drawdown solution for a well in a finite composite reservoir
with a constant-pressure or a closed outer boundary is also derived in Appendix C.
For a well in an infinitely large composite reservoir, the derivation in Appendix C
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provides criteria for the time to the beginning of the second semilog line as:

(tpe Jir > 100 M , for M/Fg =1,
Fy _
>100 ,  forM/Fg<1. (6.13)

Thus, Eq. (6.13) establishes a lower limit for (z5,);. Any design equation presented
for (tp. )y must produce (tp, )y larger than, or equal to those from Eq. (6.13).

Results from Eq. (6.10) were compared with those from Eq. (6.13). Results from
Eq. (6.10) were poor. Equation (6.10) applies if M, Fg and m are all greater than

unity. Equation (6.3) developed previously in this study results in a longer time than
Eq. (6.10). :

The difference between times computed from Egs. (6.3) and (6.1) is the transition
time to reach the second semilog line after the end of the first semilog line. Even for
moderate mobility ratio cases, the transition time is so long that well tests would sel-
dom be run long enough to observe the second semilog line. The second semilog line
may also be masked by outer boundary effects. It is likely that only one semilog line

will be evident in most cases. Next, a derivative type-curve matching method based on
Fig. 6.4 is considered.

Wellbore storage should be small to use the type-curve presented in Fig. 6.4 for
an infinitely large composite reservoir. Well test data collection to a time slightly
larger than the time indicated by Eq. (6.2) is recommended, so that a bending over of
the semilog pressure derivative is observed. From Appendix B, an approximate
expression for the maximum semilog pressure derivative at the time (fp,)max in an
infinitely large composite reservoir is:

d
D | _(11+logFg) LforM =1
dlog tp |0 :

=0.7+1logFg)M ,forM 210. - (6.14)

Equation (6.14) is applicable for cases where M 2> 1, and Fg > 10.

If the conditions listed are satisfied, then type-curve matching can provide values
of M and Fg. The pressure derivative match point can be used to calculate (k/u); by:

[ _k_] _141.2 g B (dpyp ! dl0g ip)yarch
1

s : 6.15
" k. (dpy | dlog Do - (6.13)
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and the time match point yields an estimate of front radius, R, if the inner region pro-
perties are known. An estimate of front radius, R, is given by:

V 0.000264 kl ™Match

6.16
((NJ.C, )l (tDe )Match ( )

In the following, the pseudosteady state method is considered and a correlation
for the time to the end of pseudosteady state behavior is presented Pseudosteady state
behavior may be observed when #,4, > 0.1, where #p, is based on area, A = nR2.
Eggenschwiler et al. (1979) used Eq. (2.7) to relate the slope of a Cartesian straight
line on a graph of pressure vs. time, and the inner zone swept volume.

During pseudosteady state, the dimensionless pressure for a well in 2 homogene-
ous reservoir is given by (Ramey and Cobb, 1971).

A 1 2.2458
=2ntpy + =1 + — In| = 6.17
Pup =2Tips + 5 n[rw ] 5 [ Ca (6.17)
Differentiating Eq. (6.17) with respect to zp, results in:
4
D _oq (6.18)
dtDA

where #,, is based on area, A = mR? The Cartesian pressure derivative during
infinite-acting (semilog) radial ﬂow for inner and outer regions, respectively, are given
by:

dpup 1
- . and 6.1
dtDA 2 tbA an ( 9)
dj
PwD _ M (620)

dtDA - 2 tpa

Thus, based on Egs. (6.18) through (6.20), on a log-log presentation, a Cartesian
derivative would show a slope of — 1 during infinite-acting radial flow of inner and
outer regions, and would be constant at 2 ® during the pseudosteady state period. This
is shown in Fig. 6.7. Dimensionless front radii of 100, 500 and 1000 are presented on
Fig. 6.7. Mobility and storativity ratios are both 100 in Fig. 6.7.

Figure 6.8 presents the effect of mobility ratio on the Cartesian pressure deriva-
tive for Fg of 100. Early and late time behaviors shown on Fig. 6.8 follow Egs. (6.19)
and (6.20). From Fig. 6.8, after the end of the infinite-acting radial flow corresponding
to the inner region mobility, a short duration pseudosteady state period is evident,
depending on the value of mobility ratio. The larger the value of mobility ratio, the
longer is the duration of the pseudosteady state period.
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Figure 6.9 presents the effect of storativity ratio on the Cartesian pressure deriva-
tive for M = 100. Remarks for Fig. 6.8 also apply to Fig. 6.9. For a given mobility
ratio, the pseudosteady state period increases for increasing storativity ratios. Stora-
tivity ratio also affects the Cartesian pressure derivative at intermediate times. The late
time Cartesian pressure derivative is independent of the storativity ratio, and follows
behavior forecast by Eq. (6.20).

Correlations for the time to the end of pseudosteady state behavior are shown on

Fig. 6.10. Table 6.2 presents selected data used to develop the correlations on Fig.
6.10.

Table 6.2 - Time to the end of pseudosteady state behavior
corresponding to the inner swept volume

tpy for Cartesian slope | zps for Cartesian slope

M Fq within 2% of 2xn within 5% of 2x
10 0.108 0.119
20 0.116 0.131
50 0.126 0.157
70 0.131 0.177
100 10 0.136 0.208
200 0.148 0.371
500 0.177 0.811
700 0.192 1.092
1000 0.294 1.516
10 0.126 0.155
20 0.138 0.207
50 0.158 0.438
70 0.173 0.584
100 100 0.191 : 0.792
200 0.403 1.483
500 0.900 3.589
700 1.207 4.972
1000 1.672 7.070
10 0.145 0.237
20 0.168 0.422
50 0.314 0.929
70 0.435 1.261
100 1000 0.600 1.762
200 1.085 3.444
500 2.545 8.468
700 3.541 11.818
1000 5.012 16.854

From Fig. 6.10, the time to the end of pseudosteady state behavior is larger for
larger values of mobility and storativity ratios. Using the correlation for the slope to
be within 2% of 2r in Fig. 6.10, empirically, we observe that pseudosteady state
behavior is likely to appear for cases with MFg = 10* and M = 10, if pseudosteady
state behavior is desired to last up to tp4 = 0.2. Correlations presented in Fig. 6.10

should be of help in choosing the correct pseudosteady Cartesian line to calculate
swept volume.



-4 -

1000

100

10

dp,p/d tp,

0.1

0.01

| | ! | ,
100 1000 10000

0.001
0.001 - 0.01 0.1 1 10

tha
Effect of storativity ratio on Cartesian derivative for a two-region com-

Figure 6.9;
posite Teservoir.

100 T
CD=0

— Slope within 2% of 2n
-=-=- Slope within 5% of 2x

tpa

Mobility Ratio

Correlation for the end of pseudosteady state for a two-region compo-

Figure 6.10:
site reservoir.



-43 -

Well test analysis using any of the preceding methods discussed may fail because
of: ‘

1. Wellbore storage effects, and/or
2. Outer boundary effects.

Wellbore storage may mask the evidence of a semilog line corresponding to the
inner region mobility. An empirical criterion for the time to the end of wellbore
storage effects based on an analysis of pressure derivative response for a well in an
infinitely large homogeneous reservoir is given by Eq. (5.9). Equation (5.9) may be
used to calculate whether wellbore storage effects would decrease sufficiently approxi-
mately one-and-a-half log cycles before (¢p,)ens = 0.18. However, the limitations on
the deviation time method due to wellbore storage effects may be studied directly by
comparing (¢p, )..q With the time to the beginning of the semilog line corresponding to
the inner region mobility given by Egs. (5.12) and (5.13).

Using Eq. (5.12) and (¢p, )ena = 0.18, the following relation may be obtained to

observe at least one-half log cycle of a semilog line corresponding to the inner region
mobility:

2

: |
—Ci > 17.6 [280 + 180 log (Cpe®)] . (6.21)
D

Another form of Eq. (6.21) is:

Rp > 4.2Cp [280 + 180 log (Cpe®)] . (6.22)

For Cp = 100 and s = 0, Eq. (6.22) yields Rp = 1062. This result emphasizes the
need to mini-

mize wellbore storage effects in composite reservoir well tests.

Less strict criteria for R3/Cp and Rp to observe at least one-half log cycle of the
semilog line corresponding to the inner region mobility result by using Eq. (5.13) and
(tpeena = 0.21 as:

R3 2

o2 15.2 [30 + 110 log (Cpe®)] , and (6.23)
D

Rp 23.9Cp [30 + 110 log (Cpe®)] . (6.24)

For Cp = 100 and s = 0, Eq. (6.24) yields Rp = 617, again emphasizing the need to
minimize wellbore storage effects in composite reservoir well tests.

A comparison of the time to the end of wellbore storage effects (Eq. (5.9)) with
tpa = 0.1 yields criteria for observing pseudosteady state data despite wellbore storage
effects:
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R2 ., [0.048 log (Cpe®)—0.03]
Cp B 01m ’

and (6.25)

Rp 2 1.784 \/Cp [0.048 log (Cpe®) — 0.03] . (6.26)

Even after the end of storage-dominated period, there is a transition time before
the onset of pseudosteady state. The transition time between the end of storage domi-
nation and the onset of pseudosteady state is not considered in the development of Egs.
(6.25) and (6.26). The transition time between the end of wellbore storage effects and
the beginning of infinite-acting radial flow corresponding to the inner region mobility is
considered in the development of Egs. (6.21) through (6.24). Thus, Egs. (6.25) and
(6.26) are less reliable criteria than Egs. (6.21) through (6.24). In practice, Rﬁ/CD or
Rp would have to be larger than those forecast from Eq. (6.25) or (6.26) to observe
pseudosteady state behavior. Still, a comparison of the results from Eq. (6.22) or
(6.24), and Eq. (6.26) is important qualitatively.

For Cp = 100 and s = 0, Eq. (6.26) yields R, = 5. Thus, the results from Eq.
(6.22) or (6.24), and Eq. (6.26) suggest that in some cases, wellbore storage effects
may mask the semilog line corresponding to the inner region mobility, but pseudos-
teady state data may still be obtained. That is, due to wellbore storage effects, there
may be cases when the inner region mobility may not be obtained, and the deviation
time method may not be applicable, but the pseudosteady state method may be used to
estimate a swept volume provided sufficient mobility and storativity contrasts exist
between the inner and the outer region. Drawdown pressure derivative responses for a
well with storage and skin, and located in the center of an infinitely large composite
reservoir is considered in the following.

Five parameters, Cp, s, Rp, M, and Fg, describe the drawdown pressure and
pressure derivative responses for a well with storage and skin, and located in an
infinitely large composite reservoir. However, the pressure and the pressure derivative
expressions during the wellbore storage period, the infinite-acting radial flow period
corresponding to the inmer region mobility, and the pseudosteady state period
corresponding to the inner swept volume are similar to the corresponding expressions
in Table 5.2 for a well in a finite, homogeneous reservoir. Thus, these expressions can
be written as combinations of ¢5/Cp, Cpe®, and RDZ/CD. Similarly, as shown in Eq.
(6.27), the expression for the drawdown wellbore pressure drop during the infinite-
acting radial flow period corresponding to the outer region mobility can be written as a
combination of #,/Cp, Cpe®, RZ/Cp, M, and Fi:

22458
P, =—;— !M ln[———n—D—?—} +1n [Rgﬂ +5

22458 F t C RE
%Mln[ — S . D D}+ln[——D-CDe2‘J . 6.27)

Cp Rj Cp

Therefore, four parameters, Cp e, RDZ/CD, M, and Fg, describe the drawdown
response for a well with storage and skin, and located in an infinitely large composite
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reservoir. Also, pressure and/or pressure derivative may be graphed as a function of
either #,/Cp or tp, because:

tp tp Cp
RZ ©Cp R}

, (6.28)

and RA/Cp is one of the correlating parameters.

A grouping of three parameters, Cp, s, and Rp, into two parameters, Cp e and
RB3ICp, is indicated graphically in Figs. 6.11 through 6.13 for M = 10, and Fg = 100.
Figure 6.11 is a graph of semilog pressure derivative as a function of #,/Cp. Figure
6.12 is a graph of semilog pressure derivative as a function of #p,. Figure 6.12 also
shows the response for Cp = 0. Figure 6.13 is a graph of Cartesian pressure deriva-
tive as a function of zp,, where tpy = tp,/T. Curve A on Figs. 6.11 through 6.13 is
for c,ael‘ — 109 and R2/Cp = 10%. Curve B on Figs. 6.11 through 6.13 is for Cpe®
= 10' and RS/CD = 100. The individual combinations of Cp, s, and R used to gen-
erate curves A and B of Figs. 6.11 through 6.13 are shown below Fig. 6.11.

Figure 6.11 shows a correlation of early time wellbore storage dominated
response in terms of a single parameter Cp e% . However, depending on the values of
Cp e? and Rg/CD , infinite-acting radial flow corresponding to the inner region mobil-

ity may develop as in curve A, or may not develop as in curve B. At late time, the
semilog slope is M /2.

Figure 6.12 shows the merger of pressure derivative responses for given values of
Cpe* and RZICp to the response for Cp = 0 after wellbore storage effects are no
longer important. Thus, after discarding storage dominated data, it may be possible to
use a type-curve, such as Fig. 6.4, based on zero wellbore storage to obtain M and F
by type-curve matching.

Curve A in Fig. 6.13 shows the development of infinite-acting radial flow
corresponding to the inner and outer region mobilities as lines of —1 slope on a log-log
graph of Cartesian derivative vs. tp4. A constant derivative of 27 depicts pseudos-
teady state flow corresponding to the inner swept volume. However, on Fig. 6.13, a
constant derivative up to a tp, = 0.01 for curve B shows the depletion of the wellbore
fluid. Curve B of Fig. 6.13 illustrates a flattening of Cartesian pressure derivative at a
value of approximately 2nt for a short duration, even though no infinite-acting radial
flow corresponding to the inner region mobility develops.

Figures 6.14 and 6.15 show the effect of RAICp for M = 10, Fg = 100, and
Cp e® =10, Figure 6.14 is a log-log graph of semilog pressure derivative vs. tp,.
Figure 6.15 is a log-log graph of Cartesian pressure derivative vs. tps. The response
for RD2/CD > 10% on Figs. 6.14 and 6.15 is the same as the response for Cp = 0 or
RDZ,/CD — oo, Thus, if RDZICD is large, storage effects may not be important, and
well-test data may be analyzed by neglecting wellbore storage. However, if Rg/CD is
small, the inner region may be so small that the infinite-acting radial flow correspond-
ing to the inner region mobility, and the pseudosteady state flow corresponding to the
inner swept volume may be masked by wellbore storage effects, as in Figs. 6.14 and
6.15 for R2/Cp < 1. For R3/Cp < 1 on Fig. 6.14, the pressure derivative responses
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dp,p/dint,

dp,p /dtp,

100

-47 -

1000 10000

Figure 6.12: Correlation of drawdown semi-log slope responses for a two-
region composite reservoir with wellbore storage and skin (M = 10, Fg = 100).

| | | | | |
00001 0001 001 0. 1 10 100 1000
tha

Figure 6.13: = Correlation of drawdown Cartesian slope responses for a two-
region composite reservoir with wellbore storage and skin (M = 10, Fg = 100).

0.01



100 f

10

dwa / dln tD

- 48 -

M =10
Fs =100

CDez' = 10‘0'

| ] ]
1000 10000 1e+05 1e+06

Figure 6.14: Effect of R2D/CD on semi-log slope response for a two-region
composite reservoir with wellbore storage and skin.

10000

dp,p/d tps

1000

100

10

0.1

0.01

| ] l ] ] ] |
0.0001 0.001 0.01 0.1 1 10 100 1000 10000

0.001

Figure 6.15: Effect of R})/CD on Cartesian slope for a two-region composite
reservoir with wellbore storage and skin.



- 49 -

show infinite-acting radial flow corresponding to the outer region mobility after a tran-
sition period following the end of wellbore storage effects.

For Cpe® =109, Eq. (6.21) yields R2IC, = 36608 to observe at least one-half
log cycle of the semilog line corresponding to the mner region mobility. The
responses on Fig. 6.14 are consistent with the limit on RAICp from Eq. (6.21).

For Cpe® = 10'°, Eq. (6.25) yields R2/Cp = 1.5 to observe pseudosteady state
behavior corresponding to the inner swept volume. But Fig. 6.15 shows a flattening of
Cartes1an pressure derivative for a short duration at a value of approximately Zﬂ: for
RD/CD > 100. Thus, Eq. (6.25) provides only an approximate lower limit for RD/CD
to observe pseudosteady state behavior. Also, the time to start of flattening of Carte-
sian pressure derlvatlve in the presence of storage and skin effects may not correspond
to tpy = 0.1, as for RD/CD = 100 on Fig. 6.15.

Figures 6.16 and 6.17 show the effect of Cpe® for M = 10, Fg = 100, and
RDZ/CD = 10. Figure 6.16 is a log-log graph of semilog pressure derivative vs. tp,.
Figure 6.17 is a log-log graph of Cartesian pressure derivative vs. fp,, where
tpa = tpe/®. The response for Cp = 0 is also shown on both figures. Initially, a unit
slope line on Fig. 6.16 and a flat Cartesian derivative on Fig. 6.17 characterize
wellbore storage effects. The value of Cp e affects the time at which pressure
derivative responses merge with the response for Cp = 0. At late time, the semilog
slope is M/2 characterizing the mﬁmte -acting radial flow corresponding to the outer
region mobility. The parameter RD/CD relates the inner swept volume with wellbore
storage. For RD/CD 10, the inner region is so small that wellbore storage effects
mask the semilog line corresponding to the inner region mobility even for Cp er =
10%. A flattening of Cartesian pressure derivative at a value of approximately 2x is
also not obvious even for Cp e¥ =10°. The deviation time method and the pseudos-
teady state method are not applicable for these values of CDe and R,%/CD But ther-
mal well test data con51stent1y appear to exhibit either both the semilog line
corresponding to the inner region mobility and the pseudosteady state data, or at least
pseudosteady state data (Ramey, 1987). Thus, thermal well test data are characterized
by a large value of RZ/Cp and a small value of Cpe”

Figures 6.18 and 6.19 present the effects of R3ICp, M, and Fg on the pressure
derivative responses for a fixed value of Cp e®. Figure 6.18 applies for Cpe® =
1000, and Fig. 6.19 for Cp e? =10, The magnitude of Cp ¢” may be obtained by
type-curve matching the early portion of well-test data on a homogeneous reservoir
type-curve, such as the Bourdet et al. (1983a) type-curve reproduced as Fig. A.l.
Then a type-curve, such as Fig. 6.18 or 6.19, may be used to estimate RD/CD, M, and
Fs by type-curve matching, provided test data exists to a time larger than the time
given by Eq. (6.2). Estimates for discontinuity radius or inner swept volume from the
deviation time method and the pseudosteady state method may then be compared with
the type-curve matching estimate for inner swept volume deduced from RD/CD to
place confidence in analysis.

Figure 6. 20 presents the effects of Cpe?, M, and Fg on the pressure derivative
responses for RZ/Cp = 10%. If Rp has been obtalned from the deviation time method
or the pseudosteady state method, and Cp has been obtained from a unit slope line on
a log-log graph of pressure vs. time for the data dominated by storage effects, then the
parameter Rj/Cp is known For a known RD/CD, a type-curve, such as Fig. 6.20,
may be used to obtain CDe , M, and Fg by type-curve matching, provided test data
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reservoir with wellbore storage and skin.
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exists to a time larger than the time given by Eq. (6.2). Outer boundary effects are
considered next in the absence of wellbore storage.

For finite outer boundary, Figs. 6.21 and 6.22 illustrate typical results neglecting
wellbore storage effects. Figures 6.21 and 6.22 apply for M = 10, Fg = 1000, and
rep ! Rp = 10. Three cases of Rp = 50, 100 and 1000 are shown on both figures.
The group r.p / Rp is a third correlating parameter for finite, composite reservoirs in
addition to M and Fg. ‘

A reservoir approaches steady-state behavior at late times for a constant-pressure
outer boundary. On a pressure derivative graph, such as Fig. 6.21, steady-state is indi-
cated by a pressure derivative of zero. Since a large mobility and storativity contrast
implies closed reservoir behavior, the semilog pressure derivative rises for some time
after the end of the first semilog line corresponding to the inner region mobility on Fig.
6.21. But eventually, the outer boundary effects dominate, and the reservoir
approaches steady-state after exhibiting a maximum semilog pressure derivative. As
derived in Appendix C, the dimensionless wellbore pressure drop at late time for a
constant-pressure outer boundary is:

pup =10 (Rp) + M In (%D—) +s . (6.29)
D

A reservoir approaches pseudosteady state behavior at late times for a closed
outer boundary produced at a constant rate. Pseudosteady state is characterized by a
linearly-increasing semilog pressure derivative on either a Cartesian graph or the log-
log graph of Fig. 6.22. The effects of mobility and storativity contrasts, and the outer
boundary are such that stabilization at a maximum derivative, and bending over of the
pressure derivative is not seen in Fig. 6.22. Instead, the reservoir goes to pseudosteady
state directly. - As derived in Appendix C, the dimensionless wellbore pressure drop at
late time for a closed outer boundary is:

2tDe
Pwp = 3 +xX+s (6.30)
r
1+—1—[ = - ]
Fg | R?
where:
2 2
1- R Ml___]_i__
R2 2r2 re
X=In(Rp) - - +
2r82 1 r22 re2
21+;S— -1—23'—1 4F5+F-1

r2
IM % —1
R2 . M In (r,/R)

2 R?
4[Fs+ e —1} 1+ Fs -1

(6.31)

R? Te
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Figure 6.21:
voir with a constant-pressure outer boundary.
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Figures 6.23 and 6.24 show pressure derivative behavior for constant-pressure
and closed outer boundaries, respectively, for several values of r,p / Rp. Mobility and
storativity ratios are 10 and 1000, respectively, for Figs. 6.23 and 6.24. Interaction of
the effects of mobility and storativity contrasts, and the outer boundary determines the
pressure derivative behavior at any time. Depending on the size of the outer region, a
second semilog line may or may not appear. Figures 6.23 and 6.24 show that
rep / Rp should be greater than 1000 for the second semilog line to be evident, if M =
10 and Fg = 1000. Thus, even if one is willing to run a well test long enough, the
second semilog line may be masked by outer boundary effects. Analysis of pressure
derivative behavior for several values of M, Fg and r,p / Rp, for closed and
constant-pressure outer boundaries, resulted in the following relation for the dimension-
less time at which the pressure derivative response for a finite, composite reservoir
departs from that of an infinitely large composite reservoir:

(rp | Rp)* M

32
v (6.32)

(tpe )depart =

Equation (6.32) should only be applied to cases where M = 10 and Fg = 10.
Equation (6.32) is best for large values of M and Fg compared to unity. Equation
(6.32) applies to both closed and constant-pressure outer boundaries. For the homo-
geneous reservoir case (M = 1, Fg = 1), Eq. (6.32) yields that the pressure derivative
response departs from infinite-acting behavior at tp, = 0.2/x. Here tp, is the dimen-
sionless time based on area A =m r,2. A comparison of 0.2/n with 0.1 (which is
(tpa)pss for a well producing at a constant rate in a closed homogeneous reservoir)
indicates the results of Eq. (6.32) when M and Fg are close to unity.

Equation (6.32) quantifies the outer boundary effects on transient responses in
composite reservoirs, and is a means to determine whether desired features will be seen
on a pressure transient test. A comparison of Eq. (6.32) with Eq. (6.3) provides a limit
for r.,p / Rp to see at least one-half log cycle of second semilog line on a pressure
transient test as:

;‘—” > (10) 350 (1 + log F5) F5 . (6.33)
D

Similarly, a comparison of Eq. (6.32) with Eq. (6.2) provides a limit for r,;, / Rp to
observe a maximum semilog pressure derivative one-half log cycle before the departure
of slope response from that of an infinitely large composite reservoir as:

L S 104 NOF 2 Tog F5) Fy . (6.34)
D

Equations (6.33) and (6.34) show that the limiting value of r,p / Ry for observ-
ing a second semilog line or maximum semilog derivative is only a function of the
storativity ratio. Equation (6.33) shows that for a large storativity ratio, a second semi-
log line will be masked because of outer boundary effects. The limit on r,, / Rp
posed by Eq. (6. 33) suggests that the intersection time method is not apphcable for
composite reservoir well test analysis.
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Figure 6.23: Effect of r,p/Rp on semi-log slope response for a two-region
composite reservoir with a constant-pressure outer boundary.
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Figure 6.24:  Effect of r,p/Rp on semi-log slope response for a two-region
composite reservoir with a closed outer boundary.
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There may be cases where the limit based on Eq. (6.34) is not satisfied, and
therefore, a type-curve like Fig. 6.4 is not appropriate. In such cases, analysis should
consider the parameter r,, / Rp and the outer boundary condition in addition to M
and F;. One option is to use automated type-curve matching in these cases. How-
ever, if any of the three parameters are known with reasonable accuracy by indepen-
dent means, then a type-curve can be prepared showing the effects of the other two

parameters, and usual type-curve matching can be performed to estimate those parame-
ters.

The limit on r,, / Rp to observe pseudosteady state behavior to a time #py = 0.2
results from comparing tps = 0.2 with Eq. (6.32). This limit is:

r.D V T FS
Ry > v . (6.35)

The limit of Eq. (6.35) is more likely to be satisfied than the limits of Eq. (6.33) or
(6.34), for typical values of M and Fg encountered in most fluid injection projects.
Also, since the pseudosteady state method is independent of the geometry of the swept
region, this method should yield reasonably correct swept volume and "average" front
radius for irregularly swept regions.

6.1.2 Buildup Response

Semi-log analysis method for buildup data uses the slope of either a Miller-
Dyes-Hutchinson (1950) graph or a Horner (1951) graph. A comparison of Eqgs.
(5.20) and (5.25) provides the relationship between the two slopes as:

tpD + AtD
Horner Slope = — B - MDH Slope . (6.36)
pD

Agarwal (1980) developed the concept of equivalent drawdown time (Eq. (5.26))
to consider producing time effects when drawdown type-curves are used to analyze
pressure buildup data. Agarwal (1980) showed that a graph of p,p; (defined by Eq.
(5.19)) vs. At,p (defined by Eq. (5.26)) correlated buildup responses from infinitely
large, homogeneous or fractured reservoirs with the corresponding drawdown

responses. As discussed in Chapter 5, a comparison of Egs. (5.25) and (5.27) shows
that:

Agarwal Slope = — Horner Slope . (6.37)

Thus, producing time effects on buildup responses may be studied by using either the
Agarwal or the Horner slope. In this section, Agarwal slope has been used to illustrate
the producing time effects on buildup responses from composite reservoirs.

Figure 6.25 verifies t,p / R as a correlating parameter for buildup responses for
a well in a composite reservoir. MDH slope, and the negative Horner slope are
graphed in Fig. 6.25 for Cp =0, M = 10, Fg = 1000, and ¢, / RZ = 10. Solid lines
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Figure 6.25: Verification of tPDIR,’, as a correlating parameter for buildup
response for an infinite, two-region composite reservoir.
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in Fig. 6.25 are for t,p = 10° and Rp = 100. Circles in Fig. 6.25 are for ¢, =10’
and Rp = 1000. The MDH and Horner slopes are graphed against a dlmensmnless
shut-in time based on the discontinuity radius as:

0.000264 &k At _ Atp
(dre,); R? R}

Atp, = (6.38)

Figure 6.25 shows that a semilog line corresponding to the inner region mobility
appears in both MDH and Horner graphs. But a semilog line correspondmg to the
outer region mobility develops only on a Horner graph. The derivation in Appendix D

explains this observation. Using Egs. (D.5) and (D.6), MDH and Horner slopes at late
time are:

deDs M tpD
MDH Sl = - = —F———  and 6.39
P Ty 2 Gp+bp) (6.39)
d
Horner Slope = PwDs A =— —Azi (6.40)
t,p + At
dn [_PD____D_]
AtD
if:
Atp, 2100m ,for n=21 ,and
> 100 ,for n<1 . (6.41)

Equation (6.39) shows that for A#p >> t,5, a MDH slope approaches zero at late time.
Equation (6.40) shows that at late time, Horner graph develops a semilog line of slope
— M /2. The late time data for Rp = 1000 are lower than those for R, = 100 because
of possible instability in the Stehfest (1970) algorithm.

Figures 6.26 and 6.27 show the effect of ¢, D/RD on MDH and Agarwal slopes
for Cp =0, M = 10, and Fg = 1000. Thus, for Flgs 6.26 and 6.27, n = 0.01. Fig-
ures 6.26 and 6.27 also show drawdown responses for Cp = 0, M = 10, and Fg =
1000. Figures 6.26 and 6.27 show that the dimensionless deviation time depends on
4D /RD2 For small values of z,p /RD, deviation from the semilog line corresponding to
the inner region mobility occurs earlier than (tp, ).,q = 0.18. Thus, the deviation time
method may produce an inaccurate front radius estimate for small producing times.
Also, for t D/RD < 10, MDH and Agarwal slopes decrease in magnitude on Figs. 6.26
and 6.27 after deviating from the slope value of 1/2. At 1ntermed1ate time, the pressure
derivative goes through a maximum. The value of ¢, /RD affects significantly the
magnitude of maximum pressure derivative. But ¢,p/R5 affects mildly the time to a
maximum pressure derivative. However, for tpD/RD 1000 on Figs. 6.26 and 6.27,
the time and the magnitude of maximum pressure derivative are the same as those for
drawdown responses. Thus, for large ¢ D/RD, design equations such as Egs. (6.1),
(6.2), and (6.14) are applicable. For ¢ D/RD = 1000, Agarwal slope response on Fig.
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Figure 6.26:  Effect of 1,5/Rh on MDH slope for an infinite, two-region com-

posite reservoir.
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6.27 is the same as the drawdown pressure derivative response. Thus, Agarwal slope
does not correlate responses for all #,p /RD2 into a single curve. But a log-log graph of
Agarwal slope vs. At may be analyzed by a type-curve like Fig. 6.4, provided z,p /ng‘
is sufficiently large. For a reliable type-curve matching, Z,p /RD2 should be large
enough for expected values of M and Fg that a maximum slope as forecast from Eq.
(6.2) would appear in well-test data. The value of z,p /le" required to observe a max-
imum slope as forecast from Eq. (6.2) depends on M and Fg as illustrated in Table
6.3. Table 6.3 presents the value of tpD/RD2 for selected values of M and Fg to
observe a maximum Agarwal slope within 5% of maximum drawdown semilog slope.
Based on the data in Table 6.3, the #,p /R required for maximum Agarwal slope to be
within 5% of maximum drawdown semilog slope is:

L
log [7?37] = log (M) +log (Fs) — 1.4 x 107 Fg . 6.42)

D

Figure 6.28 presents a comparison of the results from Eq. (6.42) and the data of
Table 6.3. Equation (6.42) should be helpful in well test design and interpretation to
estimate whether tPD/RD2 is large enough that the well-test data may be type-curve
matched on a drawdown type-curve such as Fig. 6.4. The value of tpD/Rg large
enough for type-curve matching to be applicable implies that well-test data can also be
analyzed by the deviation time method and the pseudosteady state method. For large
values of tpD/RDZ, Fig. 6.29 illustrates the applicability of the pseudosteady state
method. Figure 6.29 presents a log-log graph of Cartesian slope as a function of Atpy
for Cp =0, M =10, and Fg = 1000. A short period of constant slope of 27 develops
only for tI,D/RD2 > 100 on Fig. 6.29. For tpD/RD2 < 100, a flattening of a Cartesian
derivative to a value other than 27 is apparent. Thus, for short producing times or
small values of z,p /RDZ, there may be an appearance of an apparent Cartesian straight
line on a graph of pressure vs. shut-in time. Analysis based on an apparent Cartesian
straight line would result in an overestimated swept volume.

Figures 6.30 through 6.32 present the MDH slope, Agarwal slope, and Cartesian
slope behavior for Cp = 0, M = 100, and Fg = 10. Thus, for Figs. 6.30 through 6.32,
n = 10. Corresponding drawdown responses are also shown on Figs. 6.30 through
6.32. Remarks for Figs. 6.26, 6.27, and 6.29 also apply to Figs. 6.30 through 6.32. A
decrease in MDH or Agarwal slope after the end of infinite-acting radial flow
corresponding to the inner region mobility may indicate a test after short producing
(injection) time. However, a decrease in semilog pressure derivative after a semilog
line corresponding to the inner region mobility may also result due to:

1. A two-region composite reservoir with either M < 1, or Fg < 1, or both
M <1 and Fg < 1 as shown in Fig. 6.5 for selected cases, or

2. A three-region composite reservoir with either intermediate region mobility
more than the inner region mobility, or intermediate region storativity more
than the inner region storativity, or both intermediate region mobility and
storativity more than the corresponding values for the inner regicn. The

responses for a three-region reservoir discussed in Chapter 6.2 illustrate this
observation.

The preceding discussion points out that well tests in composite reservoirs follow-
ing a short producing (injection) time may be difficult to analyze. Also, other reservoir
parameters or configurations may produce well-test data resembling a test after short
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Table 6.3 - tpD/Rﬁ required for Agarwal maximum slope to be within 5% of
drawdown maximum semi-log slope for a two-region composite reservoir

M | Fg t.n/R3
10 108
20 206
50 595
70 761
100 10 1029
200 2030
500 5810
700 7508
1000 1.01 x 104
10 248
20 491
50 1466
70 1900
100 100 2445
200 4851
500 1.47 x 10*
700 1.90 x 10*
1000 2.43 x 10*
10 385
20 766
50 1927
- 70 2541
100 1000 3843
200 7631
500 1.92 x 104
700 2.46 x 10*
1000 3.83 x 10*
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Figure 6.28: 1,p/R} required to observe maximum Agarwal slope within 5%
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Figure 6.31:  Effect of 1,5/R3 on Agarwal slope for M = 100, F = 10, and
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producing time. Therefore, an analyst has to be careful to identify a plausible reason
for a particular behavior in a well test.

6.1.3 Effect of a Thin Skin at the Discontinuity

Figures 6.33 and 6.34 show the effect of a thin skin at the discontinuity for an
infinitely large, homogeneous reservoir (M = 1, Fg = 1) in terms of semilog and Carte-
sian pressure derivatives. Figures 6.33 and 6.34 are for Cp =0. The responses in
solid lines on Fig. 6.33 are for Rp = 100. The circles in Fig. 6.33 show the response
for Rp = 1000 and sy = 20. Thus, a graph of semilog pressure derivative as a func-
tion of #5, correlates the responses for all Ry, even in the presence of a thin skin at the
discontinuity.

Figure 6.33 shows that the dimensionless deviation time from a semilog line
corresponding to the inner region mobility is not affected by the value of sf. But the
value of sy affects the magnitude and the time of maximum semilog slope. The time
to start of the second semilog line is only slightly affected by the value of sy, and Eq.
(6.3) approximately applies even in the presence of a thin skin at the discontinuity.

Depending on the value of s¢, Fig. 6.34 shows the development of a short dura-
tion pseudosteady state period even for homogeneous reservoirs. Thus, a short dura-
tion pseudosteady state period may result because of a positive value of sy even for
small mobility and storativity contrasts. For a homogeneous reservoir, the Stehfest
(1970) algorithm produced meaningless results for negative values of Sf.

The time interval during which the effects of sy is important is illustrated in Fig.
6.35. Figure 6.35 shows a graph of dp,p/d sy as a function of p, for an infinitely
large, homogeneous reservoir with Cp = 0. The derivative dp,p,/d sy for a given s¢
at any tp, is calculated numerically. The dimensionless wellbore pressure drops from
the Stehfest (1970) algorithm for s, + 0.1 and s; — 0.1 at the time #p, are used to
obtain:

dwa _ pWD]sf +01 7 pWD}sf - 0.1
St

= . 4

The curve for sy = 0" on Fig. 6.35 shows the effect of a vanishingly small skin
at the discontinuity on dp,p/d sp. Initially, during the infinite-acting radial flow
period corresponding to the inner region, the dimensionless wellbore pressure drop is
given by Eq. (5.7), and is independent of s¢. Thus, dp,pld s =0 at early time.
However, after the end of infinite-acting radial flow corresponding to the inner region
mobility, there is a short time period during which the inner region is being depleted.
Inner region depletion corresponds to pseudosteady state flow in the inner region, and a
Cartesian slope of 2r develops as in Fig. 6.34. During the pseudosteady state period,
flow does not occur across the discontinuity and dp,,, /d sy remains zero. For a finite
value of s, however, flow across the discontinuity occurs eventually, and dp,p,/d ¢
becomes non-zero. At late time, all the fluid comes from the outer region, and an
infinite-acting radial flow corresponding to the outer region mobility develops. At late
time, the dimensionless wellbore pressure drop for an infinitely large, homogeneous
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Figure 6.33:  Effect of 5y on semi-log slope response for M = 1, Fs = 1, and
Cp=0.
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Figure 6.34:  Effect of sy on Cartesian derivative forM =1, Fg=1, and Cp =
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Figure 6.35:
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Effect of s;on dp,p/d s, forM = 1, Fg= 1, and Cp = 0.
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reservoir with a skin at the discontinuity is:

Pup = —;- [ln (tp) + 0.80907 + 2 5 + 2 sf] . (6.44)

Equation (6.44) shows that at late time, dp,p/d s = 1. The derivative dp,p/d s¢
approaches 1 at late time on Fig. 6.35 also. Similarly, the dimensionless wellbore

pressure drop at late time for an infinitely large, two-region composite reservoir with a
skin at the discontinuity is:

2.2458 ¢,
PwD = -% [M In [___T]__D_e] + In (RDZ)] + 5 + Sf . (645)

Equation (6.45) also shows that at late time, dp,p/d s; = 1.

Figures 6.36 and 6.37 show pressure profiles for tD/RD?‘ = 10 and 1000 respec-
tively. Figures 6.36 and 6.37 are for M = 1, Fg = 1, and Cp = 0. The solid lines in
Figs. 6.36 and 6.37 are for Rp = 100. The profiles for Rp = 1000 and sy = 20 are
shown by circles in Figs. 6.36 and 6.37. Thus, the pressure profile in the reservoir at a
given time for all Rp is correlated to that for an arbitrary Rp = 100, if the dimension-
less pressure drop is graphed as a function of rp X (100/Rp). Figures 6.36 and 6.37

show that the pressure drop is significant at the discontinuity compared to the pressure
drop in the swept inner region.

Figures 6.38 through 6.40 are for M = 10, Fg = 100, and Cp = 0. Figure 6.38
shows semilog pressure derivative behavior for several values of s;. Figure 6.39
shows Cartesian pressure derivative behavior. For M = 10 and Fg = 100, the Stehfest
(1970) algorithm produced meaningful results even for s; =— 5. Figure 6.38 shows
that the dimensionless deviation time from a semilog line corresponding to the inner
region mobility, and the time to start of second semilog line are not affected by the
value of s;. But a thin skin at the discontinuity affects the pressure derivative
response at intermediate time. The value of s, affects the magnitude of maximum
semilog pressure derivative, and the time to maximum semilog slope. Figure 6.39
shows that for a positive s, the pseudosteady state period is longer than that for s; =
0. Also, for a negative s¢, the pseudosteady state penod is shorter than that for s, =
0. Figure 6.40 shows the pressure profile in the reservoir for zp IRZ = 50. As shown
in Figs. 6.36 and 6.37, Fig. 6.40 also illustrates that the pressure drop is significant at
the discontinuity compared to the pressure drop in the swept inner region.

Neglecting a thin skin at the discontinuity in type-curve matching analysis of
well-test data may cause an overestimation of storativity ratio for a positive sy and an
underestimation of storativity ratio for a negative s;. This observation is illustrated in
Fig. 6.41. Figure 6.41 shows semilog pressure derivative behavior for M = 10, Fg =
100, Cp = 0, and s = 20 by a solid line. The circles on Fig. 6.41 represent semilog
pressure derivative behavior for M = 10, Fg = 5152, Cp =0, and s, = 0. The value
of Fg = 5152 is derived using Eq. (6.14), and the maximum semilog slope,
dp,pld In tp, of 19.16 for the response for s; = 20. The diamonds on Fig. 6.41 show
the response for M = 20, Fg = 32, Cp =0, and sf = 0. The value of Fg = 32 for M
= 20 is derived using Eq. (6.14), and the same maximum semilog slope of 19.16. The
responses shown by the solid line and the circles are identical illustrating the
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possibility of obtaining a large Fg from well-test data, if the effects of a positive sp are
not considered. Also, if well-test data is collected up to a time slightly beyond
(*pe Jmax &iven by Eq. (6.2), non-unique answers for the parameters may be obtained by
type-curve matching., Figure 6.41 shows that for s¢ =0, well-test data can be matched
to obtain either M = 10 and Fg = 5152, or M = 20 and Fg = 32. Barua and Horne
(1985) also discussed briefly the non-uniqueness problems in type-curve matching of
well-test data from composite reservoirs. Thus, a knowledge about the expected range

of parameter values may help to obtain reasonable estimates for the parameters by
type-curve matching.

Table 6.4 presents the time at which the Cartesian slope has changed by 5% of
2r for sf =5, 10, and 20, and selected values of M and Fg. Figures 6.42 through
6.44 present graphically the correlation for the time to the end of pseudosteady state
behavior based on the data in Table 6.4. The correlations in Fig. 6.10 for Sp o= 0, and

Figs. 6.42 through 6.44 should help in well-test data analysis using the pseudosteady
state method.

Table 6.4 - Time to the end of pseudosteady state behavior corresponding
to the inner swept volume with a skin at the discontinuity

tpa for Cartesian slope
within 5% of 2x
M FS Sf =5 Sf=10 Sf=20
10 0.152 0.187 0.278
20 0.164 0.204 0.305
50 0.199 0.254 0.369
70 0.226 0.289 0.406
100 10 0.274 0.341 0.457
200 0.437 0.499 0.614
500 0.872 0.930 1.047
700 1.153 1.213 1.331
1000 1.576 1.638 1.759
10 0.193 0.242 0.346
20 0.265 0.324 0.430
50 0.496 0.552 0.655
70 0.638 0.693 0.796
100 100 0.847 0.901 1.006
200 1.538 1.592 1.702
500 3.647 3.703 3.816
700 5.029 5.087 5.200
1000 7.126 7.182 7.292
10 0.292 0.345 0.443
20 0.474 0.525 0.620
50 0.978 1.027 1.123
70 1.311 1.360 1.457
100 1000 1.812 1.861 1.959
200 3.495 3.546 3.648
500 8.518 8.568 8.669
700 11.869 11.919 12.019
1000 16,905 16.955 17.056




-75 -

100 T

10

toa

0.1
10 100 1000

Figure 642: Correlation for the end of pseudosteady state for a two-region compo-
site reservoir with s, = 5.



-76 -

100 T

tDA

0.1
10 100 1000

Figure 6.43: Correlation for the end of pseudosteady state for a two-region compo-
site reservoir with s, = 10. _

100 T

tDA

0.1 .
10 100 1000

Figure 6.44:  Correlation for the end of pseudosteady state for a two-region compo-
site reservoir with s; = 20.



=77 -
6.2 THREE-REGION COMPOSITE RESERVOIR

An analytical solution in Laplace space for the transient pressure behavior of a
well in a three-region composite reservoir has been presented by Onyekonwu (1985),
and Barua and Horne (1985). To study the effects of an intermediate region on the
deviation time method and the pseudosteady state method, an analytical solution for a
three-region reservoir presented by Onyekonwu (1985) is useful. A schematic diagram
of a three-region reservoir is presented in Fig. 6.45. The variables R and R, are the
inner and intermediate region radii, respectively. The parameters of an infinitely large
three-region reservoir are M1y, M3, Fs1a, Fgi3 Rpy, and Rp, in the absence of
wellbore storage and skin.

For a corresponding two-region reservoir,

M= M12 = M13 s (646)
Fg=Fg3=Fg13 , and (6.47)
RD = RDl . (648)

Should Egs. (6.46) through (6.48) be appropriate, region 1 forms the inner region, and
regions 2 and 3 form the outer region of a two-region composite reservoir.

Figure 6.46 presents a graph of semilog pressure derivative as a function of
dimensionless time defined by:

0.000264 kit 1p
(Gnre R2 - R

tpe1 = (649)

Flgure 6.46 assumes FSIZ = FSIS = 1, M13 = 10, CD = O, RDl = 100, and RDZ = 150.
The parameter of interest is M, on Fig. 6.46. A two-region composite reservoir solu-
tion is obtained for M, = 10. For Rp; = 100 and Rp, = 150, the intermediate region
is significant, as the intermediate region volume is 1.25 times the inner region volume.
Figure 6.46 shows that the dimensionless deviation time is not affected significantly,
unless M, is near unity. Thus, the deviation time method would result in a front
radius R .

Figure 6.47 shows that the two parameters Rp, and Rp, can be correlated into
one parameter Rpo/Rp; or Ry/R,. Figure 6.47 applies for My = 10, M3 = 20, Fgqy =
Fgi3 = 10, Ry/R; = 1.25, and Cp = 0. The responses for three different Ry, values of
100, 500, and 1000 are shown on Fig. 6.47. Thus, the pressure transient response for
a well in a three-region composite reservoir can be represented by five parameters,
M 12, M 13, Fg13, Fs13, and Ry/Ry, in the absence of wellbore storage and skin.

Figure 6.48 shows the effect of Fgy, on the semilog pressure derivative response
for M12 = M13 = 1, FSI3 = 100, R2/Rl = 11, and CD = 0. The responses for FSlZ =
1 corresponds to a two-region reservoir with the inner region radius as R,. The
response for Fgiy = 100 corresponds to a two-region reservoir with the inner region
radius as R;. The response for Fgj; = 1 and 100 appear essentially identical because
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Figure 6.45: Three-region, radial composite reservoir.
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Figure 6.48:  Effect of Fs;, on semi-log slope response for an infinitely large,
three-region composite reservoir.
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Figure 6.49: Effect of F5), on Cartesian slope response for an infinitely
large, three-region composite reservoir.
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of a small intermediate region corresponding to Ry/Ry = 1.1. The responses for Fg,, =
0.1 and 0.01 illustrate a decrease in semilog pressure derivative after the end of
infinite-acting radial flow corresponding to the inner region mobility. The dimension-
less deviation time, (fp,),.q, is 0.18. Thus, the deviation time method would result in
a front radius corresponding to R,. Also, for Fg13 <1, Fgq, affects significantly the
time to maximum semilog slope, and the time to start of infinite-acting radial flow
corresponding to the outer region mobility. The parameter Fg;, affects mildly the
magnitude of maximum semilog slope. At late time, semilog slope is M 3/2 on Fig.
6.48, and since in this case, M3 = 1, the late-time slope is the same as the early-time
slope.

Figure 6.49 shows the effect of F s12 on the Cartesian pressure derivative
response for My =M3=1, Fgj3 = 100, Ry/R, = 1.1, and Cp = 0. Figure 6.49
shows that pseudosteady state does not develop for two-region reservoir situations of
Fgi3 = 1 and 100 because mobility and storativity contrasts are not large enough. For
Fg13 = 0.1, the Cartesian pressure derivative starts to flatten at tpay of about 0.3, but
does not develop a constant Cartesian pressure derivative. However, for Fg;, = 0.01,
the Cartesian pressure derivative flattens at a value of approximately 0.264 for a period
of time between tp,; of 0.5 and 1.1. The dimensionless time, #p,y, is given by:

0.000264 kit tp,,
@Gue )y mRE  m

Ipal = (6.50)

The development of a short duration of a constant Cartesian pressure derivative
may be related to the pseudosteady state corresponding to the swept volume of R,.
For Fgq5 = 0.01, and My, = M3 = 1, pseudosteady state corresponding to the volume
of R, does not exist because of pressure-support type behavior after the end of the
semilog line corresponding to the inner region mobility,

To explore the possibility of observing a pseudosteady state period corresponding
to the swept volume of R,, a graph of (dp,,p ldtpa )es as a function of (¢4 Jesf Should
be helpful. The expressions for effective values are:

deD - dwa . (¢ct)eff RZZ
AIpA ) dipar  (9c)y RE

, and (6.51)
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(ot dors = ts 1 - , 6.52
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where:
e R2
(¢c,) ff 22 =1+ 1 [(Rz/R 1)2 — 1] , and (653)
(de,) R - Fgyp ‘
(k/w), In (R
e/W)ers (Rp2) (6.54)

(k/w);  In(Rpy) +Myln RyR)
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if the swept volume extends to R, for a three-region reservoir. Equations (6.53) and
(6.54) are derived in Appendix F.

To compute (#ps ).rr, both Rp and Rp, are needed. Figures 6.48 and 6.49 were
generated for Rp; = 100, and Rp; = 110. Figure 6.50 presents a graph of
(dpwp/dtps )ess as a function of (tps).rr. Figure 6.50 shows that pseudosteady state
behavior is not observed for Fgy, = 0.1, 1, and 100. However, for Fg,, = 0.01, an
effective Cartesian slope with a constant value of approximately 5.81 exists for a
period of time between (fp4 ).sr of 0.023 and 0.05. An analysis using the effective
Cartesian slope of 5.81 would result in a volume equal to 2w / 5.81 = 1.08 times the
volume of R,, provided correct (¢c;) s as glven by Eq. (6.53) is used for analysis.
Thus, the error in estimating the volume at R, is not large. However, since an approx-
imately constant effective Cartesian slope started at (fpy Jesf of 0.023, and not at
(tpa)ers = 0.1, only an apparent pseudosteady flow corresponding to the volume at R,
developed for Fgj5 = 0.01. An effective Cartesian slope of 2m starting at
(tpadess = 0.1 would result in a correct volume at R,. Thus, a calculation of (fp, deff
corresponding to the time of start of approximately constant effective Cartesian slope
may provide an idea of whether a true, or an apparent pseudosteady state has been
reached. A calculation of (fp4 ).ss requires evaluations of Eqs. (6.53) and (6.54). An
analysis of approximately constant Cartesian slope using (¢c;).ss requires an evaluation
of Eq. (6.53) only.

An evaluation of Eq. (6.53) requires estimates for R,/R; and Fg;,, provided
(dc,); is known. Approximations for Ro/R; and Fg,, may be obtained by experimental
or numerical simulation studies for a particular process. From a numerical simulation
study of in-situ combustion falloff tests, Onyekonwu (1985) obtained:

RyR,=V2 , and (6.55)

1
1-S,

Fgia= , (6.56)

where S, is residual oil saturation. Equations (6.55) and (6.56) result from an inspec-
tion of equations presented by Onyekonwu (1985) in Chapter 7.5.2. Similar numerical
simulation studies should be made in the future to develop correlations for Ro/R; and
Fg, for other enhanced oil recovery processes such as steam injection and CO, flood-
ing. To calculate (tp4 ).sr, an estimate for M, is also needed, assuming that the devi-
ation time method has been successfully used to obtain Ry or Rp;. Also, Rp,; =
Rpy X (Ro/R¢). Correlations for M, may be developcd using experimental or numeri-
cal simulation studies.

Figures 6.51 through 6.53 show the effect of R,/R; on semilog slope, Cartesian
slope, and effective Cartesian slope response for M3 = M3 =1, Cp =0, Fgq = 0.01,
and Fg;3 = 100. To calculate the effective Cartesian slope, the value for Rj; = 100
used to generate the responses in Figs. 6.51 and 6.52 was used. Figure 6.51 shows a
dimensionless deviation time of 0.18. After the end of infinite-acting radial flow
corresponding to the inner region mobility, the semilog slope declines as Fgy = 0.01.
However, as the outer region effects are felt, the semilog slope starts to rise. A max-
imum semilog slope develops at intermediate time. At late time, the semilog slope
approaches M 3/2. The parameter R,/R; affects the time to maximum semilog slope
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Figure 6.50:  Effective Cartesian slope as a function of (fp,),y for an
infinitely large, three-region composite reservoir with Cp = 0, M;; = M;; = 1,
F513 = 100. and Rz/Rl = 1.1.
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Figure 6.54:  Effect of Fg,, on semi-log slope response for an infinitely large,
three-region composite reservoir with Cp = 0, M), = 10, M3 = 100, Fg5 -
100, and Ry/R, = 1.2.
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significantly, and the time to start of infinite-acting radial flow corresponding to the
outer region mobility. However, the parameter R,/R, affects the magnitude of max-
imum semilog slope mildly.

The response for Ry/R | = 1.1 on Fig. 6.52 is the same as the response for Fg, =
0.01 on Fig. 6.50, and has been discussed already. The responses for R,/R; = 1.5 and
2 on Figs. 6.52 and 6.53 do not exhibit an unambiguous flattening of the Cartesian
slope. But as observed from Fig. 6.53, well-test data during the time (zp, ).;; between
0.02 and 0.06 may still be analyzed to obtain a slightly overestimated value for the
volume at the radius R,, even though a correct pseudosteady state with an effective
Cartesian slope of 2 does not appear. To analyze the data using the pseudosteady
state method, an estimate for (¢c,),ss is required.

Figure 6.54 shows the effect of Fg;, on the semilog pressure derivative response
for M12 = 10, M13 = 100, F513 = 100, RZ/RI = 12, and CD = 0. For FS]Z =1 and
100, the dimensionless deviation time is .18, and the deviation time method would
result in a front radius R;. However, for Fg;5 = 0.1, the dimensionless deviation time
'is 0.35 to observe a 2% change from a semilog slope value of 1/2, and thus, Eq. (6.7)
would produce an inaccurate, and probably meaningless result for the front radius.
There is a time period after t5,; = 0.18 when the opposing effects of M, > 1, and
Fg13 <1 are balanced in a way to produce an apparently longer semilog line
corresponding to the inner region mobility for Fg;, = 0.1 on Fig. 6.54,

Figure 6.54 also shows that for Fg,y < 1, Fgy, affects the time to maximum semi-
log slope significantly, and the time to the start of infinite-acting radial flow
corresponding to the outer region mobility. The parameter Fg,, affects the magnitude
of maximum semilog slope mildly. At late time, the semilog slope is M 5/2.

Figure 6.55 shows the effect of Fgy, on the Cartesian pressure derivative
response for M5 = 10, M 3 = 100, Fgy3 = 100, Ro/R = 1.2, and Cp = 0. Figure 6.55
uses Rpy = 100. For Fgi, = 100, a Cartesian slope of approximately 2 develops on
Fig. 6.55 for tps, between 0.1 and about 0.6. By #p4; = 0.6, the Cartesian slope has
changed by 5% from 2n. Thus, for Fgi5 = 100, and M, = 10, it appears that the
pseudosteady state method using (¢c,); may be used to obtain the volume of the inner
region. However, based on the data in Table 6.2, the Cartesian slope changes by 5%
from 27 by tp, = 0.155 for M =10, and Fg = 100 in a two-region composite reser-
voir. Thus, it is unlikely that an intermediate region with R,/R, = 1.2, M = 10, and
Fg1, = 100 can produce a pseudosteady state period corresponding to the inner region
volume lasting to tpsy of 0.6. Thus, the existence of a Cartesian slope of approxi-
mately constant value of 2% to tps; = 0.6 probably corresponds to the volume of R,.
Also, approximately constant Cartesian slopes for some duration for Fgy5 = 1 and 0.1
are also expected to correspond to pseudosteady state for the volume of R,.

Figure 6.56 presents a graph of (dp,p/dtps).sr as a function of (#p4).r. Figure
6.56 shows that for Fgy; = 0.1, 1, and 100, an effective Cartesian slope of approxi-
mately 27 develops at (fps).rs = 0.1 representing pseudosteady state depletion of the
volume of R,. For Fg, = 100, and Ro/R{ = 1.2, Eq. (6.53) yields:

(e )esr R

=1.0044 . ‘ - (6.57)
($er)y R%
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Figure 6.55: Effect of Fg; on Cartesian slope response for an infinitely
large, three-region composite reservoir with Cp = 0, M5 = 10, M3 = 100, Fg,4
= 100, and Ry/R; = 1.2.
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Figure 6.56:  Effective Cartesian slope as a function of (tpa)eg for an
infinitely large, three-region composite reservoir with Cp = 0, M, = 10, M,; =
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Using Eq. (6.57) in Eq. (6.51) yields:

d 4
PuD | _ 10044 | 22| (6.58)
dipa | ¢ dipa1

Equation (6.58) explains the development of a Cartesian slope of approximately
27 on Figs. 6.55 and 6.56 for Fg;, = 100.

In summary, for a three-region reservoir, the deviation time method would result
in a front radius R, if the effects of M, and Fg,, are not balanced in a way to pro-
duce an incorrect deviation time. The pseudosteady state method would result in a
front radius R, if (¢c;).sr is used to analyze the pseudosteady data. However, at
times, the development of an apparent pseudosteady state may yield an overestimated
value for the volume of R,. An idea about the development of an apparent pseudos-
teady state may be obtained by calculating (¢p4 ).sr corresponding to the time to start
of an approximately constant Cartesian slope.
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7. ANALYSIS OF WELL TESTS

A number of well tests reported in the literature exhibiting composite reservoir
behavior are analyzed in this chapter to establish the applicability and the limitations of
different methods to estimate a discontinuity (or front) radius, or swept volume. Well
tests considered in this chapter represent field and simulated data from in-situ combus-
tion, steam injection, CO, flood, waterflood and acidization projects. A simulated
example of an ideal composite reservoir by Kazemi et al. (1972) is also considered.
Analysis shows the estimate of front radius to be sensitive to the real deviation time.
The estimated front radius from the deviation time method may represent a lower
bound for front radius, if the swept region is not cylindrical. Also, obtaining an accu-
rate deviation time for small mobility contrasts may be difficult.

All well tests have been analyzed by the deviation time method in addition to
other methods. Except for Ex. 10, deviation time has been obtained from a semilog
graph of pressure vs. time, and therefore, (#p, ).,y = 0.4 (or Eq. (6.8)) is used to calcu-
late an estimated front radius. For Ex. 10, a pressure derivative graph has been used
to obtain a deviation time, and therefore (#p, ),y = 0.18 (or Eq. (6.7)) is used to calcu-
late an estimated front radius. The use of Eq. (6.7) or (6.8), depending on how devia-
tion time is obtained, maintains the consistency between real data and the interpretation
equation derived from the system response in dimensionless terms. Well-test data is

not available in a form suitable to prepare a pressure derivative graph for any example,
except Ex. 10.

71 WELL TEST EXAMPLES

Example 1 concerns a simulated in-situ combustion falloff test reported by
Onyekonwu et al. (1984). The semilog graph of pressure vs. time is shown in Fig. 4
of Onyekonwu et al. They calculated (k/p); of 25,001 md/cp and reported (¢c,); of
3.3915 x 10™ per psi. The burning front in this example was at Block 14. The center
of Block 14 in the simulation model was at 53.3 ft. However, a sharp drop in mobility
occurred between Blocks 18 and 19 (see Table 2 of Onyekonwu et al). The center of
Block 18 in the simulation model was at 84.5 ft. They found that the pseudosteady
state method yielded an estimate of swept volume corresponding to a radius of 84.5 ft.
However, Fig. 4 of Onyekonwu et al. indicates a deviation time of 70 seconds yielding
a front radius of 30.8 ft using Eq. (6.8). The estimated front radius of 30.8 ft does not
correspond to the burning front radius.

As per Onyekonwu et al. (1984), a semilog line corresponding to the inner region
mobility for their example should develop at a time > 18.5 seconds, based on the cri-
terion of #p = 25 for the beginning of a semilog line. Thus, a modified semilog line
starting from 30 seconds as shown in Fig. 7.1 may be a more accurate semilog line for
this example. Figure 7.1 also shows the semilog line originally chosen by Onyekonwu
et al. The modified semilog line has a slope of 0.16 psi/cycle yielding an estimated
(k/W); of 21,251 md/cp. The modified semilog line on Fig. 7.1 ends at about 250
seconds. Using a deviation time of 250 seconds in Eq. (6.8) results in an estimated
front radius of 53.6 ft which is close to the burning front radius of 53.3 ft. This exam-
ple shows the sensitivity of the deviation time method to the estimated real deviation
time. Therefore, the selection of a proper semilog line and an accurate deviation time
are crucial for the success of the deviation time method.
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Example 2 concerns a field in-situ combustion test reported by Onyekonwu et al.
(1986). The semilog graph of pressure vs. time is shown in Fig. 12 of Onyekonwu et
al. They calculated (k/p), of 5,685.5 md/cp and (dc,); of 35.3 x 107 per psi for this
example. Figure 12 of Onyekonwu et al. shows a deviation time of 600 seconds yield-
ing a front radius of 13.3 ft. Onyekonwu et al. calculated a swept pore volume of
10,300 cubic ft or a front radius of 12.8 ft from the pseudosteady state method. The
estimated front radii from the deviation time method and the pseudosteady state method
are quite close for this example.

Example 3 concerns a field in-situ combustion test in well B reported by
Onyekonwu (1985). The semilog graph of pressure vs. time is shown in Fig. 9.6 of
Onyekonwu. He calculated (k/W); of 4,907.45 md/cp and reported (¢c,); of 1.0262
x 107 per psi. Figure 9.6 of Onyekonwu shows a deviation time of 0.5 hour yielding
a front radius of 126 ft. Onyekonwu calculated a swept pore volume of 432,361.6
cubic ft or a front radius of 166 ft from the pseudosteady state method. A significant
difference between the estimated front radii from the deviation time method and the
pseudosteady state method indicates significant gravity override effects. If the swept
region is not cylindrical, a deviation time could correspond to a "minimum" front
radius (Satman and Oskay, 1985). However, the pseudosteady state method is
independent of the geometry of the swept region, and the pseudosteady state method
should yield an "average" front radius for any swept region shape. For this example,
126 ft appears to be an estimate of the "minimum" front radius, whereas 166 ft appears
to be an estimate of the "average" front radius corresponding to the swept volume.

Example 4 concerns a field in-situ combustion test reported as Case A by Walsh
et al. (1981). The semilog graph of pressure vs. time is shown in Fig. 5 of Walsh et
al. They calculated (k/it); of 12,647 md/cp and reported (¢c,); of 119 x 1076 per psi.
They reported the semilog line shown on Fig. 5 of their paper to last until 0.5 hour. A
deviation time of 0.5 hour yields a front radius of 187 ft. Walsh et al. calculated a
swept pore volume of 878,000 cubic ft or a front radius of 236 ft from the pseudos-
teady state method. A comparison of 187 ft with 236 ft suggests significant gravity
override effects. But Barua and Horne (1987) obtained a front radius of 144 ft for this
example, using an automated type-curve matching method. Barua and Horne state that
the automated type-curve matching method results in a volumetric "average" front
radius. Barua and Horne also state that Walsh et al. were not able to locate the correct
Cartesian straight line for this example and therefore, the estimate of 236 ft is not
correct. But since the estimate from the deviation time method represents the radius to
the closest discontinuity affecting the pressure transient behavior, and hence a
"minimum" front radius, the difference between 187 ft from the deviation time method
and 144 ft from the automated type-curve matching method requires explanation. One
possible explanation may lie in the sensitivity of the deviation time method to real
deviation time. An examination of Fig. 5 of Walsh et al. suggests that a deviation time
of 0.3 hours is also reasonable, which yields a front radius estimate of 144.8 ft. This
estimate of 144.8 ft is in excellent agreement with the estimate of 144 ft by Barua and
Horne. Thus, this example also shows the sensitivity of the deviation time method to
real deviation time and therefore, the deviation time method should be used with cau-
tion. A pressure derivative graph may be useful in obtaining deviation time accurately,
provided enough pressure data are recorded to prepare a smooth pressure derivative
graph. Also, any error in estimating front radius results in a magnified error for the
swept volume, because the swept volume is proportional to the square of the front
radius.
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Example 5 concerns a field in-sita combustion falloff test reported as Case B by
Walsh et al. (1981). The semilog graph of pressure vs. time is shown in Fig. 7 of
Walsh et al. Their Fig. 7 indicates a deviation time of 1 hour. Using (k/w), of 28,839
md/cp and (¢c,); of 6.258 X 10™* per psi reported by Walsh et al., Eq. (6.8) yields an
estimated front radius of 174.4 ft. Using the pseudosteady state method, Walsh et al.
(1981) computed a swept pore volume of 2,015 ,000 cubic ft or a front radius of 193 ft.
Using an automated type-curve matching method, Barua and Horne (1987) obtained a
front radius of 173.7 ft for this example. Thus, the difference between 173.7 ft from
the automated type-curve matching method and 193 ft from the pseudosteady state
method may be due to the difficulty of choosing a proper Cartesian straight line for the
pseudosteady state method, as both estimates should represent "average” front radius.
Since a front radius of 174.4 ft from the deviation time method is close to the estimate
of 173.7 ft, this example indicates minimal gravity effects.

Example 6 concerns a steam injection falloff test in Well 502 of Project A
reported by Messner and Williams (1982). An analysis of the falloff test in Well 502
is presented in the Appendix of Messner and Williams. They reported (k/\); of 11,200
md/cp and (¢c,); of 9.408 X 1072 per psi. The semilog graph of pressure vs. time is
shown in Fig. 5 of Messner and Williams. Their Fig. 5 indicates a deviation time of
10 hours, yielding a front radius of 28 ft from Eq. (6.8). Messner and Williams
obtained a swept pore volume of 101,700 cubic ft or a front radius of 31.8 ft using the
pseudosteady state method. The front radius estimate from the deviation time method

compares well with the front radius estimate from the pseudosteady state method for
this example.

Sosa et al. (1981) studied the influence of saturation gradients on pressure falloff
data by considering the relative permeability characteristics of the porous medium.
Simulated waterflood cases cover a range of mobility ratios from 0.5 to 2. Table 3 of
Sosa et al. provides estimates of front radii from the deviation time method using
(tpe)ena = 0.389. The deviation time method is referred to as the "breakpoint’ time
method by Sosa et al. The estimated front radii using (¢pe )ena = 0.4 will be ¥0.389/0.4
= 0.99 times the front radii reported in column 5 of Table 3 in Sosa et al. The front
radii using (tpe)ena = 0.4 also do not estimate the radius of the swept region accu-
rately. The main reason for this is probably the difficulty of obtaining an accurate
deviation time for small mobility contrasts.

Example 7 concerns a pressure transient test in a Devonian Shale well after acidi-
zation reported by Olarewaju and Lee (1987) as Ex. 2 in their paper. The well and the
buildup data are provided in Table 2 of their paper. They reported (k/u); of 64.53
md/cp and (¢c,); of 3.6512 X 10~ per psi. From type-curve matching, they obtained a
front radius of 3.9 ft. A semilog graph of pressure vs. time is shown in Fig. 7.2, indi-
cating a deviation time of 0.5 hour. A semilog line on Fig. 7.2 was chosen with a
slope of 9.2 psi/cycle to obtain (k/W); of 64.53 md/cp. Equation (6.8) yields a front
radius of 7.6 ft. Thus, the two front radii estimates are quite different. However, since
the inner region mobility is 10 times larger than the outer region mobility (Olarewaju
and Lee, 1987), the inner region may behave as a closed system for some time after
the end of the semilog line corresponding to the inner region mobility. Figure 7.3
shows a Cartesian graph of pressure as a function of time for Ex. 7. The pseudosteady
state behavior of the inner region is apparent as a Cartesian line of slope 11 psi/hour
on Fig. 7.3. A Cartesian slope of 11 psi/hour results in a swept pore volume of
1,552.5 cubic ft or a front radius of 8.3 ft. The front radius estimate of 8.3 ft agrees
closely with the estimated front radius of 7.6 ft using the deviation time method.
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Example 8 concerns simulated falloff tests without wellbore storage for a liquid-
filled two-region reservoir with a moving front reported by Kazemi et al. (1972). They
reported (k/p); of 100 md/cp and (¢c,); of 0.895 X 1076 per psi. A semilog graph of
pressure vs. time is shown in Fig. 2 of Kazemi et al. (1972), indicating a deviation
time of 0.1 hour. Equation (6.8) yields a front radius of 86 ft. Kazemi et al. simulated
a front radius of 80 ft. Thus, the front radius estimate from the deviation time method
compares well with the input value of 80 ft.

Example 9 concerns a field CO, injection well test in Reservoir 1 well No. 29
reported by MacAllister (1987). Pressure falloff data is provided in Table 6 of his
paper. He reported (k/1); of 102.6 md/cp and (¢c,); of 6.84 X 1078 per psi. Using
the pseudosteady state method, he obtained a swept pore volume of 1,820,000 reservoir
bbls, or a front radius of 386 ft. A deviation time of 1.5 hours (equivalent to the sum-
mation function, defined by Eq. (35) of MacAllister (1987), of 2.3) is obtained from
Fig. 5 of MacAllister’s paper. Equation (6.8) yields a front radius of 122 ft. Thus, the
front radii estimates are quite different from the pseudosteady state method, and the
deviation time method, suggesting gravity override, channeling, and/or viscous finger-

ing effects, assuming that the pseudosteady state method was applied correctly by
MacAllister. e

Example 10 concerns a field CO, injection well test at a well in West Texas
(Tang and Ambastha, 1988). This well was a water injector for a long time. After
having converted the well into a CO, injector, 31.4 MMSCF CO, was injected, and the
last CO, injection rate was 1.576 MMSCF/Day. Additional well and reservoir data
used in analysis are provided in Table 7.1.

Table 7.1 - Reservoir and well data for Example 10

Porosity 0.185
Thickness 30 ft
Oil compressibility 7 x 1076 psi”’
Water compressibility 3 x 1076 psi!
Formation compressibility 13x 10 psi'1
Average CO, compressibility at
80°F, 1400-1800 psi 128 x 1075 psi™’
CO, formation volume factor 0.438 RB/MSCF
CO , viscosity at bottomhole conditions 0.067 cp
Wellbore radius 0.33 ft
Total CO, injected 31.4 MMSCF
Last CO, injection rate 1.576 MMSCF/Day

After water injection and
before CO, injection:

Estimated water saturation 0.75
Estimated oil saturation 0.25

Table 7.2 presents pressure falloff data for this example. Pressure data were recorded
using a Hewlett-Packard quartz crystal gauge and thus, pressure data should be accu-
rate. Figure 7.4 presents a log-log graph of pressure drop as a function of shut-in time
for the test. Figure 7.4 shows minimal wellbore storage effects because of a lack of a
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Time, Pressure, Time, Pressure, Time, Pressure,
minutes psi minutes psi minutes psi
0. 1770.46 9.80 1610.40 109.22 1509.18
0.10 1751.37 10.74 1606.25 114,22 1507.06
0.20 1739.84 11.64 1602.31 119.22 1504.64
0.30 1731.12 12.69 1598.07 124.22 1502.52
0.40 1724.41 13.74 1594.11 129.22 1500.81
0.50 1718.77 14.79 1590.47 134,22 1498.99
0.60 1713.91 15.84 1587.53 139.22 1496.61
0.70 1709.61 16.74 1587.52 144.22 1494.50
0.80 1705.75 17.79 1586.75 154.22 1490.62
0.90 1702.21 18.84 1585.74 164.22 1488.03
1.00 1699.96 19.89 1584.37 174.22 1485.56
1.10 1695.93 21.84 1581.57 184,22 1484.06
1.20 1693.12 23.79 1578.86 194.22 1482.75
1.40 1687.83 25.89 1575.93 204.22 1480.84
1.50 1685.70 27.84 1573.21 214,22 1478.91
1.60 1683.49 29.94 1570.45 224,22 1476.38
1.70 1681.40 31.89 1568.10 234.22 1474.46
1.80 1679.40 33.84 1565.84 24422 1472.03
1.90 1677.51 35.84 1563.53 264.22 1468.06
2.00 1675.70 37.84 1561.24 284.22 1464.29
2.10 1673.96 39.84 1559.23 304.22 1460.57
2.20 1672.28 41.84 1557.09 324,22 1456.56
2.40 1669.15 43.84 1554.83 344.22 1452.62
2.60 1666.22 45.84 1552.73 364.22 1449.28
2.80 1663.47 48.14 1550.46 384.22 1445.61
3.33 1657.27 49,91 1548.72 404.22 1442.09
3.80 1651.82 52.01 1546.72 42422 1439.01
4.30 1646.03 54.11 1544.69 44422 1436.14
4.80 1642.46 58.91 1540.28 464.22 1432.74
5.30 1638.29 64.22 1535.76 484,22 1430.03
5.80 1634.38 69.22 1532.60 534.22 1424.39
6.30 1630.73 74,22 1528.82 584.22 1418.46
6.80 1627.32 79.22 1525.32 634.22 1413.32
7.30 1624.11 84.22 1522.68 684.22 1411.03
7.80 1621.08 89.22 1519.74 709.22 1408.89
8.30 1618.23 94.22 1516.95 734.22 1406.94
8.80 1615.50 99.22 1514.13 784.22 1402.71
9.30 1612.91 105.22 1511.24 792.22 1402.03
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unit slope line through the initial data points. Figure 7.5 presents a semilog graph of
pressure as a function of shut-in time for the test. Figure 7.5 does not exhibit an
unambiguous semilog line. Figure 7.6 shows a Cartesian graph of pressure s a func-
tion of shut-in time for the test. Figure 7.6 shows a Cartesian line of slope 0.2 psi/min
from 200 minutes to about 400 minutes. However, as Barua and Horne (1987) show
for an in-situ combustion falloff test, selecting a correct Cartesian pseudosteady line
can be difficult. They used an automated type-curve matching method to locate the
correct Cartesian pseudosteady line for their example. For Example 10, semilog slope
graphs were used to verify the existence of a correct Cartesian pseudosteady line. The
pressure transient data was differentiated using the algorithm described in App. E. Fig-
ure 7.7 shows the Agarwal slope as a function of shut-in time for L = 0.1, 0.2, and
0.5. To compute the Agarwal slope, an injection time, t,, of 31.4/1.576 = 19.9 days
was used. Figure 7.8 shows the Cartesian slope, dp,,;/d At, as a function of shut-in
time for L = 0.1, 0.2, and 0.5. The parameter L was used to reduce the effect of noise
on calculated pressure derivatives. However, for a large value of L, oversmoothing
may result (Bourdet et al., 1984), as appears to be the case in Figs. 7.7c and 7.8c.
Figure 7.7a indicates the existence of a semilog line corresponding to the inner region
mobility from 50 minutes to 150 minutes. The semilog slope decreases after 150
minutes, and then follows a unit slope line from approximately 200 minutes to 360
minutes. Thus, a pseudosteady Cartesian line should exist from 200 minutes to 360
minutes. During the time between 200 and 360 minutes, the existence of pseudosteady
state is observed on Fig. 7.8a as a flat Cartesian slope of 0.2 psi/min.

Using a semilog slope of 50 psi/ natural log cycle from Fig. 7.7a, (ki) is
estimated to be 32.5 md/cp. Assuming a zero residual oil saturation after CO, injec-
tion and a CO, saturation, Sg , of 0.35 in the swept inner region, the total compressibil-
ity in the swept inner region is:

e =cp+8,0c, +S5c, =(13+0.65x 3 +0.35 % 128) x 10°=59.75 x 106 psi”?  (7.1)

Using a Cartesian slope of 0.2 psi/min, the swept pore volume is 40,114 reservoir bbls
or a front radius of 114 ft. Based on cumulative volume of CO, injected and a CO,
saturation of 0.35 in the swept region, the front radius is estimated to be 112.5 ft.
Thus, front radii estimates from the material balance, and the pseudosteady state
method compare well. If CO, saturation in the swept inner region is different from
0.35, there will be a discrepancy in front radii estimates from the material balance, and
the pseudosteady state method. Using a deviation time of 150 minutes in Eq. (6.7)
yields a front radius of 104 ft.

A decrease in semilog slope on Fig. 7.7a after 150 minutes may be explained as
either a short injection time effect for a falloff test in a two-region reservoir, or the
effect of an intermediate region with a larger storativity than the inner region storativity
for a three-region reservoir. For an injection time, ts of 31.4/1.576 = 19.9 days, and a
front radius, R, of 114 ft, the parameter, LD /RDZ, is:

tp _ 0.0002637 k1 ¢ 0,0002637 x 32.5 X (19.9 x 24) _

RZ  (duc,) R? (0.185) (59.75 x 1075) (114)

(7.2)

From a water injection falloff test prior to CO, injection, /i of 15.2 md/cp was
calculated (Tang and Ambastha, 1988). This k/| of 15.2 md/cp was assumed to be
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(k/u), for a two-region, composite reservoir configuration resulting after CO, injection.
Thus, M = 32.5/15.2 = 2.14. Since water injection continued for a long time before
CO, injection in this well, an approximation for the total compressibility in the
unswept region after CO, injection is:

¢ =cf + 8,6, +S,6,=(13+0.65x3+035x7) x10°¢=174 x 108 psi™* . (7.3)

Thus, for a two-region composite reservoir configuration resulting after CO, injection,
Fg = 59.75/174 = 34. For M = 2.14, and Fg = 3.4, the Agarwal falloff pressure
derivative is within 4% of a drawdown pressure derivative, if #,p /RZ = 10, and does
not exhibit a decrease in semilog slope after the end of infinite-acting radial flow
corresponding to the inner region mobility. - Thus, ‘a decrease in semilog slope on Fig.
7.7a may be due to the effect of an intermediate region with a larger storativity than
the inner region storativity for a three-region reservoir. However, if a three-region
reservoir model is appropriate, then M |3 = 2.14, Fg3 = 3.4, and Fg, < 1 probably can
not explain the development of a pseudosteady state Cartesian line corresponding to the
volume of R, unless Fgq, is quite small. Figures 7.9 through 7.11 show the effect of
Fg1, on semilog slope, Cartesian slope, and effective Cartesian slope. Figures 7.9
through 7.11 are for Rp, = 114/0.33 = 345.5, assuming that pseudosteady state
develops corresponding to a swept volume of R,. Assuming a 10 ft radial extent of
the intermediate region, Rp; = 104/0.33 = 315.15 was used to generate the responses.
Also, the deviation time method yields a front radius of 104 ft corresponding to R;.
Figures 7.9 through 7.11 use M, = 1. Figure 7.9 shows that the deviation time
method should yield a front radius corresponding to Ry as the dimensionless deviation
time is 0.18 for all values of Fgy,. The semilog slope decreases after the end of
infinite-acting radial flow corresponding to the inner region mobility for Fg5 = 0.1 and
0.01. As the outer region effects are felt, the semilog slope starts to increase, and at
late time, the semilog slope becomes M ;4/2 after exhibiting a maximum semilog slope.
The transition time between the minimum and the maximum semilog slopes is about 1
log cycle for Fgi5 = 0.1, and about 2 log cycles for Fgy, = 0.01.

Figure 7.10 shows that the Cartesian slope shows an approximately constant
value for a short time for Fg;5 = 0.01 only. The effective Cartesian slope graph of
Fig. 7.11 shows that for Fgi, = 0.01, an effective Cartesian slope of approximately
constant value slightly less than 27t develops for a short time. Thus, using an effective
total compressibility, a slightly overestimated value for the swept volume of R, may be
obtained, if Fg,, is of the order of 0.01. If Fg, is of the order of 0.01, then a much
larger effective compressibility than ¢, given by Eq. (7.1) should be used for the pseu-
dosteady state method, resulting in a smaller swept pore volume, and a smaller front
radius than 114 ft obtained using c, given by Eq. (7.1). A smaller front radius than
114 ft would not be compatible with the material balance estimate for front radius.
Also, Fig. 7.7a shows a much smaller transition time between the minimum and the
maximum semilog slopes than the transition time on Fig. 7.9 for Fg;, = 0.01. There-
fore, it appears that for this example, a decrease in semilog slope after the end of
infinite-acting radial flow corresponding to the inner region mobility may be due to L
= 0.1 used in the differentiation algorithm, and is not due to three-region reservoir
behavior. However, the applicability of a three-region reservoir model for CO, injec-
tion well tests should be addressed in future research projects through an analysis of
simulated CO, falloff tests.
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Figure 7.7b indicates the existence of a semilog line corresponding to the inner
region mobility from 50 minutes to 230 minutes, with a slope of 52 psi/ natural log
cycle resulting in a (k/p), of 31.24 md/cp. The semilog slope on Fig. 7.7b follows a
unit slope line after 230 minutes to about 360 minutes. Figure 7.8b shows a Cartesian
slope of 0.2 psi/min from 230 minutes to 360 minutes, yielding a swept pore volume
of 40,114 reservoir bbls, or a front radius of 114 ft. Using a deviation time of 230
minutes in Eq. (6.7) yields a front radius of 126 ft. Thus, the results for (k/u); and
swept pore volume from slope graphs of Fig. 7.7a and 7.7b are comparable. How-
ever, Fig. 7.7b suggests a two-region reservoir model with a skin at the discontinuity
for this well test, as M = 2.14 and Fg = 3.4 are too small to produce a pseudosteady
state Cartesian line if sy =0 (see Fig. 6.10). The difference in conceptual models for
this well test resulted because of the values of L used in the differentiation algorithm,
The parameter L in differentiation algorithm may also cause confusion in the
identification of a proper reservoir model in other well-test scenarios.

Selecting a correct pseudosteady Cartesian line is facilitated by a unit slope line
on semilog slope graphs of Figs. 7.7a and b for Ex. 10. If only Cartesian slope graphs
of Figs. 7.8a and b were available, selecting a correct pseudosteady line corresponding
to the swept volume would have been difficult.

7.2 SUMMARY

To summarize, Table 7.3 presents the input data for the deviation time method
for all examples. Examples 10a and 10b refer to the results for Example 10 with L =
0.1 and 0.2, respectively, in the differentiation algorithm. Table 7.4 presents analysis
results from the deviation time method in the column labelled "estimated R". Percent
difference in Table 7.4 is given by:

(Estimated R — Reported R)
Reported R

% difference =

x 100 (7.4)

"Reported R" for Exs. 1 and 8 are the input values in simulated tests. "Reported
R" for Exs. 4 and 5 have been obtained by Barua and Horne (1987) using an
automated type-curve matching method. "Reported R" for all other examples were
obtained using the pseudosteady state method. A significantly smaller front radius esti-
mate from the deviation time method than the front radius estimate from an automated
type-curve matching method or the pseudosteady state method suggests gravity over-
ride, channeling, and/or viscous fingering effects. A large positive percent difference
for Exs. 3 and 9 in Table 7.4 suggests gravity, channeling, and/or viscous fingering
effects. A large positive percent difference for Ex. 1 may be explained by the
difference between the burning front radius and the front radius corresponding to a
sharp mobility change.

An alternative indicator for recognizing gravity override, channeling, and/or
viscous fingering effects from the pressure transient data is:

2
R
G = ﬂ] : (7.5)

Rdev
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Table 7.3 - Input data for the deviation time method

Example (k1)1 (9c s tend
Number md/cp 10* psi! hours
1 21251 3.3915 0.0694
2 5685.5 35.343 0.1667
3 4907.5 1.0262 0.5
4 12647 1.19 0.3
5 28839 6.258 1
6 11200 940.8 10
7 64.5 3.651 0.5
8 100 0.895 0.1
9 102.6 0.0684 1.5
10a 32.5 0.5975 2.5
10b 31.24 0.5975 3.83

Table 7.4 - Analysis results from the deviation time method

Example | Reported R, | Estimated R, % difference
Number ft ft
1 84.5 53.6 -36.6
2 12.8 133 3.9
3 166 126 -24.1
4 144 144.8 0.55
5 173.7 174.4 0.004
6 31.8 28 -11.9
7 8.3 7.6 -8.4
8 80 86 7.5
9 386 122 -68.4
10a 114 104 -8.8
10b 114 126 10.5
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if the pressure transient data is analyzed using the pseudosteady state and the deviation
time methods. The pseudosteady state method yields a front radius estimate, Ry -
The deviation time method yields a front radius estimate, Rgey. Thus, G is a geometric
factor proportional to the ratio of the swept volume estimates from the pseudosteady
state and the deviation time methods. An expression for G in terms of the parameters

obtained from semilog and Cartesian graphs of the pressure transient data is:

g (tDe )end

= 5 \Delend 7.6
0.024 m, ¢, (7.6)

where m; is the slope of the semilog graph of pressure vs. time in psi/cycle, m, is the
slope of a Cartesian graph of pressure vs. time in psi/day, and ¢,,, is the real deviation
time in hours. If a pressure derivative graph is used to obtain the real deviation time,
(tpe )ena = 0.18 should be used in Eq. (7.6). If a semilog graph of pressure vs. time is
used to obtain the real deviation time, (#p, ),y = 0.4 should be used in Eq. (7.6).

A value of G larger than unity suggests gravity override, channeling, and/or
viscous fingering effects. Table 7.5 presents the calculated G values for all examples,
except Ex. 8, because Ex. 8 was not analyzed using the pseudosteady state method.
The Cartesian line slope for Ex. 4 is the slope obtained by Barua and Horne (1987)
using an automated type-curve matching method. For Ex. 9, slopes m and m, are in
psiz-cp/cycle and psi“-cp/day, respectively. Examples 3 and 9 suggest significant grav-
ity override, channeling, and/or viscous fingering effects. A large value of G for Ex. 1
may be explained by the difference between the burning front radius and the front
radius corresponding to a sharp mobility change.

Table 7.5 - Calculation of G Values

Example my, mg, lend (*De Jena » G,
Number psi/cycle psi/day hours Dimensionless Dimensionless
1 0.16 15.05 0.0694 0.4 2.553
2 4.65 504 0.1667 04 0.922
3 6 114.8 0.5 0.4 1.742
4 55 309.6 0.3 0.4 0.99
5 0.8 13.75 1 04 0.97
6 7.05 9.12 10 0.4 1.29
7 9.2 264 0.5 0.4 1.16
9 3.83 x 10° 41.28 x 10° 1.5 0.4 10.3
10a 115.15 288 2.5 0.18 1.2
10b 119.8 288 3.83 0.18 0.81
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8. SUMMARY OF RESULTS

Radial composite reservoir models have been used to analyze well-tests from a
variety of enhanced oil recovery projects, geothermal reservoirs, and acidization pro-
jects for a number of years. However, transient pressure responses for a well in a
composite reservoir have not been well understood. This study presents transient pres-
sure derivative responses for a well in a variety of two- and three- region composite
reservoir situations. Both drawdown and buildup responses have been considered.
This study presents new correlating parameters, and design equations for composite
reservoirs. The applicability and the limitations of different methods proposed in the
literature to estimate a front radius, or swept volume have been discussed. Guidelines
are provided for sufficient test data collection to ensure reliable type-curve matching.
Non-uniqueness problems in type-curve matching well-test data from composite reser-
voirs have been studied. ;

An analytical solution for the pressure transient response for a well in a two-
region composite reservoir with a thin skin at the discontinuity was developed. Such a
model may be a practical approach to model well-tests from enhanced oil recovery pro-
jects such as steam injection, in-situ combustion, and CO, flooding, and possibly
geothermal reservoirs. This study shows that neglecting a thin skin at the discontinuity
may cause significant errors in parameter estimation. Also, a thin skin at the discon-
tinuity increases the likelihood of observing a short duration pseudosteady state
behavior corresponding to the swept volume.

New drawdown and buildup derivative type-curves for a well with storage and
skin, and located in the center of a finite, homogeneous reservoir have been presented.
Design equations for the time to the beginning and the end of the semi-log straight line
have been developed. The drawdown and the buildup responses for a well in a closed
reservoir were compared with the responses for a well in a reservoir with a constant-
pressure outer boundary. Producing time effects and outer boundary condition should
be considered for a proper type-curve matching analysis of buildup derivative data
obtained from a well in a finite, homogeneous reservoir.



- 110 -

9. CONCLUSIONS AND RECOMMENDATIONS

This study considers transient pressure derivative responses for a well in either a
homogeneous, a two-region, or a three-region reservoir. Correlating parameters
identified for transient pressure derivative responses in several situations are summar-
ized in the following:

1.

The correlating parameters for drawdown response for a well in a finite,

homogeneous reservoir are Cpe? and re%)/CD. A drawdown type-curve is
presented in Fig. 5.2.

The parameters, Cpe” and rEZD/CD, describe buildup response after long
producing times for a well in a finite, homogeneous reservoir with a
constant-pressure or a closed outer boundary. A buildup pressure derivative
type-curve for a well in the center of a circular, homogeneous reservoir with
a constant-pressure outer boundary is presented in Fig. 5.4. A buildup pres-
sure derivative type-curve for a closed outer boundary has been presented
previously by Mishra and Ramey (1987). For buildup response after short
producing time, the parameter L,pa 18 the third parameter. The Agarwal
slope does not correlate buildup responses for a well in a finite, homogene-
ous reservoir for all producing times.

The parameters, mobility ratio (M) and storativity ratio (Fy), describe draw-
down response for a well in an infinitely large, two-region composite reser-
voir in the absence of wellbore storage, and with no skin at the discon-
tinuity. A drawdown type-curve is presented in Fig. 6.4.

The correlating parameters for drawdown response for a well in a finite,
two-region composite reservoir in the absence of wellbore storage and with
no skin at the discontinuity are M, Fy, and 7, /Rp. The parameter r,p/R),
is applicable for both a closed, or a constant-pressure outer boundary.

The drawdown pressure derivative response or buildup response after long
producing time for a well in an infinitely large, two-region composite reser-
voir with a skin at the discontinuity is described by the parameters - Cpe?,
RZICp, M, Fg, and s¢. For a finite outer boundary, r.p/Rp is an addi-
tional parameter. For buildup after short producing time, toD /RD2 is an addi-
tional parameter.

The drawdown pressure derivative response for a well in an infinitely large,
three-region composite reservoir is described by the parameters, M 5, M3,
Fg12, Fg13, and Ro/R |, in the absence of wellbore storage and skin.

9.1 CONCLUSIONS

Based on this work and the publications resulting from this study (Ambastha and

Ramey,

1987, 1988 a and b; Tang and Ambastha, 1988), the following is concluded

regarding different methods proposed in the literature to estimate swept volume, or a
front radius:

Deviation Time Method

1.

Ten well tests reported in the literature exhibiting composite reservoir
behavior have been analyzed using the deviation time method. These well
tests cover simulated and field test data from in-situ combustion, steam
injection, CO, flooding, water flooding, and acidizing projects.
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2. The limitations on the deviation time method due to wellbore storage effects
have been quantified. Wellbore storage effects should be minimized in a
composite reservoir well test to observe a semi-log line corresponding to the
inner region mobility.

3.  The estimate of discontinuity radius from the deviation time method is sen-
sitive to the real and the dimensionless deviation times used. Thus, the
identification of a proper semi-log line, and an accurate deviation time that
corresponds to the accur-
acy for (tp, )enq @re important considerations in the application of the devia-
tion time method. A pressure derivative graph may be useful in identifying
a proper semi-log line, and in obtaining an accurate deviation time.

4, If a semi-log graph of pressure as a function of time is being analyzed,
(tpe Jena = 0.4 is appropriate. If a graph of semi-log pressure derivative as a
function of time is being analyzed, (#p.)ea = 0.18 is appropriate. The use
of (tpe)ena = 0.18 or 0.4, depending on how deviation time is obtained,
maintains the consistency between real data and the system response in
dimensionless terms. '

5. The estimated discontinuity radius from the deviation time method may
represent a lower bound for discontinuity radius, if the swept inner region is
not cylindrical. A comparison of the estimates of discontinuity radii from
the deviation time and other methods may provide information about gravity
override and viscous fingering effects.

6. The deviation time method results in an estimate for inner region radius for
a three-region composite reservoir. But the deviation time method may
yield a meaningless front radius if the effects of mobility and storativity
contrasts between the inner and the intermediate region produce an
apparently longer semi-log line corresponding to the inner region mobility.

7. Obtaining an accurate deviation time for small mobility contrasts may be
difficult. :

Intersection Time Method

1. The intersection time method is not suitable for composite reservoir well
test analysis for three reasoms. Either, a well test will not be run long
enough in most cases to see a second semi-log line, or outer boundary
effects will mask the second semi-log line. This conclusion is in agreement
with qualitative observations of previous investigators. Also, wellbore
storage may mask the first semi-log line rendering the intersection time
method inapplicable. :

Pseudosteady State Method

1. Correlations have been developed for the time to the end of pseudosteady
state behavior corresponding to the swept inner region for large mobility
and storativity ratio cases, and with or without a thin skin at the discon-
tinuity. These correlations should be of help in choosing a correct pseudos-
teady Cartesian line. If a pseudosteady Cartesian line develops, the pseu-
dosteady state method should yield a correct swept volume and "average"
front radius for irregular swept region shapes. ‘

2. The effect of a thin skin at the discontinuity is similar to the effect of stora-
tivity ratio on the pressure transient response. The pseudosteady state
behavior corresponding to the volume of the inner region may be observed
even for moderate values of skin at the discontinuity.
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3. The presence of a thin skin at the discontinuity can explain the development
of pseudosteady state corresponding to the swept volume for small mobility
and storativity contrasts.

4. A falloff test after short injection time may produce an apparent Cartesian
slope which remains approximately constant for a short duration. Such a

Cartesian slope may not be related to pseudosteady state corresponding to
the swept volume.

5. For a three-region composite reservoir, the pseudosteady state method
results in a swept volume for the intermediate region radius, R,, if an
effective total compressibility corresponding to the inner and the intermedi-
ate regions is used to analyze the pseudosteady state data. However, at
times, the development of an apparent pseudosteady state may yield an
overestimated value for the volume corresponding to R,. The development
of an apparent pseudosteady state may be ascertained by computing (¢4 deff

corresponding to the time to start of an approximately constant Cartesian
slope.

Type-Curve Matching

1. Conditions have been established for the applicability of a derivative type-
curve matching method. Guidelines have been provided for sufficient test
data collection to ensure reliable type-curve matching,

2. A relation for D /RD2 required for a maximum Agarwal slope to be within
5% of the maximum drawdown semi-log pressure derivative has been
developed. This relation should be helpful in well-test design and interpre-
tation to estimate whether :,,D/Rg is large enough for well-test data to be
type-curve matched on a drawdown type-curve such as Fig. 6.4.

3. Non-uniqueness problems in type-curve matching well-test data from a com-
posite reservoir have been studied. Knowledge of the expected range of
parameter values may assist in making reasonable estimates of the parame-
ters by type-curve matching,

9.2 RECOMMENDATIONS

Future studies in composite reservoir well testing should address:
1. Analysis of simulated CO, falloff tests, and
2. Analysis of simulated steam injection falloff tests.

Such simulation studies should be performed using one-dimensional radial mode]
to investigate the effects of a thin skin at the discontinuity, and to develop correlations
for effective properties to be used in well-test analysis. Simulation studies using two-
and three-dimensional models should be performed to investigate the effects of gravity
override/ underride, viscous fingering, and channeling on well-test data.
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NOMENCLATURE

Area, t R?Zorn re2

Formation volume factor, bbl/STB

Total system compressibility, psi

Wellbore storage coefficient, bbl/psi

Shape factor

Arbitrary constants

Exponential Integral

Storativity ratio for a two-region reservoir, (¢ ¢; )1/(¢ ¢; )2

Storativity ratio between regions 1 and 2 for a three-region reservoir, (¢ ¢ W e )
Storativity ratio between regions 1 and 3 for a three-region reservoir, (¢ ¢ UK
Geometric factor defined by Eq. (7.5)

Formation thickness, ft

Modified Bessel function of first kind of order j

Permeability, md

Modified Bessel function of second kind of order j

Laplace parameter

Parameter for the differentiation algorithm of App. E

Inverse Laplace transform

Cartesian line slope, psi/day

Semi-log line slope, psi/cycle

Mobility ratio for a two-region reservoir, (k / L )y/(k / 1L ),

Mobility ratio between regions 1 and 2 for a three-region reservoir, (k / b Wk /1)
Mobility ratio between regions 1 and 3 for a three-region reservoir, (k / B Wk /L)
Pressure, psi

Dimensionless pressure drop

Average reservoir pressure, psi

Dimensionless pressure drop in Laplace space

Flow rate, STB/Day

Radius, ft

Discontinuity radius for a two-region reservoir, ft

Dimensionless discontinuity radius for region 1 for a three-region reservoir, R {/r,,
Dimensionless discontinuity radius for region 2 for a three-region reservoir, Ro/r,,
Skin effect at the wellbore, kih (Ap )gn / 141.2 ¢B 1y

Skin effect at the front (or discontinuity)

Residual oil saturation, fraction

Time, hour

Dimensionless time based on area A, 0.000264(k / ¢ W c,);t/A

Dimensionless time based on R, 0.000264(k / ¢ | ¢;)1t/R

Dimensionless deviation time, 0.000264(k / ¢ L ¢ )1tena! R*

Dimensionless time of the start of second semi-log line

Dimensionless time for maximum semi-log slope

Dimensionless time for slope response to deviate

from infinitely large composite reservoir behavior

Deviation time, hours

Swept volume, 3
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Greek Symbols

& = Tolerance in Eq. (5.11), fraction
o = Coefficients in Egs. (4.27) through (4.30)
é = Parameter in Eq. (B.11)
0 =  Partial
Ap; =  Pressure drop across skin, psi
APsf = Pressure drop across skin at the discontinuity, psi
At = Shut-in time, hours
n = Diffusivity ratio, (k / ¢ W ¢,)/(k / ¢ p )2
L= Viscosity, cp
o = Porosity, fraction
X =  Parameter defined by Eq. (6.31)
Subscripts
a =  Time point a in App. E
b =  Time point b in App. E
c = Cartesian
D = Dimensionless
e =  Exterior or equivalent
eff = Effective
f = Front or flowing
[ = Initial, or time point i in App. E
p = Producing (or injection)
pss = Pseudosteady state
s = Swept or shut-in
55 = Steady state
t = Total
X = Intersection
w = Wellbore
1 = Inner region
2 = Outer region for a two-region composite reservoir or
intermediate region for a three-region composite reservoir
3 = Outer region for a three-region composite reservoir
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APPENDIX A
Beginning of Infinite-acting Radial Flow

" for a Line-source and a Finite-radius Well

In this appendix, the time to the beginning of a semilog straight line for a line-
source well and for a finite-radius well is considered. Simple examples of line-source
and finite-radius wells considered here illustrate that drawdown wellbore pressure
behavior approaches a semilog straight line at a later time on a derivative graph than
on a pressure graph at the same specified accuracy for pressure and pressure derivative.

Case 1. Line-source Well

For a line-source well producing at a constant rate in an infinitely large homo-
geneous reservoir, the pressure response at any location is given by (Theis, 1935):

1| B
Pp (rD,fD)——’z"El - . (A1)

Equation (A.1) is also called the exponential-integral solution (Matthews and Russell,
1967; Horner, 1951), the line-source solution or the Theis (1935) solution. The
definition and approximations for the exponential-integral are presented in Abramowitz
and Stegun (1964). Earlougher (1977) discusses the exponential-integral solution, and
states that the exponential-integral solution can be approximated by:

t
P (p, tp) = —1-[111[12] + 0.80907] , (A.2)
27| 2
when:
tp I rf > 100 . (A.3)

However, Earlougher (1977) also points out that the difference between Egs.
(A.1) and (A.2) is only about 2% when ¢z, /rg > 5. The semilog derivative for the well
pressutre, rp = 1, from Eq. (A.1) is:

d -
WD _ g5V (A.4)
dlIn ip
The semilog pressure derivative from Eq. (A.2) is:
d
Pub (A.5)

dlngy
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From Egs. (A.4) and (A.5), the semilog derivative from the exponential-integral
solution is within 2% and 5% of 0.5 when z;, = 12.4 and 4.9, respectively. Thus, even
though the pressures at the wellbore from the exponential-integral solution and log-
approximation are within 2% when #p > 5, the semilog slopes are within 2% when
tp > 12. Though #, of 5 and 12 are not dramatically different, the following is
observed:

1.  About one-half more log cycle of time is required to get within 2% of 0.5
on a semilog derivative graph. Thus, it may appear that a semilog line has
been reached on a pressure-log time graph, although the slope may change
until a later time on a derivative graph before reaching a constant slope.

9. The line-source well is a simple case. In more complicated cases, larger

differences in design criteria may be observed by analyzing pressure and
pressure derivative responses.

Case 1. Finite-radius Well

Mueller and Witherspoon (1965) presented pp as a function of 7p and tp for an
infinitely large reservoir with a finite-radius well producing at a constant rate. Their
work shows that the pressure transient response at a finite-radius well with no wellbore
storage or skin develops a semilog line for #p = 25. Bourdet et al. (1983a) presented a
drawdown pressure derivative type-curve for a finite-radius well producing at a con-
stant rate with wellbore storage and skin in an infinite reservoir. Their type curve is
reproduced in Fig. A.l. The beginning of a semilog line corresponding to infinite-
acting radial flow is characterized by an approach of (tp / Cp) p’p to a value of 0.5,
where:

dpp dpp dpp
tn/C 'y = (tpn/C = 1 =
(@/Cp) Pp = (ip/Cp) d(@p/Cp) P dp dlngp

(A.6)

The group Cp ¢¥ is a correlating parameter in Fig. A.l. The curve for
Cp e¥ = 0.1 approximates the case of zero wellbore storage and skin. Figure A.l
shows that the curve for Cp e® =0.1 approaches (tp / Cp)p’p of 0.5 at
tp / Cp = 1000. Considering s =0, #p / Cp = 1000 is equivalent to #p = 100 for
CD 82'9 =0.,1.

On Fig. A.1, two design criteria for the beginning of a semilog line available in
the literature are shown. Criterion (1) is (Ramey et al., 1973):

tp >(60+355)Cp (A7)
marked for s = 0 on Fig. A.1. Criterion (2) is (Chen and Brigham, 1978):

tp >50 Cp 145 | (A.8)

marked for s =5 on Fig. A.l. Equations (A.7) and (A.8) were both developed by
analyzing pressure responses. Both criteria appear to underestimate the time to the
beginning of the semilog line on a derivative graph.
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Figure A.1: Pressure derivative type-curve for an infinite, homogeneous reservoir
(after Bourdet et al., 1983a).

2 I ] T T
i M Fs RD i
— ] 1
57 ¢ 10 1 100 ]
a - e 1 100 100 -
E F A 10 1 1000 4
e =
~— [
[ i o |
e ¢
© 05}
- CD =0 -
[
0 | | | L
0.1 1 10 100 1000 10000
L)

Figure A2:  Beginning of semi-log line.
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Figure A.2 shows semilog derivative behavior for a finite-radius well with no
wellbore storage in an infinitely large homogeneous or composite reservoir. The semi-
log derivative is within 5% and 2% of 0.5 at fp = 43, and 142, respectively, for homo-
geneous and composite reservoirs both. Tiab and Kumar (1980) stated that the semilog
derivative is within 5% of 0.5 at #, > 100. The cases shown for a composite reservoir
suggest that the time to the beginning of the first semilog line corresponding to the
inner region mobility is independent of M, F and Rp. Comparing tp 2 142 for semi-
log derivative to be within 2% of 0.5 with #p 2 25 for pressure response to be within
2% of the log approximation of the exponential-integral solution, we observe that about

one-half more log cycle of time is required to reach the beginning of a semilog line on
a derivative graph.

Based on the analysis of these two examples, the following is observed:

1. If a pressure derivative approach is to be used for well test analysis, well
test design should be based on design equations develped from the analysis
of derivative responses, as the derivative approach results in different design
equations. '

2. Pressure derivative behavior for a reservoir model may yield design equa-
tions showing the need for longer tests than presently available design equa-
tions based on the analysis of pressure behavior, if a specialized method,
dependent on the presence of a certain flow regime in test data, is to be
used.

The second remark was shown to be true in this appendix for a line-source well,
and a finite-radius well producing at a constant rate with no wellbore storage in an
infinitely large homogeneous or composite reservoir. The time to the beginning of a
semilog line was considered.
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APPENDIX B

Development of Design Equations

This appendix presents the development of design equations reported in this study. The

data used to develop the design equations are presented. Accuracy of design equations has
also been investigated.

1. Time to the End of Storage-Dominated Period

During the storage-dominated period, the slope of a log-log graph of p,,p vs. #p is:

d In (wa) _

d In (tp) (B.1)

Table B.1 presents the ¢5/Cp values by which the slope d In (Pwp )4 In (tp) has decreased by
2% from the initial value of unity. ,

Table B.1 - The tp,/Cp values for the end of storage-dominated period
(Log-log slope within 2% of 1)

CDEZS tp/Cp tp/Cp
for slope = 0.98 from Eq. (B.2)

10 0.018 0.018
100 0.058 0.066
103 0.11 0.114
10* 0.16 0.162
10° 0.21 0.21
108 0.264 0.258
107 0.31 0.306
1019 0.46 0.45
10%° 0.93 0.93
10% 1.4 141

Based on the #;/Cp values from Table B.1, a design equation for the time to the end of
storage-dominated period as a function of Cp, e is:

p

—— = 0.048 log (Cpe®) — 0.03 . (B.2)
Cp

The #;,/Cp values from Eq. (B.2) are presented in column 3 of Table B.1 for comparison
with the #5/Cp values in column 2 of Table B.1. Equation (B.2) applies for a well producing
at a constant rate from an infinitely large or finite, and homogeneous or composite reservoir.
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2. Time to the Beginning of Infinite-acting Radial Flow

During the infinite-acting radial flow period, the dimensionless semilog pressure deriva-
tive is:

dp wD

=1/2 . B.3
dln tD ( )

Columns 2 and 3 of Table B.2 present the tp/Cp values for the semilog slope to be within 2%
and 5% of 0.5 for several values of Cp e shown in column 1 of Table B.2.

Table B.2 - The tp/Cp values for the beginning of
infinite-acting radial flow (Semi-log slope within 2% and 5% of 0.5)

tp/Cp for tp/Cp for tp/Cp from tp/Cp from
Cpe* Slope = 0.51 Slope = 0.525 Eq. (B.4) Eq. (B.5)
10 435 149 460 140
100 641 245 640 250
10° 813 341 820 360
10* 985 445 1000 470
10° 1208 559 1180 580
108 1313 666 1360 690
107 1494 790 1540 800
1010 2019 1219 2080 1130
10%° 3801 2595 3880 2230
10% 5619 4121 5680 3330

Based on the data in Table B.2, the semilog slope is within 2% of 0.5 at the time:

t
—C’—’— = 280 + 180 log (Cpe?) , (B.4)
D

and the semilog slope is within 5% of 0.5 at the time:

t
2D 230+ 110 log (Cpe®) . (B.5)
Cp

The t,/Cp values from Egs. (B.4) and (B.5) are presented in columns 4 and 5 of Table B.2.
A good comparison between the #5/Cp values in columns 2 and 4, and the #p/Cp values in
columns 3 and 5 demonstrates the validity of Egs. (B.4) and (B.5).

Equations (B.4) and (B.5) are valid for a well producing at a constant rate from an
infinitely large or finite, homogeneous reservoir provided the outer boundary effects are not felt
before the establishment of infinite-acting radial flow. Also, Eqs. (B.4) and (B.5) describe the
time to the beginning of infinite-acting radial flow corresponding to the inner region mobility
for a well in an infinitely large or finite, radial composite reservoir provided the outer region
effects are not felt before the establishment of infinite-acting radial flow corresponding to the
inner region mobility.



- 128 -

3. Time to the End of Infinite-acting Radial Flow for a Well in a Finite, Circular
Homogeneous Reservoir

From Fig. 5.2, the drawdown semilog slope for a constant-pressure outer boundary drops
faster than the drawdown slope for a closed outer boundary rises. However, the data presented
in Table B.3 approximately applies for the drawdown response of a well in a finite homogene-
ous reservoir with either a closed or a constant-pressure outer boundary.

Table B.3 - The t;,/Cy, values for the end of infinite-acting radial flow
(Semi-log slope within 2% of 0.5)

re%)/CD tp/Cp tp/Cp
for slope = 0.51 or 0.49 from Eq. (B.6)
103 175 175
104 1750 1750
10° 17500 17500
106 175000 175000
107 1750000 1750000

For selected values of re%)/CD, Table B.3 presents the tp/Cp values by which the semilog
pressure derivative has changed by 2% of 0.5. The data of Table B.3 suggests:

p _ 0175 r

o o (B.6)

As observed from Fig. 5.4, Eq. (B.6) is also applicable for the buildup response of a well
in a finite homogeneous reservoir with a constant-pressure outer boundary provided f, of Eq.

(B.6) is modified to Az;,. The calculated tp/Cp values from Eq. (B.6) are presented in column
3 of Table B.3 for comparison with the tp/Cp values in column 2 of Table B.3.

The data presented in Table B.4 applies for the buildup response of a well in a closed
reservoir,

Table B.4 - The Aty /Cp values for the end of infinite-acting radial flow
(Semi-log slope within 2% of 0.5)

re%)/CD AtD /CD AtD /CD
for slope = 0.49 from Eq. (B.7)

103 15 10

10* 95 100

10° 600 500

108 5000 5000

10’ 50000 50000
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For selected values of reZD/CD, Table B.4 presents the Atp/Cp values by which the semilog
pressure derivative has decreased by 2% of 0.5. The data of Table B.4 suggests:

At 0.01 r2 r2
D - € for 2 <10° , and
Cp Cp Cp

0.005 r3 rQZD
= for
Cp Cp

>10° . (B.7)

The calculated Aty /Cp values from Eg. (B.7) are presented in column 3 of Table B.4 for com-
parison with the At;,/Cp values in column 2 of Table B.4.

4. Maximum Semi-log Slope and the Time to the Maximum Derivative for a Two-Region
Composite Reservoir

Table B.5 presents the drawdown maximum semilog pressure derivative,
(dp,p!d In tp)may and the time to the maximum pressure derivative, (fp, Jmax for a well in an
infinitely large composite reservoir. The data of Table B.5 suggests:

d
_PwD_ | L (114logFs) , for M =1
d log tp | ..

= (07+logFg)M , for M 210 , (B.S)

and

(tpedmax = (1.8 + 0.4 log Fs) M. (B.9)

Equations (B.8) and (B.9) apply only if M 21, and Fg 2 10. Figures B.1 and B.2 show the
accuracy of Eqs. (B.8) and (B.9) compared to actual values for maximum semilog slope and
the time to maximum pressure derivative. Equations (B.8) and (B.9) apply for the drawdown
response of a well in a finite composite reservoir provided the outer boundary effects do not
mask the development of the maximum semilog slope. Equations (B.8) and (B.9) also appl

for the buildup response of a well in a composite reservoir provided the limit on #,p/Rp
presented in Fig. 6.28 is satisfied.

5. Time to the Beginning of Infinite-acting Radial Flow Corresponding to the Outer
Region Mobility for a Two-Region Composite Reservoir

Table B.6 presents the dimensionless time, (¢p, )y, values by which the drawdown semi-
log slope, dp,p/d In tp, is within 2% of M/2. Based on the data in Table B.6, (tp, )y is:

(pedr = 90 (1 +log Fg)M . (B.10)

Equation (B.10) applies if M = 10, and Fg 2 1. The accuracy of Eq. (B.10) in forecasting the

time to the beginning of infinite-acting radial flow corresponding to the outer region mobility is
shown in Fig. B.3.
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inifinite-acting radial flow (Semi-log slope within 2% and 5% of 0.5)

tp/Cp for tp/Cp for tp/Cp from tp/Cp from
Cpe* Slope = 0.51 Slope = 0.525 Eq. (B.8) Eq. (B.9)
10 435 149 350 144
100 641 245 550 244
10° 813 341 750 344
10* 985 445 950 444
10° 1208 559 1150 544
108 1313 666 1350 644
107 1494 790 1550 744
1010 2019 1219 2150 1044
102 3801 2595 4150 2044
10%° 5619 4121 6150 3044




- 131 -

Table B.6 - The tp/Cp values for the end of infinite-acting radial flow
(Semi-log slope within 2% of 0.5)

rel’D/CD tD/CD tD/CD
for slope = 0.51 from Eq. (B.10)
10° 175 175
104 1750 1750
10° 17500 17500
108 175000 175000

107 1750000 1750000
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6. Time to the Beginning of Outer Boundary Effects for a Finite Two-Region
Composite Reservoir

The time to the start of outer boundary effects for a finite two-region composite reservoir
is obtained as the time when the semilog slope for the finite outer boundary case is different
from the semilog slope for the infinite outer boundary case by 2%. Table B.7 presents the
dimensionless time, (fp,)depars, Vvalues for the start of outer boundary effects on drawdown

behavior for a two-region composite reservoir with a closed outer boundary. The data of Table
B:7 suggests:

_ (rep/Rp)* M

(tDe )depart - B Fg ’ (B.11)

where 1 < B <2n. For small values of r,5/Rp and a large Fg, B — 1. For large values of
r.p/Rp, B — 2m. The parameter f is insensitive to M, but depends on r,p /R, and Fg. Table
B.8 presents (B values obtained empirically for several combinations of r,5/Rp and Fg. The
data of Table B.8 is presented graphically on Fig. B.4. Figures B.5 through B.7 present a
comparison of the results from Eq. (B.11) with the (tp, daepart values from Table B.7 for
rep/Rp = 10, 100, and 1000. For approximate calculations, B = 5 would forecast (¢p, Ydepart
reasonably well for r,p/Rp = 100, and Fg < 200. Using B = 5, Eq. (B.11) becomes:

_ (rep/Rp ¥ M

(tDe )depart - 5 FS (B.12)

Equation (B.11) or (B.12) can also be used to forecast the time to the start of outer boun-
dary effects for drawdown behavior, and the buildup behavior after a long producing time with
" a constant-pressure outer boundary, as shown in Fig. B.8. Figure B.8 shows the drawdown
semilog slope, and the buildup MDH slope for Cp = 0, M = 10, Fg = 1000, and r,p/Rp =
1000 for closed, constant-pressure, and infinite outer boundaries. Figure B.8 shows that the
time to the start of the outer boundary effects is the same for the drawdown responses for
closed and constant-pressure outer boundaries, and the buildup response for a constant-pressure

outer boundary. However, the outer boundary effects start earlier for the buildup response for
a closed outer boundary.
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Table B.7 - The time to the start of outer boundary effects
on drawdown behavior for a two-region
composite reservoir with a closed outer boundary

M F S (tDe )depart for (tDe )depart for (tpe )depart for
reD/RD = 10 reD/RD = reD/RD = 1000
10 22 1585 1.56 x 10°
20 45 3217 3.17 x 10°
50 107 8106 8 x 10°
100 10 220 15850 1.57 x 10°
200 448 32157 3.17 x 10°
500 1071 81053 7.94 x 10°
1000 2195 1.58 x 10° 1.56 x 107
10 4.8 182 15684
20 9.4 373 31744
50 22.8 935 80101
100 100 45.7 1820 1.57 x 10°
200 91.2 3724 3.17 x 10°
500 225 11699 8.01 x 10°
1000 455 18187 1.57 x 10°
10 1.35 35.4 1605
20 25 70.6 3269
50 5.8 170.4 8218
100 1000 11.3 351.7 16041
200 22.5 703.2 32681
500 55.9 1700 82179
1000 110.6 3515 1.6 x 10°
Table B.8 - B values for Eq. (B.11)
Fg B for B for B for
reD/RD = 10 reD/RD = 100 reD/RD = 1000
10 5 6.25 6.25
20 3.66 6.22 6.26
50 2.7 5.75 6.27
100 2 5.56 6.25
200 1.58 4.8 6.25
500 1.2 3.65 6.24
1000 0.8 2.86 6.25
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region composite reservoir with Cp = 0, M = 10, Fs = 1000, and reo/Rp = 1000 for
several outer boundary conditions.
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APPENDIX C
Late Time Drawdown Solution for a Well in a

Two-Region Composite Reservoir

1. Infinitely Large Reservoir

Dimensionless wellbore pressure drop using Ramey’s (1970) approximate solution is:

2

1|, 1 | Rp

tn)=— — |Eil—- 4| - Eil— ——
pwp (tp) ) l{ 4tD] l{ 41‘0]

(M- DRp? R.2
+Me -Ei[— o ] +s5s . (C.1)
4tD

All Ei terms can be replaced by their log approximations and the exponential term will
be within 1% of 1.00, if:

tpe > ngsM , for M/Fg 21
>100 , for MIFg<1 . (C.2)

The simplification of Eq. (C.1) under the conditions of Eq. (C.2) results in:

1 2.2458 tp )
pwp (tD)=—= M In — 3 + In [RD ] +5 . (C.3)
2 n Rp

Equation (C.3) represents a late time drawdown solution for dimensionless wellbore pressure-
drop.

2. Finite Reservoir with a Constant-Pressure Outer Boundary

The reservoir approaches steady-state at late time for a constant-pressure outer boundary.
At late time, total pressure drop in the system is:

141.2 gB 1412 9B
@i — Pug) = —-k—Z—ﬂ In (R/r,) + -——k%ﬂ In(r,/R)+Ap, .  (C4)
1 2! .
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Multiplying both sides of Eq. (C.4) by k;k/141.2 gB |, and using the definitions for dimen-
sionless terms given in Sec. 4, an expression for dimensionless wellbore pressure drop in a
finite composite reservoir with a constant-pressure outer boundary results as:

Pup =10 (Rp) + M In {L"—} s (C.5)
Rp

3. Finite Reservoir with a Closed Quter Boundary

A reservoir approaches pseudosteady state behavior at late time for a closed outer boun-
dary. In the following derivation, ¢; = ¢, and Darcy units have been used for convenience.

At late time, flow rate at any r can be written as:

q(r) = Toh % [(c,)1 R?* - 1Y) +(¢,), (r,}—-RZ)] for r <R, and

= Tk % )2 2 —7Y)  forr=R . (C.6)
Also, the production rate at the well is:
d

9w =q(r,) = noh 2 [(c,)l RZ =) + (e (v - R2>] : ()

Using Eqs. (C.6) and (C.7), assuming R > rw, and letting k = (¢,); R? + () (r2 — R?
yields:

q(r) _ € R*=r)) + (), (2 - R
Gw K

for r <R , and

_ e @l-rY

for r 2R . (C.8)
LN

From Darcy’s law:

_2nrhk dp

q(r) m i

(C9
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Integrating Eq. (C.9) from r to r,,, and using Eq. (C.8) yields:

R
2 ik (P, = Pur) _ enr®| ar T 2= ar
—j 1 —-— ——+M)£——————— = forr 2R ,and

qwl'l'l r, K r LS r
r 2
= j [1 - (e r ] Lid forr <R , (C.10)
; X r

where M = (k/W)/(k/uy). Simplifying the right-hand-side of Eq. (C.10) assuming R > r,
yields:

2 mkih (P, — R* M 2_ p2
h @ = Pur) _ gy - SR G [r,_? n@iR)- =R for r2R d
it 2% x 2
2 _ .2
ESTPRN G 2) S il NP DS S (C.11)
2x
The volumetric average reservoir pressure is:
rt
j 2 nrh p, dr
o Tw NUM
= , C.12
P Py ) (C.12)
f 2 ®rh dr
rw
assuming r, > r,,. The expression for NUM can be written as:
R Te
NUM =1,+15= [ 2 nrhp, dr + [2mrhp, dr . (C.13)
T R
Using Eq. (C.11), the integral [, becomes:
T gwht ()
1 1
I,=2nh r_[ r| pw t 5 ;vtklh {ln (riry,) — 7‘;{— (r2 - rf)} dar . (C.19)

Assuming R > r,,, and neglecting terms like R*r,> and r2, integration of the right-hand-side
of Eq. (C.14) yields:

qw k1 1 (e R?
= nthR? + In(R/r,) — — — ——— . 1
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Similarly, using Eq. (C.11), the integral / 2 becomes:

Te

qwily (ehR* M (¢), 2_p2
12—21l:hL l:pwf+zwkh{n(R/rw)_ ‘ZK + t rezln(r/R)_r 5 dr

X
(C.16)
Integrating the right-hand-side of Eq. (C.16), and simplifying yields:
2
_ 2 2 9w 1 (ct)l R M (Ct)Z 2 2
I,=mnh(r,-R*% pwf+21r.k1h {ln(R/rw)— kT ax 3rS,~R
M (¢ ) qw
+ 7 hr} —K’—- [rf In (r,/R )] 2—;"167 (C.17)

Using Egs. (C.15) and (C.17) in Eq. (C. 13), substituting the result in Eq. (C.12), and
simplifying, we obtain:

In (R/r,) -
2meh | R T T

_ Gw b R? (¢ R? R2
P =pys + - 1-

L M @yR? [1 Rz] 3 M(c), R? [rf

4x re2 4 x R2

2
- 1] + ﬂc‘—K)?—r‘; In (r,/R)} (C.18)

Rearranging Eq. (C.18) yields:

2 nklh (P_ —ow)
q, = , (C.19)
Y Hi1 X

where using the expression for k = (¢;); R? + (¢,); (r* — R?) and Fy = (e1)1/(c;), the
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parameter ), becomes:

2 2
1- 22 M|1-£
R? 2r, r,
x=In@R/r,) - —— = - + -
e 1 e e
211+ — - 4 |Fg + =% -
[ Fy [RZ H [S 2 }
3 ml 7
R? M In (r,/R)
- - + 3 . (C.20)
Te _ 1+— (Fg—1
4[FS + RZ 1} rez (Fs )

IfR =r,,M =1=Fg, and r, > r,, then Eq. (C.20) yields:
x=1n(r./ry) =314 . (C.21)

Equation (C.21) is the limiting form of  for a homogeneous reservoir.
At late time for a closed reservoir, equating production to expansion yields:

g =—c V % . (C.22)

Integrating Eq. (C.22) from O to ¢ yields:

P
qut=—c,V [dp=nth ;- P) [(c,>1R2+ (e (rg—m)] : (C.23)
P;

Multiplying both sides by of Eq. (C.23) by 2 ky/py, and rearranging yields:

2 mkih (i —F) 2 kyt
Wi oy [ R+ (e (2 - R)

2 tp 2 tpe

- 1 - . . (C.24)
2, 1 .2 _p2 y
RD+FS (rep — RD) 1+_1_[r _ }
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Using Egs. (C.19) and (C.24) results in an expression for dimensionless wellbore pressure
drop as:

2 wkih (p; — 2t ,
Ky (pl ow) - De + X+ s (C.25)
9w 1 [ 2 ] )

Pwp =

|l
Fs | R?

Equation (C.25) includes wellbore skin as an additive term.
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| APPENDIX D
Late Time Buildup Solution for a Well in an

Infinitely Large, Two-Region Composite Reservoir
The dimensionless buildup pressure is:
Pwps (Atp) = pyp (top) + pup (Atp) —pup (8p + Alp) . (D.1)

Using individual expressions similar to Eq. (C.3) for the p,, terms on the right-
hand-side of Eq. (D.1) yields: ‘

@ 1 M 2.2458 t,p Atp +1n R + D2)
= — n n s H *
e T RE G +Ap)|
if;
t
pD
- >2100m , for n=1
D
=100 , for n<1 . : (D.3)
and:
Atp, 2100 , for n21
2100, for nsl . (D.4)
The pressure derivative, dp,,p; (Atp) / d (Atp), is:
dpwps (Atp) d [
= Atp) — tp + At , D.
L = Ty [P0 (4) = P> (o ) (D)
where:
(Atp) (op + Aty) = - |3 1| —22 (D.6
—_ = — nj ———————— , .
PwD D Pwp (D D ) tpD +A " )

if the condition represented by Eq. (D.4) is satisfied.
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APPENDIX E

Differentiation Algorithm

The differentiation algorithm described in this appendix is similar to the
differentiation algorithm found most satisfactory by Bourdet et al. (1984). As per
Bourdet et al. (1984), the differentiation algorithm uses one point before ("left") and
one after (“right") the point of interest, calculates the two corresponding derivatives,
and places their weighted mean at the point considered.

Let the time point of interest be r;. Time point, ¢,, to the right and time point,
1y, to the left are:

log () =log (;)+ L , and (E.D
log (t,)=log (&)~ L . (E.2)

A Cartesian pressure derivative is then calculated as:

dp| _ 1 |Pa—Pi L PiT Py
[dt]i 2{:,1—:[ t; =t ' (E3)

If measured pressure data is not available at time point ¢, or t,, then a linear
interpolation scheme based on sequential search is used to calculate Pa O py. Also,
the derivative is not calculated, if #, is less than the time corresponding to the first
measured time-pressure data, or if ¢, is larger than the time corresponding to the last
measured time-pressure data.

Bourdet et al. (1984) suggest common values for L to be between 0 and 0.5,
excluding zero. The noise effect is reduced by choosing a value of L large enough.
However, if L is large, more of the true signal is also lost, and the shape of the origi-
nal type-curve may be affected. Thus, an analyst has to be careful in choosing a
proper value of L. Figures E.1 and E.2 present semi-log and Cartesian pressure
derivatives calculated using the differentiation algorithm of this appendix for two
values of L = 0.1 and 0.5. Solid lines on Figs. E.1 and E.2 show the derivatives cal-
culated for a two-region composite reservoir response with Cp, = 0, M = 10, and F ¢ =
10 using the Stehfest (1970) algorithm. Circles and diamonds show the results of
numerical differentiation of dimensionless pressure values using L = 0.1 and 0.5,
respectively. Thirteen pressure values per cycle were used for the numerical
differentiation. A random noise in the pressure data was not introduced for this exam-
ple. A good agreement between the derivatives calculated from the Stehfest (1970)
algorithm and the numerical differentiation suggests that the differentiation algorithm of
this appendix may be a useful algorithm to differentiate well-test data from composite
Teservoirs.
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10 I
—  Stehfest Algorithm
1 e L=01 -
L=05
01 1 ] ! 1 l
0.01 0.1 1 10 100 1000 10000
tDe
Figure E.1:  Checking the differentiation algorithm for the calculation of semi-log

slope for a two-region composite reservoir with Cp = 0, M = 10, F5 = 10.

100 I
10 -
<
[=)
L =1
©
-~ 1 =]
5
-8' — Stehfest Algorithm
0'1 ,..... L=0.1
¢ L=05
0.01 l . L
0.01 0.1 | 10 100 1000
tpa
Figure E2: Checking the differentiation algorithm for the calculation of Cartesian

slope for a two-region composite reservoir with Cp = 0, M = 10, Fgs = 10.
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APPENDIX F

Effective Properties for a Three-Region Composite Reservoir

1. Derivation of (dc;)esr

If the inner and the intermediate regions are considered to form one region, then
an expression for (dc,).zr is:

(0c; ) RE + (0c,), RZ —R})
R}

(®ct)esy = (F.1)

Dividing both sides of Eq. (F.1) by (¢c,);R 12 , and using Fgy, = (§c,)1/(¢c,), yields:

(bc,)esr RE
(¢c,); RE

— 1 2 _
=145 [(RZIRI) 1] . (F.2)

2. Derivation of (k/pL)eer

If the inner and the intermediate regions are considered to form one region, then
for radial flow in beds in series, (k/W)esr is (Craft and Hawkins, 1959):

k _ In (Ry/r,,)
Rl (WD InRYn,) + (WE); In (Ro/R 1)

(F.3)

Dividing both sides of Eq. (F.3) by (k/p);, and using Rp, = Ry/r,,, Rpy = R,/r,,, and
My = (k/n)/(k/p), yields:

(k/R)epr _ In (Rpy)
(k /W)y In (Rp1) + M1 In (Ro/Ry)

(F4)



- 149 -

Program # 1 --- Two-region composite reservoir with s,
Program # 2 --- Program for differentiation algorithm of App. E.
Program # 3 --- Three-region composite reservoir
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802k 2k o o o s o o e o ool o o e o ol ol o e el a2 ol o o oo o o o ol o o e e ok o ol o o ok o o e o o

Program # 1

e e afe ake o o ake ol ake e e

Name : Anil Kumar Ambastha
Date : May 11, 1988

Purpose of this program is to generate the
pressure transient response for a well
in a two-region composite reservoir.

Wellbore storage and skin at the well are
allowed. Well produces at a constant rate.

The outer boundary condition can be either
infinite, constant-pressure or closed.

There is a thin skin at the discontinuity.

% % R XN EEEREEPREREEREEE

Both buildup and drawdown responses
can be generated.
t**#**#****##**t#********#****tt*#tt**t#*tt*#*ttttt

VARIABLE IDENTIFICATION LIST

e o 2 o ok b ae ae s 3 ke ol e 3l e e o e ool o e o o o ok o

CD --- WELLBORE STORAGE AT THE ACTIVE WELL

SKIN --- SKIN AT THE ACTIVE WELL

SKIN2 --- SKIN AT THE DISCONTINUITY

AMOB --- MOBILITY RATIO (K1*MU2)/(K2*MU1)

DIF --- DIFFUSIVITY RATIO (K1* PHICTMU2)/(K2* PHICTMU1)
STO --- STORATIVITY RATIO (PHICT1/PHICT2)

RD --- DIMENSIONLESS DISCONTINUITY RADIUS

RED --- DIMENSIONLESS OUTER BOUNDARY RADIUS

IMPLICIT REAL*8 (A-H,0-2Z)
DIMENSION TD(20)
COMMON M,JCODE,CD,SKIN,AMOB,DIF RD,RED,SKIN2

OPENING OUTPUT FILES

e ok o e sk b e e o sk o ke o ok ok e ok o o e ok

FOR DRAWDOWN:

e e e 3 e afe e o ke o ok 2 ok

pd --- contains pwd as a function of tde data
pdp --- contains semi-log slope as a function of tde data
pdc --- contains Cartesian slope as a function of 1dA data

FOR BUILDUP:

ok 2 o o e o e e ol ok

pd --- contains pwds as a function of DELTA tde data

pdp --- contains MDH slope as a function of DELTA tde data
pdc --- contains Cartesian slope as a function of DELTA tdA data
pdh --- contains Agarwal slope as a function of DELTA tde data
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OPEN(UNIT=7,FILE="pd")
OPEN(UNIT=8,FILE="pdp")

OPEN(UNIT=9,FILE="pdc")

OPEN(UNIT=10,FILE="pdh")

Shkkkkkdkkkkk ok ko dkdokkk ik

=== Unformatted input section ===

PRINT *'READ THE VALUE OF CD AND SKIN > *
READ(S,*)CD,SKIN

PRINT *,’SKIN AT THE DISCONTINUITY > *
READ(S,*)SKIN2

PRINT *,'MOBILITY RATIO (ZONE 1 BY ZONE 2) > '
READ(5,*)AMOB

PRINT *,'STORATIVITY RATIO (ZONE 1 BY ZONE 2) >’
READ(5,*)STO

PRINT *,"DIMENSIONLESS DISCONTINUITY RADIUS >’
READ(5,*)RD

PRINT *,'# OF CYCLES OF DATA REQUIRED >’
READ(5,*)NC

PRINT *,’GIVE FIRST VALUE OF TD (BASED ON RW) >’
READ(S,*)TD1

PRINT *'NUMBER OF TERMS TO BE USED IN STEHFEST > '
READ(S5,*)NTERM

READ CODES FOR BOUNDARY CONDITIONS

PRINT *,"SUPPLY RESPONSE FUNCTION CODE: *
PRINT *,'1 ---- DRAWDOWN *

PRINT *,’2 ---- BUILDUP >

READ(5,*)ICODE

PRINT *,’"SUPPLY OUTER BOUNDARY CONDITION CODE: ’
PRINT *,’1 --- INFINITE’

PRINT *,’2 ---- CLOSED’

PRINT *,’3 ---- CONSTANT-PRESSURE > ’

READ(5,*)JCODE

IFACODE.EQ.2)THEN

PRINT *,'DIMENSIONLESS PRODUCING TIME (BASED ON RW) >*

READ(S,*)TPD
ENDIF

IFJCODE.NE.1)THEN
PRINT *,"DIMENSIONLESS OUTER RADIUS >’
READ(5,*)RED

ELSE

For infinite reservoir, a fictitious red is supplied
RED=1.e30

ENDIF

*%%* input section ends ***
oo e s o e o o o ok ade o o e e o o e o oo e o ol o ok ook e o o o o ol b ke ok ok ol e ak ol ol ol ke o o o e o o ok
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M=777

PI=2.*ASIN(1.)

COMPUTE DIFFUSIVITY RATIO
DIF=AMOB/STO

GENERATE THE FIRST SET OF TD VECTOR

TD(1)=TD1
TD(2)=1.5*TD1
TD(3)=2.*TD1
TD(4)=2.5*TD1
TD(5)=3.*TD1
TD(6)=3.5*TD1
TD(7)=4.*TD1
TD(8)=4.5*TD1
TD(9)=5.*TD1
TD(10)=6.*TD1
TD(11)=7.*TD1
TD(12)=8.*TD1
TD(13)=9.*TD1

WRITE THE NUMBER OF DATA POINTS GENERATED
The program generates 13 data points per cycle.

WRITE(7,*)13*NC
WRITE(8,*)13*NC
WRITE(9,*)13*NC
IFACODE.EQ.2)WRITE(10,*)13*NC

GENERATE AND PRINT THE PRESSURE TRANSIENT RESPONSE

IFACODE.EQ.2)THEN
CALL INVERT(TPD,NTERM,PD1,PDP1)
ENDIF

DO 11=1,NC
DO 2 J=1,13
SPC=TD(J)
IFICODE.EQ.2)THEN
SPC1=SPC+TPD
CALL INVERT(SPC1,NTERM,PD2 PDF2)
ENDIF
CALL INVERT(SPC,NTERM,PD,PDP)
IF(ICODE.EQ.1)PDC=PDP
IF(ICODE.EQ.2)THEN
PD=PD1+PD-PD2
PDC=PDP-PDP2
PDH=SPC1/TPD*SPC*PDC
ENDIF
PDP=SPC*PDC

CONVERT THE BASE OF 'SPC’ FROM RW TO DISCONTINUITY RADIUS
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- SPC=SPC/RD/RD

0

REPORT THE RESULTS:

WRITE(7,9)SPC,PD
WRITE(8,9)SPC,PDP
WRITE(9,9)SPC/P1,PDC*PI*RD*RD

IFACODE.EQ.2) WRITE(10,9)SPC,PDH

TD)=10.*TD(J)

CONTINUE

FORMAT(2X,F20.6,2X F20.6)

STOP

END

D N

#********t*#*****#*#**#Irt*t#***#***##***#*******#*##lt*###t*‘**#t##

SUBROUTINE LAP(S,PWDL,PDPL)
IMPLICIT REAL*8 (A-H,0-2Z)

'DOUBLE PRECISION MMBSI0,MMBSI1 MMBSKO0,MMBSK1
COMMON M,JCODE,CD,SKIN,AMOB,DIF,RD,RED,SKIN2

C COMPUTE THE ARGUMENTS OF BESSEL FUNCTIONS

ARG1=DSQRT(S)

ARG2=RD*ARGI

ARG3=DSQRT(DIF)*ARG2

IF (JCODE.NE.1) ARG4=DSQRT(S*DIF)*RED

C COMPUTE NEEDED BESSEL FUNCTIONS (THESE ARE SCALED BY EXPONENTIALS)

A1=MMBSIO(2,ARG1,[ER)
A2=MMBSI0(2,ARG2,[ER)
B1=MMBSI1{2,ARG1,IER)
B2=MMBSI1(2,ARG2,IER)

D1=MMBSKO0(2,ARG1,IER)
D2=MMBSKO0(2,ARG2,IER)
D3=MMBSKO0(2,ARG3,IER)

E1=MMBSK1(2,ARG1,IER)
E2=MMBSK1(2,ARG2,IER)
E3=MMBSK1(2,ARG3,IER)

IFJCODE.EQ.2)THEN
C11=-MMBSK1(2,ARG4,IER)
C22=MMBSI1(2,ARG4,IER)

ENDIF

IFJCODE.EQ.3)THEN
C11=MMBSKO0(2,ARG4,IER)
C22=MMBSI0(2,ARG4,IER)

ENDIF
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IFJCODE.NE.1)THEN
A3=MMBSIO(2,ARG3,IER)
B3=MMBSI1(2,ARG3,IER)

ENDIF

CALCULATION OF MULTIPLYING FACTORS

F1=DEXP(ARGI1)
F2=DEXP(ARG2)
F3=DEXP(ARG3)
IFJCODE.NE.1)THEN
IF(ARG4.LE.88.)THEN
F4=DEXP(ARG4)
ELSE
F4=DEXP(88.00D00)
ENDIF
ENDIF

COMPUTATION OF THE COEFFICIENTS OF EQNS. FOR C1,C2 AND C3.
FOR FINITE RESERVOIRS, WE HAVE C4 ALSO. :

AL11=(CD*S*(A1-SKIN*ARG1*B1)-ARG1*B1)*F1
AL12=(CD*S*(D1+SKIN*ARG1*E1)+ARG1*E1)/F1
AL21=(SKIN2*RD*ARG1*B2+A2)*F2
AL22=(D2-SKIN2*RD*ARG1*E2)/F2

AL23=-D3/F3

AL31=AMOB*ARGI1*B2*F2
AL32=-AMOB*ARGI1*E2/F2
AL33=DSQRT(S*DIF)*E3/F3

IFJCODE.NE.1)THEN
Al24=-A3*F3
AL34=-DSQRT(S*DIF)*B3*F3
Al43=C11/F4
Al44=C22*F4
ENDIF
CALCULATION OF C1, C2 AND C3
C4 1S ALSO CALCULATED FOR FINITE RESERVOIRS

S1=AL21*AL33-AL23*AL3]
S2=AL22*A133-AL32*A1.23

IFJCODE.EQ.1)THEN
=S1/(S*(AL12*S1-AL11*S2))
C1=(1.-S*AL12*C2)/S/AL11
C3=-(AL31*C1+AL32*C2)/AL33
ENDIF
IFJCODE.NE.1)THEN
S3=A1A43/ALA44
S4=AL24*A131-AL21*AL34
S$5=S1+53*54
S6=AL22*A1.34-A1.24*A1 32
S7=-AL11*S2+AL12*S1+S3*(AL12*S4+AL11*S6)
C2=S5/S/S7
C1=(1.-S*AL12*C2)/S/AL11
C4=S3*(AL31*C1+AL32*C2)/(AL33-AL34*S3)
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C C3=-C4/S3
ENDIF
CALCULATION OF TRANSFORMED SOLUTION

C PWDL REPRESENTS LAPLACE TRANSFORM OF PWD

PWDL=C1*(A1-SKIN*ARG1*B1)*F1+C2*(D1+SKIN*ARGI*E1)/F1
PDPL=PWDL*S

RETURN

END

##**#*##*tt*#*“##**‘#*###*#*#ttt#######*##t##*t##‘**t#####*#ttt#*###**

THE STEHFEST ALGORITHM

s o ok ok o o o o e o sk sl o ok ol o e sl ol e o ol ok ol o o ok

SUBROUTINE INVERT(TD,N,PD,PDP)
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
INVERSE OF F(S).

IMPLICIT REAL*8 (A-H,0-Z) ‘

COMMON M,JCODE,CD,SKIN,AMOB DIF,RD,RED,SKIN2

DIMENSION G(50),V(50),H(25)

na 0N

NOW IF THE ARRAY V() WAS COMPUTED BEFORE THE PROGRAM
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE

nnna

F(S).
IF N.EQM) GO TO 17
M=N
DLOGTW=0.6931471805599
=N/2

ole

THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G.
G(1)=1

DO 112N

GM=G(-1)*1

CONTINUE

-

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.
H(1)=2./G(NH-1)
DO 6 1=2,NH
Fl=1
IF(I-NH) 4,56
H()=FI**NH*G2*I)/(GINH-I)*G(1)*G(-1))
GO TO6
H@)=FI**NH*G(2*D/(G@)*G(-1))
CONTINUE

THE TERMS (-1)**NH+1 ARE CALCULATED.
FIRST THE TERM FOR I=1
SN=2%(NH-NH/2*2)-1

nO AaNOown &

THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTINE.
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THE ARRAY V(1) IS CALCULATED.
DO 7I=1N

FIRST SET V()=0
V(D=0.

THE LIMITS FOR K ARE ESTABLISHED.
THE LOWER LIMIT IS K1=INTEG((I+1/2))
Kil=(1+1)2

THE UPPER LIMIT IS K2=MIN(I,N/2)
=]
IF (K2-NH) 8,89
K2=NH

THE SUMMATION TERM IN V(1) IS CALCULATED.
DO 10 K=K1,K2
IF (2*K-I) 12,13,12
IF (I-K) 11,14,11
VID)=VA)+HK)/(GA-K)*G(2*K-D)
GO TO 10
VID=VD+H(K)/GJ-K)
GO TO 10
VI)=VD+H(K)/G(2*K-1)
CONTINUE

THE V() ARRAY IS FINALLY CALCULATED BY WEIGHTING
ACCORDING TO SN.
VD=SN*V()

THE TERM SN CHANGES ITS SIGN EACH ITERATION.
SN=-SN
CONTINUE

THE NUMERICAL APPROXIMATION IS CALCULATED.

PD=0.
PDP=0.

=DLOGTW/TD
DO 15 I=1N
ARG=A*]
CALL LAP(ARG,PWDL,PDPL)
PD=PD+V(1)*PWDL
PDP=PDP+V(1)*PDPL
CONTINUE
PD=PD*A
PDP=PDP*A
RETURN
END
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‘tt#*#t##**tt*t*###*#ttiti*t#t*t‘#i*tt#**tt##tt#tt#t
Program # 2
ek dokiikkk
NAME: ANIL K. AMBASTHA
DATE: MAY 11, 1988 ;
THIS PROGRAM COMPUTES THE SLOPE OF A
GIVEN T VS. P ARRAY.
SLOPE = dP / dT or dP/dln T or din P/dln T

Uses linear interpolation to get pressure

values at time where there is no measured data
#tti##*t*t**i#t*tttt#*t#tt##ttttt#**‘t#ttt**t#tttttt

088 ERERESR

VARIABLE IDENTIFICATION LIST

o o o ks ok o o o o ek kol ok ol ol ol o ok o s ok ok ok

D --- INCREMENTAL TIME
NDATA --- NUMBER OF DATA POINTS ON A T VS. P ARRAY
T --- TIME POINTS (THIS 1S INDEPENDENT VARIABLE)
P --- PRESSURE POINTS (THIS IS DEPENDENT VARIABLE)
1CODE --- CODE FOR THE TYPE OF SLOPE DESIRED
=1 --- CARTESIAN SLOPE
=2 --- SEMI-LOG SLOPE (MDH SLOPE FOR BUILDUP)
=3 --- LOG-LOG SLOPE
=4 .- AGARWAL SLOPE (HORNER SLOPE IS NEGATIVE
OF AGARWAL SLOPE)

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION T(200),P(200)
OPEN(UNIT=7 FILE="data")
OPEN(UNIT=8,FILE="output")
WRITE(6,*)'TIME INCREMENT TO SELECT
WRITE(6,*)'POINTS FOR SLOPE CALCULATION > *
WRITE(6.*)'USE VALUE BETWEEN 0 AND 0.5 (RECOMMENDED = 02) >
READ(5,%)D
ENTER THE CODE FOR TYPE OF SLOPE DESIRED
WRITE(6,*)'1 -- CARTESIAN, 2 - SEMI-LOG, *
WRITE(6,*)'3 -- LOG-LOG, 4 -- AGARWAL SLOPE.’
WRITE(6,*)’ENTER THE CODE FOR TYPE OF SLOPE DESIRED > '
READ(S,*)ICODE
IF(ICODE.EQ.4)THEN
WRITE(6,*)’ENTER PRODUCING TIME >
READ(S,*)TP
ENDIF |
READ THE DATA
afe o o e e sl o e e e o ok
READ(7,*)NDATA
DO 1 I=1,NDATA
READ(7,*)T().P(D)
CALCULATE THE SLOPES
el e ok o o o ook o o o ol e e o o o o o
DO 2 1=1,NDATA
TA=10.0D00**(DLOG10(T(D)+D)
TB=10.0D00**(DLOG10(T())-D)
IF(TB LT.T(1))THEN
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GO TO 2
ENDIF
IF(TA.GT.T(INDATA))THEN
GO TO 2
ELSE
C TAKE THE CENTERED DERIVATIVE
CALL TABSEQ(T,P,NDATA,TA PA)
- CALL TABSEQ(T.P,NDATA,TB,PB)
S1=(PA-P()/(TA-T(I))
S2=(P()-PB)/(T(1)-TB)
SLOPE=0.5*DABS(S1+S2)
ENDIF
8 IF(ICODE.EQ.1)WRITE(8,110)T(I),SLOPE
IF(ICODE.EQ.2)WRITE(8,110)T(1),SLOPE*T(I)
IF(ICODE.EQ.3)WRITE(8,110)T(),SLOPE*T()/P()
IFACODE.EQ.4)WRITE(8,110)T(1),SLOPE*T(1)*(TP+T(I))/TP
2 CONTINUE
110 FORMAT(2X,F15.6,2X F15.6)
STOP
END

C ##*llllk*#t**#Ill***#***#****##*#*##*it*****t*#*t***ttt*

SUBROUTINE TABSEQ(X,Y,N,XX,YY)
IMPLICIT REAL*8(A-H,0-2Z)
DIMENSION X(N),Y(N)
..... TABLE LOOK-UP USING SEQUENTIAL SEARCH ,
LINEAR INTERPOLATION BETWEEN TABLE VALUES USED.

X-VECTOR OF INDEPENDENT VALUES (ARGUMENTS)
Y-VECTOR OF DEPENDENT VARIABLES(FUNCTION VALUES)
N-NUMBER OF TABLE ENTRIES

XX-ARGUMENT

YY-INTERPOLATED FUNCTION OF ARUGUMENT XX
IF(XX.LT.X(1)) GO TO 99

I=1

slslololoNoXoKe]

100 I=1+1
IF(1.GT.N) GO TO 98
IF(XX.GT.X(I)) GO TO 100
YY=Y(-1)+(YD)-Y-1)*XX-XA-D)XD-X-1))
RETURN

99 YY=Y(1)
WRITE(6,89)XX
89 FORMAT(IH ,"'WARNING - ARGUMENT OUT OF TABLE XX = ' F12.5)
RETURN
98 YY=Y(N)
WRITE(6,89)XX
RETURN
END
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‘#tt*t##*‘#t‘*‘#*#tt#*i#t#tttttt*‘ttttt‘i“‘t*t‘t“

Program # 3

ek kkkkkkkk

Name : ‘Anil Kumar Ambastha
Date : May 11, 1988

Purpose of this program is to generate
pressure transient response for a well
in a three-region composite reservoir.

s R B8R R RS

*

Wellbore storage and skin at the well are
* allowed. Well produces at a constant rate.

* The outer boundary is assumed to be infinite.
##*#*###**tt#*tt#tt##tli###tt#####tttt#t##tttt#t*t#

VARIABLE IDENTIFICATION LIST

o ok o o e o o ook o e ol o o e o e ol ok ok o e ok sk ok e ok

CD --- WELLBORE STORAGE AT THE ACTIVE WELL

SKIN --- SKIN AT THE ACTIVE WELL

AMOB12 --- MOBILITY RATIO (K1*MU2)/(K2*MU1)

AMOB23 --- MOBILITY RATIO (K2*MU3)/(K3*MU2)

STO12 --- STORATIVITY RATIO (PHICT1/PHICT2)

STO13 --- STORATIVITY RATIO (PHICT1/PHICT3)

DIF12 --- DIFFUSIVITY RATIO (K1* PHICTMU2)/(K2* PHICTMU1)
DIF13 --- DIFFUSIVITY RATIO (K1* PHICTMU3)/(K3* PHICTMU1)
RD! --- DIMENSIONLESS DISCONTINUITY DISTANCE (R1/rw)
RD2 --- DIMENSIONLESS DISCONTINUITY DISTANCE (R2/rw)
RED --- DIMENSIONLESS OUTER RADIUS

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION TD(20)
COMMON M.JCODE,CD,SKIN,AMOB12,AMOB23,DIF12,DIF13RD1,RD2RED
OPEN(UNIT=7,FILE="pd")
OPEN(UNIT=8,FILE="pdp")
OPEN(UNIT=9,FILE="pdc")

P1=2.0D00*ASIN(1.0)
=== Unformatted input section ===

PRINT *'READ THE VALUE OF CD AND SKIN > °
READ(5,*)CD,SKIN

PRINT *,’MOBILITY RATIO (1 by 2 and 2 by 3) >’
READ(5,*)AMOB12,AMOB23

PRINT *,'STORATIVITY RATIO (1 BY 2 and 1 by 3) >’
READ(5,*)ST012,STO13

PRINT *,'DIMENSIONLESS DISCONTINUITY DISTANCE (RDI1 and RD2) >’
READ(5,*)RD1,RD2

PRINT *,'# OF CYCLES OF DATA REQUIRED >’
READ(5,*)NC

PRINT *,’GIVE FIRST VALUE OF TD >’

READ(5,)TD1

PRINT *,'NUMBER OF TERMS TO BE USED IN STEHFEST > ’
READ(5,*)NTERM
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PRINT *'SUPPLY OUTER BOUNDARY CONDITION CODE: *
PRINT *,'] --- INFINITE'

PRINT *,"2 ---- CLOSED’

PRINT *,'3 ---- CONSTANT-PRESSURE > *

READ(S5,*)JCODE

IFJCODE.NE.1)THEN
PRINT *,'DIMENSIONLESS OUTER RADIUS’
READ(5,*)RED o
ELSE
RED=1.e30
ENDIF
**** input section ends ***

=777
CALCULATE DIFFUSIVITY RATIOS (DIF12 AND DIF] 3)
AMOB13=AMOB12*AMOB23
DIF12=AMOB12/STO12
DIF13=AMOB13/ST013

GENERATE THE FIRST SET OF TD VECTOR

TD(1)=TD1
TD(2)=1.5*TD1
TD(3)=2.*TD1
TD(4)=2.5*TD1
TD(5)=3.*TD1
TD(6)=3.5*TD1
TD(7)=4.*TD1
TD(8)=4.5*TD1
TD(9)=5.*TD1
TD(10)=6.*TD1
TD(11)=7.*TD1
TD(12)=8.*TD1
TD(13)=9.*TD1

WRITE THE NUMBER OF DATA POINTS GENERATED

WRITE(7,*)13*NC
WRITE(8,*)13*NC
WRITE(S,*)13*NC

GENERATE AND PRINT THE PRESSURE TRANSIENT RESPONSE

DO 1 I=1,NC

DO 2 J=1,13

SPC=TD(J) '

CALL INVERT(SPC,NTERM.PD,PDP)

CALCULATE CARTESIAN SLOPE

PDC=PDP*PI*RD1*RD1

CALCULATE SEMI-LOG GRAPH SLOPE (BASE e)

PDP=SPC*PDP

CONVERT BASE OF 'SPC’ FROM RW TO DISCONTINUITY DISTANCE
SPC=SPC/RD1/RDI
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REPORT THE RESULTS

sheabook ook st kol e ol sk ke ke sk ik ale ok

*0

WRITE(7,9)SPC,PD
WRITE(8,9)SPC.PDP
WRITE(9,9)SPC/P1LPDC

2 TD()=10.*TD(J)

1 CONTINUE

9 FORMAT(2X/F15.5,2X,F15.7)
STOP
END

t#**t#*#t##t*#####t#*t***#*ttt#*t*tt*#*#tt##tt‘ii*#tt‘##ti##‘**tt**

SUBROUTINE LAP(S,PWDL,PDPL)

IMPLICIT REAL*8 (A-H,0-2Z)

DOUBLE PRECISION MMBSIO,MMBSI1, MMBSKO,MMBSK1

COMMON M,JCODE,CD,SKIN,AMOB12,AMOB23,DIF12,DIF13,RD1,RD2,RED

C COMPUTE THE ARGUMENTS OF BESSEL FUNCTIONS

ARG1=DSQRT(S)
ARG2=RD1*ARG1
ARG3=DSQRT(DIF12)*ARG2
ARG4=RD2*DSQRT(S*DIF12)
ARG5=RD2*DSQRT(S*DIF13)

C COMPUTE BESSEL FUNCTIONS SCALED BY EXPONENTIALS

A1=MMBSI0(2,ARG1,IER)
A2=MMBSI0(2,ARG2,IER)
A3=MMBSI0(2,ARG3,IER)
A4=MMBSI0(2,ARG4,IER)

B1=MMBSI1(2,ARG1,IER)
B2=MMBSI1(2,ARG2,IER)
B3=MMBSI1(2,ARG3,IER)
B4=MMBSI1(2,ARGA4,IER)

D1=MMBSKO0(2,ARG1,IER)
D2=MMBSKO0(2,ARG2,IER)
D3=MMBSKO0(2,ARG3,IER)
D4=MMBSKO0(2,ARG4,IER)
D5=MMBSKO0(2,ARGS5,IER)

E1=MMBSK1(2,ARG1,IER)
E2=-MMBSK1(2,ARG2,IER)
E3=MMBSK1(2,ARG3,IER)
E4=MMBSK1(2,ARG4,IER)
E5=MMBSK1(2,ARG35,IER)

C CALCULATION OF MULTIPLYING FACTORS
F1=DEXP(ARG1)
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F2=DEXP(ARG2)
=DEXP(ARG3)
IF(ARG4.LE.88.)THEN

F4=DEXP(ARG4)
"ELSE

F4=DEXP(88.400)
ENDIF
IF(ARGS5.LE.88.)THEN

F5=DEXP(ARGS)
ELSE

F5=DEXP(88.d00)
ENDIF

COMPUTATION OF THE COEFFICIENTS OF EQNS. FOR C1 THROUGH C5.

AL11=(CD*S*(A1-SKIN*ARGI1*B1)-ARG1*B1)*F]
AL12=(CD*S*(D1+SKIN*ARG]1 *E1+ARGI*E1)/F1
AL21=A2*F2

AL22=D2/F2

AL23=-A3*F3

AL24=-D3/F3

AL31=AMOBI12*ARG1*B2*F2
AlL32=-AMOBI12*ARGI*E2/F2

Al 33=-DSQRT(S*DIF12)*B3*F3
AL34=DSQRT(S*DIF12)*E3/F3

Al 43=A4*F4

Al A44=D4/F4

AlLA45=-D5/F5
AL53=AMOB23*DSQRT(S*DIF12)*B4*F4
AL54=-AMOB23*DSQRT(S*DIF12)*E4/F4
ALS55=DSQRT(S*DIF13)*E5/F5

CALCULATION OF C1 THROUGH C5

X1=A1A43*AL55-A145*%AL 53
X2=AlA5*AL54-A1L A4*AL 55
X3=AL33*X2+AL34*X1
S1=AL31*AL12-AL32*AL11
S2=AL22*AL11-AL21*AL12
S3=AL23*X2+AL24*X1

IFJCODE.EQ.1)THEN
=(S3*AL31-AL21*X3)/(S*(X3*S2+51*S3))
Cl1=(1.-S*AL12*C2)/S/AL11
C3=-(AL31*C1+AL32*C2)*X2/(AL33*X2+AL34*X1)
C4=(-X1*(AL31*C1+AL32*C2))/(AL33*X2+AL34*X1)
C5=-(AL53*C3+AL54%C4)/AL55
ENDIF

CALCULATION OF TRANSFORMED SOLUTION
PWDL REPRESENTS LAPLACE TRANSFORM OF PWD
PWDL=C1*(A1-SKIN*ARG1*B1)*F1+C2*(D1+SKIN*ARG1*E1)/F1
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PDPL=PWDL*S
RETURN
END

e o e e e ok o o e ol o e o o o o ool o ool o oo o o o oo ol ol oo ool o o ol o ool o o b ol o ok ol ool o ol ol bk ol ok ool o ok ok ok ik

THE STEHFEST ALGORITHM

s o afe o ke e o o o o ol a2 o o o e s e o o e o o o e o ok

SUBROUTINE INVERT(TD,N,PD,PDF)
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
INVERSE OF F(S).
IMPLICIT REAL*8 (A-H,0-Z)
COMMON M,JCODE,CD,SKIN,AMOB12,AMOB23,DIF12,DIF13,RD1,RD2,RED
DIMENSION G(50),V(50),H(25)

N0 a0an

NOW IF THE ARRAY V() WAS COMPUTED BEFORE THE PROGRAM
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
F(S).

IF N.EQ.M) GO TO 17

M=N

DLOGTW=0.6931471805599

NH=N/2 ‘

naan

no

' THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G.
G(1)=1 .
DO 11=2N
G(M=Gd-1)*1
CONTINUE

na=-

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.
H(1)=2./G(NH-1)
DO 6 1=2,NH
Fl=1
IF(I-NH) 4.5,6
H(D)=FI**NH*GQ2*D/(GINH-D)*G()*G(-1))
GO TO 6
HO=FI**NH*G*D/(GM*G(-1))
CONTINUE

THE TERMS (-1)**NH+1 ARE CALCULATED.
FIRST THE TERM FOR I=1
SN=2*(NH-NH/2*2)-1
THE REST OF THE SN‘S ARECALCULATED IN THE MAIN RUTINE.
THE ARRAY V(1) IS CALCULATED.
DO 7I=1N

FIRST SET V(I)=0
v(D=0.

NN 0N NANONN NONOSswn &

THE LIMITS FOR K ARE ESTABLISHED.
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THE LOWER LIMIT IS K1=INTEG((I+1/2))
Ki=1+1)/2

THE UPPER LIMIT IS K2=MIN(I,N/2)
K2=]
IF (K2-NH) 8,8,9
K2=NH

THE SUMMATION TERM IN V() IS CALCULATED.
DO 10 K=K1,K2
IF (2*K-I) 12,13,12
IF (1K) 11,14,11
VO=VO+HEK)(GI-K)*G(2*K-D)
GO TO 10
VID)=VID+HK)/GA-K)
GO TO 10
VO=V{D)+HK)/G2*K-T)
CONTINUE

THE V(1) ARRAY IS FINALLY CALCULATED BY WEIGHTING
ACCORDING TO SN.
V({D=SN*V()

THE TERM SN CHANGES ITS SIGN EACH ITERATION.
SN=-SN
CONTINUE

THE NUMERICAL APPROXIMATION IS CALCULATED.

PD=0.
PDP=0.

A=DLOGTW/TD

DO 15 I=1,N

ARG=A*]

CALL LAP(ARG,PWDL,PDPL)
PD=PD+V({)*PWDL
PDP=PDP+V(1)*PDPL
CONTINUE
PD=PD*A
PDP=PDP*A

RETURN
END
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